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Abstract

We study pure exploration with heterogeneous per-measurement costs. An agent sequen-
tially selects among K arms whose observation laws belong to (possibly structured) canonical
exponential families, and each pull incurs an arm- and instance-dependent cost. The goal is
to identify an instance-dependent answer (e.g., best arm, thresholding bandits, or Pareto set
identification) while maximizing the rate at which the posterior probability of error decays per
unit spent budget. We characterize the optimal cost-normalized posterior error exponent as the
value of a maximin program that trades off statistical discrimination against the average cost,
and show that no adaptive sampling rule can exceed this exponent. By working with the cost
normalization, the exponent is characterized by a concave maximization problem. Motivated
by this characterization, we develop a cost-aware pure exploration algorithm. The resulting
dynamics is inherently nonsmooth and set-valued due to argmin operations, boundary effects, and
normalization. We analyze the stochastic iterates through a continuous-time approximation based
on differential inclusions and prove that, under mild regularity conditions, the algorithm attains
the optimal cost-normalized posterior error exponent almost surely. Our results provide a general
asymptotic optimality guarantee for cost-aware pure exploration beyond best-arm identification,
covering broad exploration queries, exponential-family rewards, and structured bandit models,
with substantially lower per-iteration computational overhead than optimize-then-track baselines
such as Track-and-Stop.

1 Introduction

Pure exploration seeks to identify an instance-dependent answer (e.g., a best arm, a top-m set, or
the arms above a threshold) from sequential noisy measurements. Classical formulations measure
efficiency in the number of samples, effectively treating each pull as unit cost. In many applications,
however, the binding constraint is a heterogeneous budget (time, money, compute, or human effort),
and arms can consume that budget at vastly different rates. Such cost heterogeneity arises naturally
in clinical screening (tests with different prices and turnaround times), online experimentation
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(traffic and operational costs), sensing and robotics (energy), multi-fidelity simulation (cheap proxies
vs. expensive high fidelity), and data-centric workflows such as prompt selection or human labeling
(token/annotation costs). Information-theoretically, this shifts the objective from information per
sample to information per unit cost. As a result, a sample-optimal policy can be budget-inefficient,
over-investing in expensive measurements even when cheaper ones provide comparable discriminative
power. The mismatch is particularly pronounced in structured bandits such as linear bandits, where
geometry couples arms: a cheaper arm can be more informative because it probes directions that
best separate the true instance from its hardest alternatives.

A growing literature incorporates sampling costs into pure exploration. Qin and Russo (2024)
bridges regret minimization and pure exploration in a cost-aware setting for unstructured bandits.
Related directions include multi-fidelity feedback (Poiani et al. 2024), LLM prompt selection (Hu et al.
2025), and other cost-sensitive designs (Kanarios et al. 2024, He-Yueya et al. 2025). Several works
also pursue asymptotic optimality: Qin and Russo (2024) combine IDS with best-arm identification;
Kanarios et al. (2024), Wu et al. (2025) adapt Track-and-Stop; and Poiani et al. (2024) extends
Ménard (2019) and analyze subgradient-type schemes for multi-fidelity trade-offs.

In this work, we extend the algorithm of Qin and You (2025) to incorporate heterogeneous costs
and general structured bandit models. Doing so is technically nontrivial for three reasons. First,
pure-exploration designs rely on repeated arg min operations (e.g., to detect the most confusing
alternative), which become set-valued under ties; existing analyses often address this via carefully
constructed subdifferential subspaces (Wang et al. 2021). Second, structured bandits frequently
admit sparse optimal allocations, pushing the dynamics toward the simplex boundary where Chernoff
information can be nonsmooth and Clarke-type generalized gradients are required. Third, the
information-directed selection (IDS) rule (You et al. 2023) we build upon involves a normalization
whose denominator may vanish, creating genuine singularities. To handle these pathologies and
establish convergence, we develop a continuous-time approximation based on differential inclusions.
This framework naturally accommodates set-valued detection/selection rules and boundary-induced
nonsmoothness, enabling a Lyapunov-based analysis of the resulting learning dynamics.

Contributions. We now summarize our contributions and compare with relevant literature.
First, we propose a simple cost-aware pure-exploration algorithm by extending Qin and You

(2025) to cost-sensitive and structured settings. Many asymptotically optimal methods follow an
“optimize-then-track” blueprint (Kanarios et al. 2024, Wu et al. 2025), solving a maximin program
and tracking its solution online. Track-and-Stop (Garivier and Kaufmann 2016) is the canonical
example, but its per-round allocation solve can be costly beyond small unstructured instances.
Related approaches reduce computation via online mirror ascent (Ménard 2019) or game-theoretic
no-regret dynamics (Degenne et al. 2019, 2020). Frank–Wolfe Sampling (Wang et al. 2021) offers a
broadly applicable conditional-gradient tracker, but still requires a per-round linear subproblem
and tuning of an r-subdifferential characterization. In contrast, our algorithm reduces per-iteration
overhead and completely remove tracking steps by directly mapping the current state to sampling
probabilities through the Chernoff-information structure.
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Second, we provide the first asymptotic optimality guarantee for IDS beyond Gaussian best-arm
identification. Our results cover general pure-exploration queries under one-parameter exponential-
family rewards and structured bandit models, addressing the open questions raised in Qin and You
(2025), Jourdan (2024). Top-two algorithms, for instance, sample via a β-biased randomization
between a leader and challenger (Russo 2020, Qin et al. 2017, Shang et al. 2020, Jourdan et al.
2022). Despite strong empirical performance, optimality can require nontrivial tuning of β (Russo
2020). IDS (You et al. 2023) replaces the fixed-β rule with an information-gain criterion and yields
asymptotic optimality for Gaussian BAI, while Qin and Russo (2024) proposes IDS for cost-aware
BAI; until this work, guarantees beyond the Gaussian setting remained limited.

Third, we develop a proof technique tailored to the nonsmooth, set-valued nature of pure-
exploration dynamics, offering a powerful toolkit for analyzing bandit algorithms that behave
like nonsmooth first-order methods. We analyze the IDS updates through differential inclusions,
leveraging nonsmooth chain rules (path differentiability) (Davis et al. 2020, Bolte and Pauwels
2021) and weak Sard-type properties (Benäım et al. 2005) to construct Lyapunov arguments. Our
analysis follows the stochastic-approximation perspective, which links discrete-time iterates to
continuous-time limits via differential inclusions (Benäım et al. 2005, Borkar 2008, Davis et al. 2020,
Bolte and Pauwels 2021). While related tools are standard in nonsmooth optimization, they are not
designed for the distinctive singularities induced by bandit sampling and IDS.

2 Problem Formulation

We study pure exploration with heterogeneous per-measurement costs. There are K arms, indexed
by [K] ≜ {1, . . . ,K}. The unknown state of nature is represented by a parameter vector θ ∈ Θ ⊂ Rd.
Sampling arm i produces a noisy measurement whose distribution we denote by Pθ,i. Measurements
are assumed independent across rounds, and conditionally identically distributed given the selected
arm and θ. We assume that for each arm i, the observation law belongs to a one-dimensional canonical
exponential family. Specifically, the law Pθ,i has density pθ,i(y) = b(y) exp

(
ηi(θ)T (y)−A(ηi(θ))

)
,

where ηi(·) is the arm-specific natural-parameter map that allows for structured bandits.

Example 1 (Best-arm identification in linear bandits). Consider a linear bandit with unknown
parameter θ ∈ Rd and design matrix X ∈ RK×d, whose i-th row is the feature vector x⊤

i . The mean
reward of arm i is mi ≜ x⊤

i θ. Pulling arm i yields an observation Y ∼ N (mi, σ
2
i ), and observations

are independent across pulls (and across arms). A canonical objective is best-arm identification:
determine the (assumed unique) optimal arm I∗ ∈ arg maxi∈[K]mi.

Assumption 1. The parameter set Θ ⊂ Rd is compact with nonempty interior, each ηi is continuous
on Θ, and A is twice continuously differentiable on an open neighborhood of ηi(Θ) for each i.
Moreover, there is a finite constant LA <∞ such that supi∈[K] supθ∈Θ |A′(ηi(θ))| ≤ LA.

At each round n ≥ 1, an Hn−1-measurable sampling rule selects an arm In ∈ [K] and observes
Yn ∼ Pθ,In , where Hn ≜ σ(I1, Y1, . . . , In, Yn) is the interaction history up to round n.
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To capture cost heterogeneity across arms, we assume that sampling arm i under the true
instance θ incurs a (per-sample) cost Ci(θ).

Assumption 2. The sampling costs are known continuous functions. Furthermore, there exist
constants 0 < cmin ≤ cmax <∞ such that for all arms i and all θ ∈ Θ, cmin ≤ Ci(θ) ≤ cmax.

Let ∆K ≜
{
q ∈ RK

≥0 :
∑K

i=1 qi = 1
}

denote the simplex in RK . Define the sample allocation
pn ≜ (pn,1, . . . , pn,K) ∈ ∆K , where pn,i ≜ Nn,i/n and Nn,i ≜

∑n
ℓ=1 1{Iℓ = i}. For any p ∈ ∆K ,

denote C̄θ(p) =
∑K

i=1 piCi(θ) as the average cost per sample. Then, the budget spent after n rounds
is Bn ≜

∑K
i=1Nn,iCi(θ) = nC̄θ(pn).

Posterior Error Exponent Per Unit Cost. The goal is to correctly identify an instance-
dependent answer I(θ) based on these noisy measurements. For a given instance θ, define the
alternative set as the collection of instances yielding a different answer,

Alt(θ) ≜
{
ϑ ∈ Θ : I(ϑ) ̸= I(θ)

}
,

as in Garivier and Kaufmann (2016), Wang et al. (2021), Qin and You (2025).

Assumption 3. The true instance θ ∈ Θ has a unique answer I(θ). Moreover, the answer is
identifiable from the family of observation laws in the sense that for any ϑ ∈ Θ,

Pθ,i = Pϑ,i ∀i ∈ [K] =⇒ I(ϑ) = I(θ).

Furthermore, Alt(θ) is non-empty and dist(θ,Alt(θ)) > 0.

The form of the alternative set depends on the query to be answered. This assumption is
automatically satisfied if Alt(θ) is open, e.g., in best-arm identification. Moreover, it also covers
cases where Alt(θ) is not necessarily open, e.g., in thresholding bandit problem (Chen et al. 2014,
Locatelli et al. 2016), but we require that the true parameter is not on the boundary.

Let Π0 be a prior on Θ, and let Πn(·) ≜ Π(· | Hn) denote the posterior distribution after n
rounds. Following Russo (2020), our goal is to design a sampling rule that drives rapid decay of
the posterior mass Πn(Alt(θ))—the posterior probability of identifying an incorrect answer—while
accounting for heterogeneous sampling costs across arms.

As discussed in Russo (2020), Qin et al. (2017), under a well-designed sampling rule the
posterior mass Πn(Alt(θ)) typically decays exponentially in the number of total samples. With
cost considerations, we instead normalize by the cumulative budget spent Bn and study the
(cost-normalized) posterior error exponent − 1

Bn
log Πn

(
Alt(θ)

)
. Accordingly, our objective is to

characterize and attain the optimal cost-aware large-deviation rate of posterior concentration.

Cost-normalized discriminative information rate. The large-deviation decay of Πn
(
Alt(θ)

)
under adaptive sampling is characterized by Russo (2020, Proposition 5) for the unstructured bandit
in the non-cost-aware setting. Extension to our setting here is relatively straightforward, as we
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detail in Appendix A. In particular, we show that, up to subexponential factors, the posterior
mass of any open set Θ̃ ⊂ Θ decays exponentially at rate infϑ∈Θ̃ Γ(pn;ϑ), where Γ(pn;ϑ) ≜∑K

i=1 piKL
(
Pθ,i∥Pϑ,i

)
is the discrimination information rate under allocation p ∈ ∆K and alternative

instance ϑ ∈ Θ. In the cost-aware setting, we normalize by the cumulative budget spent Bn and
obtain the heuristic approximation

− 1
Bn

log Πn
(
Alt(θ)

)
= n

Bn

(
− 1
n

log Πn
(
Alt(θ)

))
≈ inf

ϑ∈Alt(θ)

Γ(pn;ϑ)
C̄θ(pn)

.

See Theorem 1 and Proposition 3 for rigorous statements.
Motivated by this posterior-exponent characterization, we define a cost-normalized discrimination

rate for a fixed sample allocation p ∈ ∆K and any alternative instance ϑ ∈ Θ

Γc(p;ϑ) ≜
∑K

i=1 piKL
(
Pθ,i∥Pϑ,i

)∑K
i=1 piCi(θ)

= Γ(p;ϑ)
C̄θ(p)

. (1)

This quantity measures the expected amount of discriminative information per unit cost against the
alternative ϑ when samples are allocated according to p. A natural design criterion is to select an
allocation that maximizes the discrimination rate against the worst-case alternative, leading to

Γ∗ ≜ max
p∈∆K

inf
ϑ∈Alt(θ)

Γc(p;ϑ). (2)

Sufficient condition for optimality. We characterize the maximal achievable cost-normalized
large-deviation rate of posterior concentration and provide a convenient sufficient condition under
which an algorithm attains the optimal exponent. As in Russo (2020), we impose the following mild
boundedness condition on the prior.

Assumption 4. The prior Π0 admits a density π0 with respect to Lebesgue measure on Θ such that

0 < inf
θ∈Θ

π0(θ) ≤ sup
θ∈Θ

π0(θ) <∞.

Theorem 1. Assume Assumptions 1–4. Then, for any adaptive sampling rule,

lim sup
n→∞

− 1
Bn

log Πn(Alt(θ)) ≤ Γ∗ Pθ-a.s.

Moreover, suppose an algorithm produces sample allocation pn satisfying

lim
n→∞

inf
ϑ∈Alt(θ)

Γc(pn;ϑ) = Γ∗ Pθ-a.s. (3)

Then,
lim

n→∞
− 1
Bn

log Πn(Alt(θ)) = Γ∗ Pθ-a.s.

Theorem 1 is convenient in that it reduces asymptotic optimality to an almost sure value
convergence property: it suffices to show that the algorithm drives the worst-case cost-normalized
discrimination rate infϑ∈Alt(θ) Γc(pn;ϑ) to Γ∗.
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3 The Algorithm

In this section, we adapt the Pitfall-Adapted Nomination (PAN) algorithm of Qin and You (2025) to
our cost-aware setting.

3.1 Decomposition of the Alternative Set

We impose the following mild structural condition on the alternative set, commonly adopted in the
pure exploration literature, e.g., in Wang et al. (2021).

Assumption 5. The alternative set Alt(θ) is a finite union of convex sets. That is, there exists a
finite index set X (θ) and convex sets {Altx(θ) : x ∈ X (θ)} such that Alt(θ) =

⋃
x∈X (θ) Altx(θ).

The set X (θ) captures the fundamental types of “confusing scenarios” under which an alter-
native instance produces an answer different from I(θ); see Qin and You (2025, Appendix A) for
comprehensive examples.

For each confusing scenario x ∈ X (θ) and any sample allocation p, the following quantity
captures the cost-normalized discriminative information available to rule it out:

Dx(p;θ) ≜ inf
ϑ∈Altx(θ)

Γc(p;ϑ) = 1
C̄θ(p)

inf
ϑ∈Altx(θ)

K∑
i=1

piKL
(
Pθ,i∥Pϑ,i

)
,

This allows us to rewrite (2) as Γ∗ = maxp∈∆K
minx∈X (θ)Dx(p;θ).

3.2 Cost-Aware PAN Algorithm

The PAN algorithm of Qin and You (2025), originally developed for non-cost-aware exploration
in unstructured bandits, proceeds in three steps. At each round n, it performs: (i) estimation,
producing an estimator θn; (ii) detection, identifying the most confusing scenario (the pitfall) in
X (θn); and (iii) selection, allocating measurements across arms. We extend PAN to incorporate two
additional features, cost-aware exploration and structured bandits, as summarized in Algorithm 1.1

Estimation rule. The problem instance θ is unknown and must be learned from noisy bandit
feedback. We assume access to an estimation oracle that, at each round, maps the current history
to an instance estimate. In unstructured bandits, the empirical mean vector provides such an oracle,
while in linear bandits a natural choice is the (regularized) least-squares estimator.

Assumption 6. For each round n, given the history Hn, an estimation routine returns an estimate
θn = θn(Hn) ∈ Θ of the true instance θ. If Nn,i →∞ for all i, then θn → θ almost surely.

1The algorithm is anytime in the sense that the sampling rule itself does not depend on T .
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Detection rule. The detection rule identifies the currently most confusing alternative scenario
x ∈ X (θn). Recall that Dx(pn;θn) denotes the plug-in estimate of the cost-normalized discriminative
information available to rule out scenario x under the current sample allocations pn. Accordingly,
we select the scenario with the smallest value of Dx(pn;θn), i.e.,

xn ∈ arg min
x∈X (θn)

Dx(pn;θn), breaking ties arbitrarily. (4)

Although Dx(p;θ) is defined via a cost normalization, the argmin in (4) is in fact independent of
the cost functions Ci(·). Indeed, for any fixed (p,θ) we have C̄θ(p) > 0 by Assumption 2 and the
factor 1/C̄θ(p) does not depend on x. Therefore,

arg min
x∈X (θ)

Dx(p;θ) = arg min
x∈X (θ)

inf
ϑ∈Altx(θ)

K∑
i=1

piKL (Pθ,i∥Pϑ,i) . (5)

This is expected: the detection step is purely a statistical discrimination task and is therefore
independent of the cost of information collection. Similarly, for a given x, sample allocations p and
any problem instance θ ∈ Θ, the hardest instance2 within Altx is also independent of the cost:

ϑx = ϑx(p,θ) ∈ arg min
ϑ∈Altx(θ)

Γc(p;ϑ) = arg min
ϑ∈Altx(θ)

Γ(p;ϑ).

Selection rule. We generalize the Information-Directed Selection (IDS) rule of Qin and You
(2025) into the cost-aware IDS sampling probabilities

Hx
i (p;θ) ≜ piKL (Pθ,i∥Pϑx,i) /Ci(θ)∑K

j=1 pjKL (Pθ,j∥Pϑx,j) /Cj(θ)
, i ∈ [K]. (6)

Let Hx(p;θ) ≜
(
Hx

1 (p;θ), . . . , Hx
K(p;θ)

)
∈ ∆K .

Forced exploration. To guarantee sufficient exploration, we include forced-exploration blocks of
length K that begin at times n = Km2 for integers m ≥ 0; over the subsequent K rounds, each arm
is pulled exactly once. Between forced blocks, PAN follows the cost-aware IDS rule (6). Accordingly,
the sample allocation pn ∈ ∆K evolves as

pn+1 = pn + 1
n+ 1

(
eIn+1 − pn

)
, In+1

∼H
xn(pn;θn), if

√
⌊n/K⌋ /∈ Z,

= 1 + (n mod K), if
√
⌊n/K⌋ ∈ Z.

(7)

Our main result is the optimality of Algorithm 1.

Theorem 2. Under Assumptions 1–7, Algorithm 1 satisfies

lim
n→∞

− 1
Bn

log Πn(Alt(θ)) = Γ∗ Pθ-a.s.
2We establish uniqueness of such ϑx under mild conditions in Lemma 1.
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Algorithm 1 Cost-Aware PAN Algorithm
Require: Horizon T ∈ N, estimation routine est

1: Initialize: Ni(0)← 0 for all i ∈ [K]; initialize an estimate θ0; set p0 ← (1/K)1
2: for n = 0, 1, . . . , T − 1 do
3: θn ← est(Hn) ▷ Estimation
4: if

√
⌊n/K⌋ ∈ Z then

5: In+1 ← 1 + (n mod K) ▷ Forced exploration
6: else
7: xn ∈ arg minx∈X (θn)Dx(pn;θn), breaking ties arbitrarily ▷ Detection
8: Draw In+1 ∼Hxn(pn;θn) using (6) ▷ Selection
9: end if

10: Pull arm In+1, observe Yn+1 ∼ Pθ,In+1 , update pn and Hn+1 = σ(Hn, In+1, Yn+1)
11: end for
12: return IT = I(θT ) where θT ← est(HT )

4 Dynamics of the Cost Allocations

The optimal cost-normalized exponent (2) is defined over sample allocations p ∈ ∆K through the
fractions, which is not concave in p. For the dynamical analysis of Algorithm 1, it is therefore
convenient to reparameterize the allocation by cost allocations, which linearize the objective and
yield a concave maximin problem.

4.1 Cost-Allocation Iterations

Fix the true instance θ. For any p ∈ ∆K , define the associated cost allocation

wi = wi(p) ≜ piCi(θ)
C̄θ(p)

, C̄θ(p) ≜
K∑

j=1
pjCj(θ), i ∈ [K]. (8)

Thus wi is the fraction of the average per-sample cost attributed to arm i under p. By Assumption 2,
the map p 7→ w(p) is a bijection on ∆K .3 Under (8), the cost-normalized information rate (1)
becomes linear in w:

Γ̃c(w;ϑ) ≜
K∑

i=1
wi

KL
(
Pθ,i∥Pϑ,i

)
Ci(θ) . (9)

Indeed, Γc(p;ϑ) = Γ̃c(w(p);ϑ) for all p ∈ ∆K and ϑ ∈ Θ. Consequently, the optimal expo-
nent admits the equivalent concave maximization Γ∗ = maxw∈∆K

infϑ∈Alt(θ) Γ̃c(w;ϑ). Under the
decomposition in Assumption 5,

Γ∗ = max
w∈∆K

min
x∈X (θ)

Dw
x (w;θ), where Dw

x (w;θ) ≜ inf
ϑ∈Altx(θ)

Γ̃c(w;ϑ). (10)

The next lemma collects structural properties used throughout the sequel.
3The cost allocations are introduced for the analysis purpose and is not used by the algorithm. Consequently, we

allow it to access the true costs to simplify exposition.
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Lemma 1. Fix θ and x ∈ X (θ). For w ∈ RK
≥0, the map w 7→ Dw

x (w;θ) is nonnegative, continuous,
concave and coordinatewise nondecreasing on ∆K , and degree-one homogeneous: Dw

x (λw;θ) =
λDw

x (w;θ) for all λ > 0. For w ∈ RK
>0, the minimizer ϑx(w;θ) ≜ arg minϑ∈cl(Altx(θ)) Γ̃c(w,ϑ)

is unique, Dw
x (·;θ) is continuously differentiable and [∇wD

w
x (w;θ)]i = KL(Pθ,i∥Pϑx(w;θ),i)/Ci(θ).

Moreover, there exists dx(θ) > 0 such that
∑K

i=1[∇wD
w
x (w;θ)]i ≥ dx(θ) for all w ∈ int(∆K), and

hence Dw
x (w;θ) = ⟨w,∇wD

w
x (w;θ)⟩ > 0 on int(∆K).

We impose a gradient bound that is satisfied by most pure-exploration tasks; see Wang et al.
(2021, Lemma 1).

Assumption 7. For all x ∈ X (θ) and all differentiability points w, the gradient ∇wD
w
x (w;θ)

exists and is uniformly bounded: there is M = M(θ) <∞ such that ∥∇wD
w
x (w;θ)∥∞ ≤M .

Cost allocations along the trajectory. To analyze the asymptotic behavior of the cost allo-
cations along the trajectory, we denote by wn the cost allocation associated with pn and true θ,
i.e.,

wn,i ≜
pn,iCi(θ)
C̄θ(pn)

= Nn,iCi(θ)
Bn

, i ∈ [K].

From the sampling process, wn follows the exact update

wn+1 = wn + αn+1
(
eIn+1 −wn

)
, where αn+1 ≜

CIn+1(θ)
Bn+1

for In+1 defined in (7). (11)

Under Assumption 2, the stepsize satisfies cmin
cmax(n+1) ≤ αn+1 ≤ cmax

cmin(n+1) . This recursion is the
budget analogue of the frequentist update pn+1 = pn + 1

n+1(eIn+1 − pn).
In the w-coordinate system, the detection and selection rules can be naturally related to their

counterparts in the p-coordinates through the cost-weighted transformation.

Detection rule in w-coordinates. The detection step (4) in w-coordinate becomes

xn ∈ arg min
x∈X (θn)

Dx(pn;θn) = arg min
x∈X (θn)

1
C̄θn(pn)

inf
ϑ∈Altx(θn)

K∑
i=1

pn,iKL (Pθn,i∥Pϑ,i)

= arg min
x∈X (θn)

1
C̄θ(pn)

inf
ϑ∈Altx(θn)

K∑
i=1

pn,iKL (Pθn,i∥Pϑ,i)

= arg min
x∈X (θn)

inf
ϑ∈Altx(θn)

K∑
i=1

wn,i
KL (Pθn,i∥Pϑ,i)

Ci(θ) . (12)

Although the explicit expression for the detection rule in w-coordinates involves the cost terms
Ci(θ), as implied by (5), the resulting most confusing answer xn is actually independent of the cost.
This stems from the fact that the detection step is fundamentally a statistical decision problem,
aimed at identifying the most confusing alternative hypothesis based on how distinguishable the
current estimate is from each alternative. The costs influence how we allocate resources across the
arms, but they do not change the underlying task of distinguishing between hypotheses.
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Selection rule in w-coordinates. IDS admits an elegant gradient representation in the w-
coordinates. For a fixed x ∈ X (θ) and at a point w where Dw

x (·;θ) is differentiable and positive, we
define

hx(w;θ) ≜ w ◦ ∇wD
w
x (w;θ)

Dw
x (w;θ) ∈ ∆K . (13)

Since Dw
x (·;θ) is homogeneous of degree 1, Euler’s identity yields Dw

x (w;θ) = ⟨w,∇wD
w
x (w;θ)⟩,

confirming that (13) indeed defines a probability vector. Such IDS distribution (13) at round n, i.e.
hxn

i

(
wn;θn

)
can be computed explicitly using Lemma 1. It relates to the PAN algorithm 1 sampling

distribution Hxn
i (pn;θn) ∝ pn,iKL(Pθn,i∥Pϑx,i)/Ci(θn) through the following identity:

hxn
i

(
wn;θn

)
= wn,iKL(Pθn,i∥Pϑx,i)/Ci(θn)∑K

j=1wjKL(Pθ,j∥Pϑx,j)/Cj(θn)
=

Ci(θ)
C̄θ

pn,iKL(Pθn,i∥Pϑx,i)/Ci(θn)∑K
j=1

Cj(θ)
C̄θ

pjKL(Pθ,j∥Pϑx,j)/Cj(θn)

= Ci(θ)pn,iKL(Pθn,i∥Pϑx,i)/Ci(θn)∑K
j=1Cj(θ)pjKL(Pθ,j∥Pϑx,j)/Cj(θn)

= Ci(θ)Hxn
i (pn;θn)∑K

j=1Cj(θ)Hxn
j (pn;θn)

. (14)

Thus, while p tracks sampling frequencies, the w captures the evolution of how the budget is
distributed across arms, and the IDS rule has a particularly simple form in these coordinates.

Expected drift in cost coordinates Let qn,i ≜ P(In+1 = i | Hn) denote the actual sampling
distribution at round n (including forced explorations). Define the expected stepsize

α̃n+1 ≜ E[αn+1 | Hn] =
K∑

i=1
qn,i

Ci(θ)
Bn + Ci(θ) ,

and introduce the cost-weighted sampling distribution h̃n ∈ ∆K such that E[αn+1eIn+1 |Hn] =
α̃n+1h̃n. Explicitly, the components of h̃n are given by

h̃n,i ≜ qn,i
Ci(θ)

Bn + Ci(θ)
/[ K∑

j=1
qn,j

Cj(θ)
Bn + Cj(θ)

]
.

Taking conditional expectation in the update rule (11) yields the expected drift of wn:

E [wn+1 −wn | Hn] = α̃n+1
(
h̃n −wn

)
. (15)

The following lemma characterizes the asymptotic relationship between the actual sampling distri-
bution h̃n and the ideal IDS distribution hxn(wn;θn).

Lemma 2. With estimator sequence θn → θ almost surely,

1. Detection consistency: limn→∞
∣∣Dw

xn
(wn,θn)−minx∈X Dw

x (wn,θn)
∣∣ = 0 almost surely.

2. Selection consistency: On non-forced rounds, the sampling distribution h̃n satisfies∣∣h̃n,i − hxn
i (wn,θn)

∣∣ ≤ cmax
ncmin

hxn
i (wn,θn) for all i ∈ [K], (16)

and consequently ∥h̃n − hxn(wn,θn)∥∞ → 0 at rate O(1/n).

Lemma 2 shows that, in cost coordinates, the stochastic sampling process asymptotically follows
a deterministic drift direction given by the IDS distribution hxn(wn,θn). This gradient-like form of
IDS naturally provides a convenient optimization perspective for our analysis.
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4.2 Continuous-Time Dynamics

We study the discrete-time iterates via their limiting continuous-time dynamics as n→∞, i.e., as
the step size vanishes. Throughout this subsection, we fix the true instance θ and suppress it in the
notation: write Dw

x (w) ≡ Dw
x (w;θ) and X ≡ X (θ).

Recall that the discrete IDS rule in (13) uses ∇wD
w
x and divides by Dw

x . Two issues therefore
arise on simplex boundary: (i) Dw

x may fail to be differentiable, and (ii) the denominator can vanish.
To isolate points where the discrete rule is well defined, define the regular region4

R ≜
{
w ∈ ∆K : min

x∈X
Dw

x (w) > 0 and Dw
x is C1 at w, ∀x ∈ arg min

x′∈X
Dw

x′(w)
}
.

For each w ∈ R, the IDS sampling distribution is well defined. By Lemma 1, for every x ∈ X and
p ∈ int(∆K), the function Dw

x (·;θ) is strictly positive and C1; hence int(∆K) ⊆ R and R = ∆K .
Therefore IDS can be extended from R to the full simplex via an appropriate limit construction.

Defining a continuous-time analogue of IDS entails an additional subtlety. As n → ∞, the
detected index xn can switch on a fast time scale, while the sample allocation wn evolves on a
slower time scale. Consequently, in the continuous-time limit, the sampling decision at time t should
respond not to a single scenario, but to the entire active set arg minx∈X Dw

x (w(t)). To capture the
limiting effect of rapid switching among active scenarios, we introduce an IDS correspondence: a
set-valued extension of the discrete IDS rule that collects all limiting sampling responses induced by
such fast switching. These limiting responses are parameterized by an “average” detection-frequency
vector ν ∈ det(w), where det(w) is the detection correspondence defined as

det(w) ≜ arg min
ν∈∆|X |

F (w,ν).

At the slower time scale, the discrete IDS updates track a smoothed response to an average frequency
of confusing scenarios, represented by some ν ∈ det(w). Define

F (w,ν) ≜
∑
x∈X

νxD
w
x (w), ∀w ∈ ∆K , ∀ν ∈ ∆|X |.

For w ∈ R and ν ∈ det(w), define the averaged IDS response

h(w,ν) ≜
∑
x∈X

νxh
x(w) = w ◦ ∇wF (w,ν)

F (w,ν) ∈ ∆K , (17)

and the IDS selection correspondence

sel(w) ≜ conv
{

lim
n→∞

h(wn,νn) : wn → w, wn ∈ R, νn ∈ det(wn)
}
.

The continuous-time evolution of w is then described by the differential inclusion (DI)

ẇ(t) ∈ G
(
w(t)

)
≜ sel

(
w(t)

)
−w(t), w(0) = w0 ∈ ∆K . (18)

It is worth noting the similarity between the DI and its discrete version in (15).
4For boundary w, we interpret continuous differentiablity as C1 on a neighborhood of w within the relative interior

of the smallest face containing w.
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Proposition 1 (Properties of the DI). The correspondences det and sel are nonempty, convex-
valued, compact-valued, and upper hemicontinuous on ∆K . For every w0 ∈ ∆K , the differential
inclusion (18) admits an absolutely continuous solution w(·) with w(0) = w0, and ∆K is forward
invariant. Moreover, for any solution w(·) there exists a measurable selection t 7→ s(t) ∈ sel(w(t))
such that ẇ(t) = s(t)−w(t) for a.e. t ≥ 0.

5 Convergence Analysis

The main result of this paper is the value convergence of Algorithm 1. We show that both the cost
allocation and the sampling frequencies induce the optimal value.

Theorem 3. Under Assumptions 1–7, let {wn}n≥0 be the cost allocation sequence generated by
Algorithm 1 and iteration (11). Then, minx∈X Dw

x

(
wn;θn

)
→ Γ∗ almost surely. As a consequence,

for {pn}n≥0 from Algorithm 1, we also have minx∈X Dx
(
pn;θn

)
→ Γ∗ almost surely.

In view of the sufficient condition in Theorem 1, the value convergence of the sampling allocations
generated by Algorithm 1 (Theorem 3) certifies the asymptotic optimality claimed in Theorem 2.
Our analysis proceeds in four steps.

First, in Appendix E.1, we construct a globally well-defined information value that serves as a
Lyapunov function for the limiting differential inclusion and show that it is nondecreasing along
every solution trajectory. By LaSalle’s invariance principle, the associated ω-limit set has empty
interior. Second, in Appendix E.2, we transfer this continuous-time structure to the stochastic
iterates via stochastic-approximation tools—the asymptotic pseudo-trajectory (APT) framework
and the characterization of internally chain transitive (ICT) sets—which yields convergence of
the information value along the discrete-time trajectory. Third, in Appendix E.3, we rule out
convergence to the degenerate value 0 under interior initialization, ensuring the dynamics remains
in a positive-information regime. Finally, in Appendix E.4, we use the Kullback–Leibler divergence
as an energy function on the active set and establish a uniform negative-drift bound. This forces
the limiting information value to coincide with the optimal value F ∗, completing the proof.

6 Numerical Experiment

We implement Algorithm 1 and compare against four baselines: (i) Track-and-Stop, where the
sampling proportions are obtained by running the deterministic version (i.e., remove the estimation
step and assume that θ̂n is the ground truth) of Algorithm 1 for 100 iterations on the current
estimate θ̂n, coupled with a classical track-and-stop rule; (ii) LinGapE (Xu et al. 2018); (iii)
OD-LinBAI (Yang and Tan 2022); and (iv) Uniform sampling. All methods use a ridge-regression
estimation oracle. Additional experiments are deferred to Appendix G (heterogeneous costs), and
we refer to Qin and You (2025) for unit-cost variants in the fixed-confidence setting.

We consider fixed-confidence linear best-arm identification with d = 5 and K = 6. Arms ai = ei

for i ∈ {1, . . . , 5}, and a6 = cos(ω)e1 + sin(ω)e2 with ω = 0.01, so a6 is nearly collinear with a1.
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The true parameter is θ = (2, 0, 0, 0, 0) with unit noise variance and unit costs, yielding µ1 = 2 and
µ6 = 2 cos(ω) ≈ 1.9999. This is the classical hard instance of Soare et al. (2014): distinguishing
a1 from a6 requires shrinking uncertainty along the nearly −e2 contrast direction, so accurately
estimating θ2 is essential even though arm 2 is far from optimal in mean.

For each replicate, we record the smallest budget n such that the posterior error Πn
(
Alt(θ)

)
≤

10−3, censoring at B = 106 if the target is not reached. Figure 1 reports the distribution of budgets
needed to reach the target over 1000 replicates. Algorithm 1 is the best-performing method, with a
median budget of 2.77× 104, while Track-and-Stop is slightly slower with median 3.32× 104. In
contrast, LinGapE, OD-LinBAI, and Uniform have markedly larger medians (8.85× 104, 1.08× 105,
and 1.44× 105, respectively).

Ours
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Figure 1: Budget to reach target posterior error Πn(Alt(θ)) ≤ 10−3 over 1000 replicates.

The behavior matches the oracle structure: the optimal allocation places almost all mass on
arm 2 (p∗

2 ≈ 0.995). Algorithm 1 quickly discovers and tracks this, with average final allocation
≈ 0.994 on arm 2. Track-and-Stop (with our approximate oracle) assigns less to arm 2 on average
(≈ 0.756), while LinGapE, OD-LinBAI, and Uniform overweight the contender arms (1 and 6),
slowing contraction along the critical contrast and producing heavy-tailed budgets.

7 Conclusion

We studied pure exploration with heterogeneous per-measurement costs and characterized the
optimal large-deviation rate at which the posterior probability of error can decay per unit spent
budget. Our main contribution is a cost-aware extension of the Pitfall-Adapted Nomination (PAN)
framework that attains this optimal cost-normalized posterior error exponent almost surely under
mild regularity conditions, for general one-parameter exponential-family rewards and structured
bandit models. Conceptually, the results clarify that cost heterogeneity fundamentally changes the
design criterion from “information per sample” to information per unit cost, and that asymptotically
optimal behavior is governed by budget allocations rather than sampling frequencies.

Technically, we developed a proof strategy based on continuous-time approximation via differential
inclusions, which accommodates fast switching in the detection step, nonsmoothness of the Chernoff

13



information objective, and the set-valued nature of IDS at ties and on the boundary of the simplex.
This perspective may be useful beyond the present setting, offering a general toolkit for analyzing
bandit sampling rules that behave like nonsmooth first-order methods.

Finally, our analysis incorporates forced exploration to streamline technical arguments and ensure
sufficient excitation. Empirically, however, we observe that forced exploration is not essential for
practical performance. Establishing asymptotic optimality without this mechanism is an interesting
direction for future work.
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Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In Conference
on Learning Theory, pages 998–1027. PMLR, 2016.

Joy He-Yueya, Jonathan Lee, Matthew Jörke, and Emma Brunskill. Cost-aware near-optimal policy learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 28088–28096, 2025.

Xiaoyan Hu, Lauren Pick, Ho-fung Leung, and Farzan Farnia. Promptwise: Online learning for cost-aware
prompt assignment in generative models. arXiv preprint arXiv:2505.18901, 2025.

14



Alexander D Ioffe. Variational analysis of regular mappings. Springer Monographs in Mathematics. Springer,
Cham, 2017.

Marc Jourdan. Solving pure exploration problems with the Top Two approach. PhD thesis, Université de Lille,
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Appendix

A Proof of Theorem 1

Our proof follows the basic template of Russo (2020, Theorem 1), adapted to the cost-aware and
structural bandit setting. The execution is relatively routine, nevertheless, we include full arguments
for completeness.

A.1 Preliminaries

Recall the average KL divergence under a probability vector p ∈ ∆K :

Γ(p;ϑ) ≜
K∑

i=1
piKL(Pθ,i∥Pϑ,i).

Let the log-likelihood ratio up to time n be

Λn(θ∥ϑ) ≜
n∑

ℓ=1
log pθ,Iℓ

(Yℓ)
pϑ,Iℓ

(Yℓ)
.

Lemma 3 (Uniform log-likelihood approximation). Under Assumption 1,

lim
n→∞

sup
ϑ∈Θ

∣∣∣∣ 1nΛn(θ∥ϑ)− Γ(ψ̄n;ϑ)
∣∣∣∣ = 0 a.s.

Proof. Fix the true instance θ. For each fixed ϑ ∈ Θ, define

Xℓ(ϑ) ≜ log pθ,Iℓ
(Yℓ)

pϑ,Iℓ
(Yℓ)

.

Then Xℓ(ϑ) is Hℓ-measurable and

Eθ[Xℓ(ϑ) | Hℓ−1] =
K∑

i=1
ψℓ,iEθ

[
log pθ,i(Y )

pϑ,i(Y )

]
=

K∑
i=1

ψℓ,iKL(Pθ,i∥Pϑ,i).

Therefore,

Λn(θ∥ϑ) =
n∑

ℓ=1
Xℓ(ϑ) =

n∑
ℓ=1

Eθ[Xℓ(ϑ) | Hℓ−1] +Mn(ϑ) = nΓ(ψ̄n;ϑ) +Mn(ϑ),

where Mn(ϑ) is the martingale

Mn(ϑ) ≜
n∑

ℓ=1
δℓ(ϑ), δℓ(ϑ) ≜ Xℓ(ϑ)− Eθ [Xℓ(ϑ) | Hℓ−1] .

Thus it remains to show that supϑ∈Θ |Mn(ϑ)| = o(n) a.s.
Under Assumption 1, we have a finite uniform bound

κKL ≜ sup
i∈[K]

sup
ϑ∈Θ

KL(Pθ,i∥Pϑ,i) ≤ sup
i∈[K]

sup
ϑ∈Θ

Eθ

(log pθ,i(Y )
pϑ,i(Y )

)2
1/2

<∞. (19)
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In particular, for each fixed ϑ, {Mn(ϑ)}n≥1 is square-integrable and

Eθ

[
δℓ(ϑ)2 | Hℓ−1

]
≤ 4Eθ

[
Xℓ(ϑ)2 | Hℓ−1

]
≤ 4κ2

KL,

where we used (a− E[a | H])2 ≤ 4a2 and the definition of κX . Hence,

∞∑
ℓ=1

Eθ[δℓ(ϑ)2]
ℓ2

≤ 4κ2
KL

∞∑
ℓ=1

1
ℓ2
<∞.

By the strong law of large numbers for square-integrable martingales, this implies Mn(ϑ)/n→ 0 a.s.
for each fixed ϑ ∈ Θ. Next fix δ > 0. By Assumption 1, there exists a finite δ-net Nδ ⊂ Θ. Since
Nδ is finite and Mn(ν)/n→ 0 a.s. for each ν ∈ Nδ, we have

max
ν∈Nδ

|Mn(ν)|
n

→ 0 a.s. (20)

We now control |Mn(ϑ)−Mn(ϑ′)| for nearby parameters. Assumption 1 implies the following
Lipschitz property: there exists a finite constant L <∞ such that for all i ∈ [K], all ϑ,ϑ′ ∈ Θ, and
ν-a.e. y, ∣∣∣∣∣log pϑ

′,i(y)
pϑ,i(y)

∣∣∣∣∣ ≤ L∥ϑ− ϑ′∥
(
1 + |T (y)|

)
. (21)

Using (21) with i = Iℓ and y = Yℓ yields, for all ϑ,ϑ′ ∈ Θ,

|Xℓ(ϑ)−Xℓ(ϑ′)| =
∣∣∣∣∣log pϑ

′,Iℓ
(Yℓ)

pϑ,Iℓ
(Yℓ)

∣∣∣∣∣ ≤ L∥ϑ− ϑ′∥
(
1 + |T (Yℓ)|

)
. (22)

By Jensen’s inequality,∣∣Eθ

[
Xℓ(ϑ)−Xℓ(ϑ′) | Hℓ−1

]∣∣ ≤ Eθ

[
|Xℓ(ϑ)−Xℓ(ϑ′)| | Hℓ−1

]
≤ L∥ϑ− ϑ′∥

(
1 + Eθ[|T (Yℓ)| | Hℓ−1]

)
. (23)

Combining (22)–(23) and the definition of δℓ(·) gives

|δℓ(ϑ)− δℓ(ϑ′)| ≤ |Xℓ(ϑ)−Xℓ(ϑ′)|+
∣∣Eθ[Xℓ(ϑ)−Xℓ(ϑ′) | Hℓ−1]

∣∣
and hence

|δℓ(ϑ)− δℓ(ϑ′)| ≤ L∥ϑ− ϑ′∥
(
2 + |T (Yℓ)|+ Eθ[|T (Yℓ)| | Hℓ−1]

)
. (24)

Summing (24) over ℓ ≤ n yields

|Mn(ϑ)−Mn(ϑ′)|
n

≤ L∥ϑ− ϑ′∥
(

2 + 1
n

n∑
ℓ=1
|T (Yℓ)|+

1
n

n∑
ℓ=1

Eθ[|T (Yℓ)| | Hℓ−1]
)
. (25)

Define the constants

κ
(2)
T ≜ sup

i∈[K]
Eθ

[
T (Y )2

]
<∞, κ

(1)
T ≜ sup

i∈[K]
Eθ [|T (Y )|] ≤

√
κ

(2)
T <∞.
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Then for every ℓ,

Eθ[|T (Yℓ)| | Hℓ−1] =
K∑

i=1
ψℓ,iEθ[|T (Y )| | Iℓ = i] ≤ κ(1)

T ,

and therefore
1
n

n∑
ℓ=1

Eθ[|T (Yℓ)| | Hℓ−1] ≤ κ(1)
T . (26)

Moreover, letting

Uℓ ≜ |T (Yℓ)| − Eθ[|T (Yℓ)| | Hℓ−1], Sn ≜
1
n

n∑
ℓ=1

Uℓ,

we have that {Uℓ}ℓ≥1 is a martingale difference sequence and

Eθ[U2
ℓ | Hℓ−1] ≤ Eθ[|T (Yℓ)|2 | Hℓ−1] =

K∑
i=1

ψℓ,iEθ[T (Y )2 | Iℓ = i] ≤ κ(2)
T .

Hence
∑

ℓ≥1 Eθ[U2
ℓ ]/ℓ2 <∞, and by the martingale strong law,

Sn → 0 a.s. (27)

Finally,
1
n

n∑
ℓ=1
|T (Yℓ)| =

1
n

n∑
ℓ=1

Eθ[|T (Yℓ)| | Hℓ−1] + Sn ≤ κ(1)
T + Sn. (28)

Plugging (26) and (28) into (25) gives

|Mn(ϑ)−Mn(ϑ′)|
n

≤ L∥ϑ− ϑ′∥
(
2 + 2κ(1)

T + Sn
)

a.s. (29)

Fix δ > 0 and let Nδ be a finite δ-net of Θ. For each ϑ ∈ Θ, choose πδ(ϑ) ∈ Nδ such that
∥ϑ− πδ(ϑ)∥ ≤ δ. Then

|Mn(ϑ)|
n

≤ |Mn(πδ(ϑ))|
n

+ |Mn(ϑ)−Mn(πδ(ϑ))|
n

.

Taking supϑ∈Θ and using (29) yields

sup
ϑ∈Θ

|Mn(ϑ)|
n

≤ max
ν∈Nδ

|Mn(ν)|
n

+ sup
ϑ∈Θ:

∥ϑ−πδ(ϑ)∥≤δ

L∥ϑ− πδ(ϑ)∥
(
2 + 2κ(1)

T + |Sn|
)

≤ max
ν∈Nδ

|Mn(ν)|
n

+ Lδ
(
2 + 2κ(1)

T

)
+ Lδ|Sn|. (30)

Now let n→∞ in (30). Using (20) and Sn → 0 a.s. yields

lim sup
n→∞

sup
ϑ∈Θ

|Mn(ϑ)|
n

≤ Lδ
(
2 + 2κ(1)

T

)
a.s.

Since δ > 0 is arbitrary, letting δ → 0 gives supϑ∈Θ |Mn(ϑ)|/n→ 0 a.s. Therefore,

sup
ϑ∈Θ

∣∣∣∣ 1nΛn(θ∥ϑ)− Γ(ψ̄n;ϑ)
∣∣∣∣ = sup

ϑ∈Θ

|Mn(ϑ)|
n

→ 0 a.s.,

which proves the lemma.
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Lemma 4 (Uniform posterior density ratio). Assume Assumptions 1–4. Then,

sup
ϑ∈Θ

∣∣∣∣ 1n log πn(ϑ)
πn(θ) + Γ(ψ̄n;ϑ)

∣∣∣∣→ 0 a.s.

Proof. By Bayes’ rule,

log πn(ϑ)
πn(θ) = log π0(ϑ)

π0(θ) +
n∑

ℓ=1
log pϑ,Iℓ

(Yℓ)
pθ,Iℓ

(Yℓ)
= log π0(ϑ)

π0(θ) − Λn(θ∥ϑ).

Divide by n, we obtain

1
n

log πn(ϑ)
πn(θ) + Γ(ψ̄n;ϑ) = 1

n
log π0(ϑ)

π0(θ) −
( 1
n

Λn(θ∥ϑ)− Γ(ψ̄n;ϑ)
)
.

The first term goes to 0 uniformly in ϑ by Assumption 4 and the second term goes to 0 uniformly
by Lemma 3.

Next we need a mild regularity of ϑ 7→ Γ(ψ̄n;ϑ).

Lemma 5 (Uniform continuity of Γ(q;ϑ) in ϑ). Assume Assumptions 1 and 1. Then for every
ϵ > 0 there exists δ > 0 such that for all q ∈ ∆K and all ϑ,ϑ′ ∈ Θ,

∥ϑ− ϑ′∥ ≤ δ ⇒ |Γ(q;ϑ)− Γ(q;ϑ)| ≤ ϵ.

Proof. For each arm i, continuity of ηi on compact Θ implies uniform continuity. Recall that

KL(Pθ,i∥Pϑ,i) =
(
ηi(θ)− ηi(ϑ)

)
A′(ηi(θ))−A(ηi(θ)) +A(ηi(ϑ)).

On compact ηi(Θ), A is Lipschitz as A′ is bounded by Assumption 1. Thus ϑ 7→ KL(Pθ,i∥Pϑ,i)
is uniformly continuous, uniformly in i. A convex combination over i with weights qi preserves
uniform continuity uniformly over q ∈ ∆K .

A.2 Posterior Large Deviation

Definition 1 (Logarithmic equivalence). For positive sequences {an} and {bn}, write an
.= bn if

limn→∞
1
n log(an/bn) = 0. If the sequences are random, the relation holds almost surely.

Proposition 2 (Posterior large deviations). Assume Assumptions 1–4. Let Θ̃ ⊂ Θ be open. Then,

Πn(Θ̃) .= exp
(
−n inf

ϑ∈Θ̃
Γ(ψ̄n;ϑ)

)
. (31)

Proof. Fix Θ̃ open. Write

Πn(Θ̃) =
∫

Θ̃ πn(ϑ) dϑ∫
Θ πn(ϑ) dϑ =

∫
Θ̃

πn(ϑ)
πn(θ) dϑ∫

Θ
πn(ϑ)
πn(θ) dϑ

.

By Lemma 4, for some deterministic ϵn ↓ 0,

exp{−n(Γ(ψ̄n;ϑ) + ϵn)} ≤ πn(ϑ)
πn(θ) ≤ exp{−n(Γ(ψ̄n;ϑ)− ϵn)} ∀ϑ ∈ Θ.

19



Integrating over Θ̃ and Θ yields that the numerator and denominator are each log-equivalent to the
corresponding Laplace integrals∫

Θ̃
exp{−nΓ(ψ̄n;ϑ)} dϑ and

∫
Θ

exp{−nΓ(ψ̄n;ϑ)} dϑ.

Thus it suffices to show the Laplace principle∫
Θ̃

exp{−nWn(ϑ)} dϑ .= exp{−n inf
ϑ∈Θ̃

Wn(ϑ)} with Wn(ϑ) = Γ(ψ̄n;ϑ),

and similarly with Θ̃ = Θ.
Let ϑ̂n ∈ cl(Θ̃) attain the minimum Wn(ϑ̂n) = infϑ∈Θ̃Wn(ϑ), which exists because Wn is

continuous (Lemma 5) and cl(Θ̃) is compact. Define γn =
∫

Θ̃ exp(−nWn(ϑ)) dϑ. Then

γn ≤ Vol(Θ̃) exp{−nWn(ϑ̂n)},

so lim supn→∞
1
n log γn +Wn(ϑ̂n) ≤ 0.

For the reverse bound, fix ϵ > 0. By uniform continuity of Wn (Lemma 5), there exists δ > 0
such that ∥ϑ−ϑ′∥ ≤ δ implies |Wn(ϑ)−Wn(ϑ′)| ≤ ϵ for all n. Because Θ̃ is open, for each n we can
choose a point ϑ◦

n ∈ Θ̃ arbitrarily close to ϑ̂n. Then the ball B(ϑ◦
n, δ/2) has positive intersection

with Θ̃ and volume bounded below by some cδ > 0 uniformly in n (compactness plus finiteness of a
cover argument). On that intersection, Wn(ϑ) ≤Wn(ϑ̂n) + ϵ. Therefore

γn ≥
∫

Θ̃∩B(ϑ◦
n,δ/2)

exp{−nWn(ϑ)} dϑ ≥ cδ exp{−n(Wn(ϑ̂n) + ϵ)}.

Taking logs and dividing by n gives

1
n

log γn +Wn(ϑ̂n) ≥ 1
n

log cδ − ϵ→ −ϵ.

Since ϵ is arbitrary, lim infn→∞
1
n log γn +Wn(ϑ̂n) ≥ 0. This establishes the Laplace principle for Θ̃.

For Θ itself, note that infϑ∈ΘWn(ϑ) = 0 because Wn(θ) = 0 and Wn ≥ 0. Thus the denominator
integral is log-equivalent to exp(0) = 1 and cancels. This yields (31).

A.3 From Sample-Normalized to Cost-Normalized Exponents

Lemma 6. For each arm i, we have limn→∞(pn,i − ψ̄n,i) = 0 a.s. Consequently, ∥pn − ψ̄n∥1 → 0
a.s.

Proof. Let Xℓ = 1{Iℓ = i} and Zℓ = E[Xℓ | Hℓ−1] = ψℓ,i. Then Mn =
∑n

ℓ=1(Xℓ−Zℓ) is a martingale
with bounded increments, hence Mn/n→ 0 a.s.

Proposition 3 (Cost-normalized posterior exponent). Assume Assumptions 1–4. Then for any
open Θ̃ ⊂ Θ,

− 1
Bn

log Πn(Θ̃) .= inf
ϑ∈Θ̃

Γ(pn;ϑ)
C̄(pn)

a.s.
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Proof. From Proposition 2,
− 1
n

log Πn(Θ̃) .= inf
ϑ∈Θ̃

Γ(ψ̄n;ϑ). (32)

For any ϑ ∈ Θ,

Γ(pn;ϑ)− Γ(ψ̄n;ϑ) =
K∑

i=1
(pn,i − ψ̄n,i)KL(Pθ,i∥Pϑ,i),

hence by (19),
sup
ϑ∈Θ

∣∣Γ(pn;ϑ)− Γ(ψ̄n;ϑ)
∣∣ ≤ κKL∥pn − ψ̄n∥1 −→ 0 a.s.,

where the convergence is Lemma 6. Therefore,∣∣∣∣ inf
ϑ∈Θ̃

Γ(pn;ϑ)− inf
ϑ∈Θ̃

Γ(ψ̄n;ϑ)
∣∣∣∣ ≤ sup

ϑ∈Θ

∣∣Γ(pn;ϑ)− Γ(ψ̄n;ϑ)
∣∣ −→ 0 a.s. (33)

Combining (32) and (33) yields

Πn(Θ̃) .= exp
{
−n inf

ϑ∈Θ̃
Γ(pn;ϑ)

}
a.s.,

Multiply by n/Bn = 1/C̄(pn) to obtain

− 1
Bn

log Πn(Θ̃) .= inf
ϑ∈Θ̃

Γ(pn;ϑ)
C̄(pn)

,

using that multiplying by deterministic sequences bounded away from 0 and ∞ preserves log-
equivalence. The second statement follows if the right-hand side converges.

A.4 Completing the Proof

We are now ready to prove Theorem 1.

Proof. We prove the upper bound first. Fix ϵ > 0 and let Θ̃ϵ be the open superset of Alt(θ) from
Assumption 3. Then Πn(Alt(θ)) ≤ Πn(Θ̃ϵ), hence

− 1
Bn

log Πn(Alt(θ)) ≥ − 1
Bn

log Πn(Θ̃ϵ).

This direction is not useful for an upper bound; instead we use Πn(Alt(θ)) ≥ Πn(Θ̃) for any open
Θ̃ ⊂ Alt(θ). Let Θ̃ be any open subset of Alt(θ) (e.g. an interior approximation). Then Proposition 3
yields

− 1
Bn

log Πn(Alt(θ)) ≤ − 1
Bn

log Πn(Θ̃) .= inf
ϑ∈Θ̃

Γ(pn;ϑ)
C̄(pn)

.

Taking lim sup in n and using Θ̃ ⊂ Alt(θ) gives

lim sup
n→∞

− 1
Bn

log Πn(Alt(θ)) ≤ lim sup
n→∞

inf
ϑ∈Alt(θ)

Γ(pn;ϑ)
C̄(pn)

.
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Finally, since for each n, pn ∈ ∆K ,

inf
ϑ∈Alt(θ)

Γ(pn;ϑ)
C̄(pn)

≤ sup
p∈∆K

inf
ϑ∈Alt(θ)

Γ(p;ϑ)
C̄(p)

= Γ∗.

Thus the lim sup is bounded by Γ∗.
For sufficiency, recall that

inf
ϑ∈Alt(θ)

Γ(pn;ϑ)
C̄(pn)

= inf
ϑ∈Alt(θ)

Γc(pn;ϑ),

Assume (3) holds, then so the right-hand side above converges to Γ∗ a.s. Now apply Proposition 3
to the (open) sets Θ̃ϵ that approximate Alt(θ). Because Alt(θ) ⊂ Θ̃ϵ,

− 1
Bn

log Πn(Alt(θ)) ≥ − 1
Bn

log Πn(Θ̃ϵ)
.= inf

ϑ∈Θ̃ϵ

Γ(ψ̄n;ϑ)
C̄(pn)

.

Taking lim inf in n and then letting ϵ ↓ 0, we obtain

lim inf
n→∞

− 1
Bn

log Πn(Alt(θ)) ≥ lim
ϵ↓0

lim inf
n→∞

inf
ϑ∈Θ̃ϵ

Γ(ψ̄n;ϑ)
C̄(pn)

= Γ∗,

where the last equality uses that Θ̃ϵ shrinks to Alt(θ) and the objective is continuous in ϑ by
Lemma 5 and in p; thus the infimum over Θ̃ϵ converges to the infimum over Alt(θ).

Combine this lower bound with the upper bound conclude that the limit exists and equals
Γ∗.

B Proof of Lemma 1

Fix θ and x ∈ X (θ). Recall

Γ̃c(w,ϑ) =
K∑

i=1
wi

KL
(
Pθ,i∥Pϑ,i

)
Ci(θ) , Dw

x (w;θ) = inf
ϑ∈Altx(θ)

Γ̃c(w,ϑ).

Since Θ is compact (Assumption 1), the feasible set cl(Altx(θ)) ⊂ Θ is compact. For each i, the
map ϑ 7→ KL(Pθ,i∥Pϑ,i) is continuous on Θ (one-dimensional canonical exponential family with
continuous ηi and A ∈ C2 on a neighborhood of ηi(Θ)). Hence ϑ 7→ Γ̃c(w,ϑ) is continuous on
cl(Altx(θ)) for each fixed w, and therefore

Dw
x (w;θ) = min

ϑ∈cl(Altx(θ))
Γ̃c(w,ϑ).

Shape on RK
≥0. Fix any ϑ. The map w 7→ Γ̃c(w,ϑ) is linear with nonnegative coefficients (since

KL ≥ 0 and Ci(θ) ≥ cmin > 0 by Assumption 2). Thus it is concave, continuous, coordinatewise
nondecreasing, and degree-one homogeneous on RK

≥0. Taking the minimum over ϑ ∈ cl(Altx(θ))
preserves concavity, monotonicity, homogeneity, and nonnegativity, so Dw

x (·;θ) has the claimed
properties.
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Unique minimizer and C1 smoothness on RK
>0. Fix w ∈ RK

>0 so that wi > 0 for all i.
Existence of a minimizer follows from compactness of cl(Altx(θ)).

For uniqueness, note that for a one-dimensional canonical exponential family the KL divergence
is a Bregman divergence of A and is strictly convex in the natural parameter; under our structured
models (e.g., linear bandits where ηi is affine in ϑ), each map ϑ 7→ KL(Pθ,i∥Pϑ,i) is convex and
not affine on any nontrivial segment. Since wi/Ci(θ) > 0 for all i and cl(Altx(θ)) is convex
(Assumption 5), the weighted sum ϑ 7→ Γ̃c(w,ϑ) is strictly convex on cl(Altx(θ)), hence the
minimizer is unique; denote it by ϑx(w;θ).

By Danskin’s theorem, Dw
x (·;θ) is differentiable at w and

[
∇wD

w
x (w;θ)

]
i

= ∂

∂wi
Γ̃c(w,ϑx(w;θ)

)
=

KL
(
Pθ,i∥Pϑx(w;θ),i

)
Ci(θ) , i ∈ [K].

Moreover, the argmin map w 7→ ϑx(w;θ) is continuous on RK
>0 by Berge’s maximum theorem

(constant compact feasible set and unique minimizer), hence the displayed gradient is continuous in
w. Therefore Dw

x (·;θ) ∈ C1(RK
>0).

Gradient lower bound and strict positivity on int(∆K). Assume Dw
x (·;θ) ̸≡ 0 on ∆K .

Consider the continuous function on the compact set cl(Altx(θ)),

ϑ 7→ max
i∈[K]

KL
(
Pθ,i∥Pϑ,i

)
cmax

.

If this maximum equals 0 at some ϑ, then KL(Pθ,i∥Pϑ,i) = 0 for all i, hence Pθ,i = Pϑ,i for
all i. By the identifiability condition in Assumption 3, this implies I(ϑ) = I(θ), contradicting
ϑ ∈ cl(Altx(θ)) ⊂ Alt(θ). Therefore the maximum is strictly positive on cl(Altx(θ)), and by
compactness,

dx(θ) ≜ min
ϑ∈cl(Altx(θ))

max
i∈[K]

KL
(
Pθ,i∥Pϑ,i

)
cmax

> 0.

Now fix any w ∈ int(∆K). Using the gradient formula and Ci(θ) ≤ cmax,

K∑
i=1

[
∇wD

w
x (w;θ)

]
i

=
K∑

i=1

KL
(
Pθ,i∥Pϑx(w;θ),i

)
Ci(θ) ≥ 1

cmax
max
i∈[K]

KL
(
Pθ,i∥Pϑx(w;θ),i

)
≥ dx(θ).

Finally, since Dw
x (·;θ) is degree-one homogeneous and differentiable at w ∈ int(∆K), Euler’s identity

yields

Dw
x (w;θ) = ⟨w,∇wD

w
x (w;θ)⟩ ≥

(
min
i∈[K]

wi

) K∑
i=1

[
∇wD

w
x (w;θ)

]
i
≥
(

min
i∈[K]

wi

)
dx(θ) > 0,

so Dw
x (·;θ) is strictly positive on int(∆K).
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C Proof of Lemma 2

Detection consistency follows directly from (12), the definition (10) of Dw
x and the continuity of

Ci(·) (assumption 2). For selection consistency on non-forced rounds, note that qn,i = Hxn
i (pn;θn)

and use the relation (14),

h̃n,i =
qn,i

Ci(θ)
Bn+Ci(θ)∑K

j=1 qn,j
Cj(θ)

Bn+Cj(θ)

=
Hxn

i (pn;θn) · Ci(θ)
Bn+Cj(θ)∑K

j=1H
xn
j (pn;θn) · Cj(θ)

Bn+Cj(θ)

=
hxn

i (wn;θn) · 1
Bn+Cj(θ)∑K

j=1 h
xn
j (wn;θn) · 1

Bn+Cj(θ)

=
hxn

i (wn;θn) · Bn
Bn+Ci(θ)∑K

j=1 h
xn
j (wn;θn) · Bn

Bn+Cj(θ)
= hxn

i (wn;θn) · (1 + xi)−1∑K
j=1 h

xn
j (wn;θn) · (1 + xj)−1

where xi ≜ Ci(θ)/Bn ∈ ( cmin
ncmax

, cmax
ncmin

) then by 1− x ≤ (1 + x)−1 ≤ 1,

h̃n,i ≥
hxn

i (wn;θn) · (1− xi)∑
hxn

j (wn;θn) ≥ (1− xi)hxn
i (wn;θn) ≥

(
1− cmax

ncmin

)
hxn

i (wn;θn),

h̃n,i ≤
hxn

i (wn;θn)∑
hxn

j (wn;θn) · (1 + xj)−1 ≤
(

1 + cmax
ncmin

)
hxn

i (wn;θn).

Thus ∣∣∣h̃n,i − hxn
i (wn,θn)

∣∣∣ ≤ cmax
ncmin

hxn
i (wn,θn) ≤ cmax

ncmin
→ 0.

D Proof of Proposition 1

Properties of det. Fix w ∈ ∆K . Since F (w, ·) is linear on the compact convex set ∆|X |,
the minimizer set det(w) = arg minν∈∆|X |

F (w,ν) is nonempty and is a face of ∆|X |, hence
convex and compact. Because X is finite and each Dw

x (w) is continuous in w, the function
F (w,ν) =

∑
x∈X νxD

w
x (w) is jointly continuous on ∆K ×∆|X |. By Berge’s maximum theorem, det

is upper hemicontinuous and compact-valued; in particular, its graph is closed.

The limit-set S(w). For each w ∈ ∆K , define

S(w) ≜
{

lim
n→∞

h(wn,νn) : wn → w, wn ∈ R, νn ∈ det(wn)
}
⊆ ∆K .

Nonemptiness. Pick any sequence wn ∈ R with wn → w. For each n, choose νn ∈ det(wn). Then
h(wn,νn) ∈ ∆K , and by compactness of ∆K the sequence admits a convergent subsequence. Hence
S(w) ̸= ∅.

Compactness. Since S(w) ⊆ ∆K and ∆K is compact, it suffices to show that S(w) is closed.
Take any sequence sm ∈ S(w) with sm → s. For each m, by definition of S(w) there exist sequences
{wm,n}n≥1 ⊂ R and {νm,n}n≥1 such that

wm,n → w, νm,n ∈ det(wm,n), h(wm,n,νm,n)→ sm as n→∞.

Choose an ε-selection: pick n(m) large enough so that

∥wm,n(m) −w∥ ≤ 1
m
, ∥h(wm,n(m),νm,n(m))− sm∥ ≤ 1

m
.
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Set w̃m := wm,n(m) ∈ R, ν̃m := νm,n(m) ∈ det(w̃m), and s̃m := h(w̃m, ν̃m) ∈ ∆K . Then w̃m → w

and ∥s̃m − sm∥ ≤ 1/m, hence s̃m → s.
By compactness of ∆|X |, along a subsequence (not relabeled) ν̃m → ν. Since w̃m → w and

ν̃m ∈ det(w̃m) with ν̃m → ν, the closed-graph property of det implies ν ∈ det(w). Moreover, by
construction,

s̃m = h(w̃m, ν̃m)→ s with w̃m ∈ R, w̃m → w, ν̃m ∈ det(w̃m),

so s ∈ S(w). Thus S(w) is closed, hence compact.

Upper hemicontinuity of S(·). We show graph(S) is closed. Let wm → w and take sm ∈ S(wm)
with sm → s. For each m, pick sequences {wm,n}n≥1 ⊂ R and {νm,n}n≥1 such that

wm,n → wm, νm,n ∈ det(wm,n), h(wm,n,νm,n)→ sm (n→∞).

As above, choose n(m) so that

∥wm,n(m) −wm∥ ≤ 1
m
, ∥h(wm,n(m),νm,n(m))− sm∥ ≤ 1

m
.

Define w̃m := wm,n(m) ∈ R, ν̃m := νm,n(m) ∈ det(w̃m), and s̃m := h(w̃m, ν̃m) ∈ ∆K . Then

∥w̃m −w∥ ≤ ∥w̃m −wm∥+ ∥wm −w∥ → 0, ∥s̃m − s∥ ≤ ∥s̃m − sm∥+ ∥sm − s∥ → 0,

so w̃m → w and s̃m → s. By compactness of ∆|X |, along a subsequence ν̃m → ν. Using again
the closed graph of det, we get ν ∈ det(w). Therefore s = limm h(w̃m, ν̃m) ∈ S(w), proving the
closed-graph property. Since S is compact-valued (Step 2), it follows that S is upper hemicontinuous.

The correspondence sel inherits regularity. By definition, sel(w) = conv(S(w)). Since
S(w) is nonempty and compact, sel(w) is nonempty, convex, and compact.

It remains to show u.h.c. of sel. We use a closed-graph argument and Carathéodory. Let
wm → w and sm ∈ sel(wm) with sm → s. By Carathéodory in RK , for each m we may write

sm =
K∑

j=1
λm,jxm,j , λm,j ≥ 0,

K∑
j=1

λm,j = 1, xm,j ∈ S(wm).

By compactness of ∆K and ∆K (for the coefficients), after passing to a subsequence we may assume

λm,j → λj , xm,j → xj for each j = 1, . . . ,K.

Since S is u.h.c. with compact values, its graph is closed; thus xm,j ∈ S(wm) and (wm,xm,j) →
(w,xj) imply xj ∈ S(w). Taking limits in the convex combination yields

s = lim
m→∞

sm =
K∑

j=1
λjxj ∈ conv(S(w)) = sel(w).

Hence graph(sel) is closed. Because sel is compact-valued, it is upper hemicontinuous.
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Existence of DI solutions and forward invariance. Because sel is nonempty, convex, compact-
valued, and u.h.c., the same holds for G(w) = sel(w)−w. Also, for any w ∈ ∆K and g ∈ G(w),
we can write g = s −w with s ∈ sel(w) ⊆ ∆K , hence ∥g∥1 ≤ 2; thus G is bounded. Standard
existence theorems for differential inclusions with u.h.c. nonempty convex compact right-hand sides
(e.g. Aubin and Cellina 1984) yield an absolutely continuous solution to (18) for any initial condition
w0 ∈ ∆K .

Moreover, ∆K is forward invariant: if ẇ(t) = s(t)−w(t) with s(t) ∈ sel(w(t)) ⊆ ∆K a.e., then∑K
i=1 ẇi(t) = 1− 1 = 0 a.e., and if pi(t) = 0 then ẇi(t) = si(t) ≥ 0 a.e. Hence w(t) ∈ ∆K for all

t ≥ 0.
Finally, for any absolutely continuous solution w(·), define s(t) := ẇ(t) +w(t) for a.e. t. Then

s(·) is measurable and satisfies s(t) ∈ sel(w(t)) for a.e. t.

E Proof of Theorem 3

Our analysis proceeds in four steps. First, in Appendix E.1, we construct a globally well-defined
information value that serves as a Lyapunov function for the limiting differential inclusion and
show that it is nondecreasing along every solution trajectory. By LaSalle’s invariance principle, the
associated ω-limit set has empty interior. Second, in Appendix E.2, we transfer this continuous-time
structure to the stochastic iterates via stochastic-approximation tools—the asymptotic pseudo-
trajectory (APT) framework and the characterization of internally chain transitive (ICT) sets—which
yields convergence of the information value along the discrete-time trajectory. Third, in Appendix E.3,
we rule out convergence to the degenerate value 0 under interior initialization, ensuring the dynamics
remains in a positive-information regime. Finally, in Appendix E.4, we use the Kullback–Leibler
divergence as an energy function on the active set and establish a uniform negative-drift bound.
This forces the limiting information value to coincide with the optimal value F ∗, completing the
proof.

E.1 Continuous-Time Dynamics

This subsection analyzes the limiting differential inclusion (DI) by constructing a global (weak)
Lyapunov function and characterizing its limit behavior. Let

V (t) = min
x∈X

Dw
x

(
w(t)

)
(34)

along any absolutely continuous DI solution w(·). We first show that w 7→ minx∈X Dw
x (w) is

Lipschitz on ∆K (Lemma 7), which implies V (·) is absolutely continuous along DI trajectories.
Because V is generally nonsmooth, we then establish a Clarke-type chain rule along absolutely
continuous curves (Lemma 8), enabling differentiation of V (t) almost everywhere.

Using these tools, we prove that V (t) is nondecreasing along every DI solution (Theorem 4),
so V serves as a global Lyapunov function. Since this Lyapunov function is not strict and the
DI may admit multiple equilibria, we invoke LaSalle’s invariance principle to characterize ω–limit
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points. In particular, any ω–limit point w∗ is facewise optimal: writing J = Supp(w∗), it maximizes
minx∈X Dw

x (w) over the face ∆J (Corollary 1). As a consequence, the set of stationary objective
values is {

max
w∈∆J

min
x∈X

Dw
x (w) : ∅ ̸= J ⊆ [K]

}
,

which is finite (hence discrete and with empty interior). This finiteness yields the weak Sard property
used later in the stochastic-approximation analysis of the discrete-time iterates.

Lemma 7. Under Assumption 7, the function w 7→ minx∈X Dw
x (w) is M-Lipschitz on ∆K with

respect to ∥ · ∥1, i.e.,∣∣∣min
x∈X

Dw
x (w1)−min

x∈X
Dw

x (w2)
∣∣∣ ≤M∥w1 −w2∥1, ∀w1,w2 ∈ ∆K .

Proof. By Assumption 7, each Dx is M -Lipschitz on ∆K with respect to ∥ · ∥1. Fix w1,w2 ∈ ∆K

and choose x2 ∈ arg minx∈X Dw
x (w2). Then

min
x∈X

Dw
x (w1)−min

x∈X
Dw

x (w2) ≤ Dw
x2(w1)−Dw

x2(w2) ≤M∥w1 −w2∥1.

Swapping w1 and w2 yields the reverse inequality, proving the claim.

Lemma 8 (Chain rule for minx∈X Dw
x (w)). The information function minx∈X Dw

x (w) admits the
Clarke chain rule: for any absolutely continuous curve p(t) : [0,∞) → ∆K , minx∈X Dw

x (w(t)) is
differentiable for almost every t ∈ [0,∞) and

d
dt min

x∈X
Dw

x (w(t)) = f(w(t))⊤ d
dtw(t) for every f(w(t)) ∈ ∂◦ min

x∈X
Dw

x (w(t)), (35)

for almost every t.

Proof. Since minx∈X Dw
x (w) is concave (Lemma 1) and locally Lipschitz on ∆K (Lemma 7), the

chain rule for concave function along absolutely continuous curves (see, e.g., Brezis (1973)) yields
the claim.

Remark 1 (More general chain-rule conditions). Lemma 8 is a special case of general chain rules
for subdifferentially regular functions, Davis et al. (2020, Lemma 5.2) and Bolte and Pauwels (2021,
Section 3.2) gives a broader characterization, known as path differentiable functions.

The main result for this section is the convergence of the continuous-time dynamics to stationary
points via Lyapunov analysis. Recall the information value along the DI solution w(·) defined in
(34). We show that such a information value does not decrease, and serve as a (weak) Lyapunov
function.

Theorem 4 (Global Lyapunov function). Let w(·) be any absolutely continuous solution of (18),
then V (·) is absolutely continuous and

d
dtV (t) ≥ 0 for a.e. t ≥ 0.
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Proof. By the definition of the selection correspondence and Carathéodory’s theorem, there exist
sequences

(wn,j ,νn,j)n→∞ ⊆ R×∆|X |, j ∈ [K],

and weights (λj)j∈[K] ∈ ∆K such that wn,j n→∞−−−→ w(t) for each j and∑
j∈[K]

λjh(wn,j ,νn,j)−w(t) n→∞−−−→ d
dtw(t). (36)

The limit (upon possibly passing to a subsequence)

f∗(w(t)) ≜ lim
n→∞

∑
j∈[K]

λj∇wF (wn,j ,νn,j) ∈ ∂◦ min
x∈X

Dw
x (w(t)) (37)

since the Clarke subdifferential is closed under such limits. Since w(·) is absolutely continuous
and w 7→ minx∈X Dw

x (w) is Lipschitz on ∆K (Lemma 7), the map V (t) = minx∈X Dw
x (w(t)) is

absolutely continuous and hence differentiable for a.e. t ≥ 0 and lemma 8 gives
d
dtV (t) = f∗(w(t))⊤ d

dtw(t), for a.e. t.

We claim that this time derivative is nonnegative, which by (36) and (37) is sufficient to show

lim
n→∞

 ∑
j∈[K]

λj∇wF (wn,j ,νn,j)

⊤ ∑
j∈[K]

λjh(wn,j ,νn,j)

 ≥ f∗(w(t)) ◦w(t).

Indeed, for any fixed n, introduce the shorthand

wj
i ≜ wn,j

i , f j
i ≜ λj[∇wF (wn,j ,νn,j)

]
i
, F j ≜

∑
i∈[K]

wj
i f

j
i = λjF (wn,j ,νn,j).

Then the weighted IDS probability satisfies λjhi(wn,j ,νn,j) = wj
i fj

i
F j , and we can compute ∑

j∈[K]
λj∇wF (wn,j ,νn,j)

⊤ ∑
j∈[K]

λjh(wn,j ,νn,j)


=
∑

i∈[K]

 ∑
j∈[K]

f j
i

 ∑
j∈[K]

wj
i f

j
i

F j


=
∑

i∈[K]

∑
j∈[K]

wj
i f

j
i

F j

( ∑
k∈[K]

fk
i

)
=
∑

j∈[K]

1
F j

∑
i∈[K]

wj
i f

j
i

( ∑
k∈[K]

fk
i

)
, (38)

For each fixed j ∈ [K], using
∑

k∈[K] f
k
i ≥ f

j
i and the Cauchy–Schwarz inequality, we have∑

i∈[K]
wj

i f
j
i

( ∑
k∈[K]

fk
i

)
≥
∑

i∈[K]
wj

i (f j
i )2 =

( ∑
i∈[K]

wj
i (f j

i )2
)( ∑

i∈[K]
wj

i

)
≥
( ∑

i∈[K]
wj

i f
j
i

)2
= (F j)2. (39)
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Summing over j and using (38), we obtain

(38) ≥
∑

j∈[K]

1
F j

(F j)2 =
∑

j∈[K]
F j =

∑
j∈[K]

λjF (wn,j ,νn,j) n→∞−−−→ min
x∈X

Dw
x (w(t)).

An application of the Euler identity for the Clarke gradient gives

f∗(w(t))⊤w(t) = min
x∈X

Dw
x (w(t)),

which establishes the desired claim and
d
dtV (t) = f∗(w(t))⊤ d

dtw(t) ≥ 0 for a.e. t.

Corollary 1 (LaSalle limit points and stationary values). Let w∗ ∈ ∆K be any ω–limit point of the
DI (18). Then there exists ν∗ ∈ det(w∗) and f(w∗,ν∗) ∈ ∂◦ minx∈X Dw

x (w(t)) such that[
f(w∗,ν∗)

]
i

= F (w∗,ν∗) for all i ∈ Supp(w∗). (40)

Writing J ≜ Supp(w∗) and the face ∆J ≜ {w ∈ ∆K : pi = 0 (i /∈ J)}, we have the facewise
maximality

min
x∈X

Dw
x (w∗) = max

w∈∆J

min
x∈X

Dw
x (w).

Consequently, the set of all stationary values is{
max
w∈∆J

min
x∈X

Dw
x (w) : ∅ ̸= J ⊆ [K]

}
,

which is finite, hence has empty interior.

Proof. By Theorem 4, t 7→ minxD
w
x (w(t)) is nondecreasing. LaSalle’s invariance principle for DIs

implies that every ω–limit point lies in the largest weakly invariant subset of the set where the time
derivative of t 7→ minxD

w
x (w(t)) vanishes.

Take limit to the derivative identity (39) where the Cauchy–Schwarz inequality is used,∑
i∈[K]

w∗
i

[
f(w∗,ν∗)

]2
i
−
( ∑

i∈[K]
w∗

i

[
f(w∗,ν∗)

]
i

)2
=
∑
i,j

w∗
iw

∗
j

([
f(w∗,ν∗)

]
i
−
[
f(w∗,ν∗)

]
j

)2
.

Vanishing of this quantity forces the bracketed components to be equal on J = Supp(w∗). By Euler’s
identity

∑
iw

∗
i [f(w∗,ν∗)]i = F (w∗,ν∗), that common value is F (w∗,ν∗), yielding the equality

condition (40).
For any w ∈ ∆J , concavity of F (·,ν∗) gives

F (w,ν∗) ≤ F (w∗,ν∗) + f(w∗,µ∗)⊤(w −w∗) = F (w∗,ν∗),

since the gradient components are equal on J and
∑

i∈J(wi − w∗
i ) = 0. Because minxD

w
x (w) ≤

F (w,ν∗) for all w, with equality at w∗ (as ν∗ ∈ det(w∗)), we obtain

min
x
Dw

x (w) ≤ min
x
Dw

x (w∗), ∀w ∈ ∆J ,
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proving the facewise maximization in (ii).
The description and finiteness of stationary values then follow by enumerating nonempty faces

J ⊆ [K].

Remark 2 (Weak Sard property). Let g(w) := minx∈X Dx(w). A standard first-order (Clarke)
stationarity condition for the constrained maximization maxw∈∆K

g(w) is the normal-cone inclusion

0 ∈ −∂◦g(w∗) +N∆K
(w∗), (41)

where for any closed convex C ⊆ RK and w ∈ C the normal cone is

NC(w) := {u ∈ RK : ⟨u, q −w⟩ ≤ 0 ∀q ∈ C}.

For C = ∆K and J = Supp(w∗), one has

N∆K
(w∗) =

{
u : ∃λ ∈ R s.t. ui = λ (i ∈ J), ui ≤ λ (i /∈ J)

}
.

Thus (41) requires a Clarke subgradient to be constant on the support and no larger off the support;
(40) in Corollary 1 recovers the equality part.

The corresponding critical values are the objective values attained at such points. Corollary 1
shows that this set is finite (hence has empty interior), which is exactly the “weak Sard property”
postulated in Davis et al. (2020, Assumption B); see also Ioffe (2017, Section 8.4) and Bolte and
Pauwels (2021, Theorem 5).

E.2 Stochastic Approximation

This subsection casts the discrete cost-allocation recursion (11) as a stochastic approximation to the
limiting differential inclusion (DI) (18). We introduce the standard continuous-time interpolation
ŵ(·) based on the random step sizes and show that, after a sufficiently large time shift, every length-T
segment of the interpolation is an ε-perturbed DI solution in the sense of Benäım’s perturbation
scheme (Proposition 4). As a consequence, ŵ is almost surely an asymptotic pseudo-trajectory
(APT) of the DI, and its ω-limit set is internally chain transitive (Proposition 5). Combining this
dynamical-systems structure with the Lyapunov analysis from Section E.1 (in particular, the weak
Sard property of stationary values), we conclude that the Lyapunov value minx∈X Dw

x (w) is constant
on the limit set and therefore converges along the discrete iterates (Proposition 6).

Definition 2 (Continuous-time interpolation). Set t0 = 0 and tn+1 = tn + αn+1 for n ≥ 0. For
s ∈ [0, αn+1], define the linear interpolation of wn by

ŵ(tn + s) ≜ wn + s
wn+1 −wn

tn+1 − tn
. (42)

Then ŵ(tn) = wn for all n.
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Recall G : ∆K × Rd ⇒ T∆K
denote the right-hand side correspondence of the continuous

dynamics with the state θ:
G(w;θ) ≜ sel(w;θ)−w,

where sel(w;θ) is defined by replacing Dw
x (w) with Dw

x (w;θ). Let d(·, ·) denote the distance
induced by the l1 norm.

Definition 3 (ε-Perturbed DI). For ε ≥ 0 define

Gε(w;θ) ≜
{
y ∈ RK : ∃ w′ ∈ ∆K s.t. ∥w −w′∥1 + d

(
y, G(w′;θ)

)
≤ ε

}
.

Define the solution set T ε,T
θ : ∆K ⇒ AC

(
[0, T ];RK

)
that maps an initial condition in ∆K to the

(nonempty) set of absolutely continuous solutions of the ε-perturbed DI on [0, T ]:

d
dtw(t) ∈ Gε(w(t);θ) + U(t), w(0) = w0,

where locally integrable (stochastic) process U(t) satisfying

sup
0≤t≤T

∥∥∥∥∫ t

0
U(s) ds

∥∥∥∥
1
≤ ϵ, with probability one.

To show that our allocation update indeed realizes a perturbed differential inclusion in the sense
of Definition 3, we first use the following consistency property of the instance estimator.

Lemma 9 (Sufficient exploration ensures consistency of θn). Under the forced-exploration schedule
in (7), the instance estimate satisfies θn → θ almost surely.

Assuumption 3 implies that there exists a neighborhood U of the true θ such that for all ϑ ∈ U ,
we have X (ϑ) = X (θ) and Altx(ϑ) = Altx(θ) for all x in X (θ). In view of Lemma 1, the minimizer
is unique for w ∈ R. Then, Degenne and Koolen (2019, Theorem 4) implies that, for a fixed true
parameter θ ∈ Rd and for every w ∈ R and every x ∈ X , the maps

ϑ 7→ Dw
x (w,ϑ) and ϑ 7→ ∇wD

w
x (w,ϑ)

are continuous at ϑ = θ.

Lemma 10 (U.h.c. at the true state parameter). Fix w ∈ R (so minx∈X Dw
x (w;θ) > 0). Then

θ′ 7→ G(w,θ′) is upper hemicontinuous at θ: for every ε > 0 there exists δ > 0 such that

∥θ′ − θ∥∞ ≤ δ =⇒ G(w,θ′) ⊆ G(w;θ) + εB,

where B is the unit ball of ℓ1(RK).

Proof. Recall that F (w,ν;ϑ) =
∑

x νxD
w
x (w;ϑ) is continuous in (ν;ϑ) and linear in ν on the

compact set ∆|X |; hence by Berge’s maximum theorem

det(w;ϑ) ≜ arg min
ν∈∆|X |

F (w,ν;ϑ)
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is nonempty, compact-valued, and u.h.c. at θ. Since minxD
w
x (w;θ) > 0 and Dw

x (w, ·) is continuous
at θ, there exists a neighborhood U of θ with

∑
x νxD

w
x (w;ϑ) ≥ minx∈X Dw

x (w;θ)/2 > 0 for all
ϑ ∈ U and all ν ∈ det(w;ϑ). Thus

(ν;ϑ) 7→ h(w,ν;ϑ) =
(
wi
∑

x νx[∇wD
w
x (w;ϑ)]i∑

x νxDw
x (w;ϑ)

)
i∈[K]

is continuous on ∆|X | × U . The image correspondence

ϑ 7→ {h(w,ν;ϑ)−w : ν ∈ det(w;ϑ)} = G(w;ϑ)

is therefore the continuous image of a compact-valued u.h.c. correspondence, hence u.h.c. at θ. The
stated ε-inclusion follows.

Define
NFn ≜ 1

{√⌊
n/K

⌋
/∈ Z

}
and Fn ≜ 1

{√⌊
n/K

⌋
∈ Z

}
,

i.e., NFn = 1 on non-forced rounds and NFn = 0 on forced rounds. Recall that h̃n ∈ ∆K is the cost-
weighted sampling distribution defined by E[αn+1eIn+1 | Hn] = α̃n+1h̃n with α̃n+1 = E[αn+1 | Hn].

Lemma 11 (Martingale noise on non-forced rounds). Define

ξm ≜
m−1∑
n=0

NFnαn+1
(
eIn+1 − h̃n

)
, m ≥ 0.

Then (ξm)m≥0 is an RK-valued martingale with respect to (Hm)m≥0, and ξm converges almost surely
(and in L2) to a finite random limit ξ∞.

Proof. For each n ≥ 0,

E
[
αn+1eIn+1 | Hn

]
= α̃n+1h̃n and E[αn+1 | Hn] = α̃n+1.

Hence
E
[
NFnαn+1

(
eIn+1 − h̃n

)
| Hn

]
= NFn

(
α̃n+1h̃n − α̃n+1h̃n

)
= 0,

so (ξm) is a martingale.
Moreover, ∥eIn+1 − h̃n∥1 ≤ 2, so

∥NFnαn+1(eIn+1 − h̃n)∥21 ≤ 4α2
n+1.

Using αn+1 ≤ cmax
cmin(n+1) (from Assumption 2),

∞∑
n=0

E
[
∥NFnαn+1(eIn+1 − h̃n)∥21

]
≤ 4

∞∑
n=0

α2
n+1 ≤ 4

(cmax
cmin

)2 ∞∑
n=0

1
(n+ 1)2 <∞.

Thus each coordinate martingale has square-summable increments, and by the martingale convergence
theorem, ξm → ξ∞ almost surely (and in L2) for some finite random vector ξ∞.
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Proposition 4 (Interpolation process is a perturbed solution). Fix ε > 0 and T > 0. Then there
exists an almost surely finite S(ε, T ) such that for all s ≥ S(ε, T ), the translated interpolation
segment t 7→ ŵ(s + t) on [0, T ] belongs to T ε,T

θ

(
ŵ(s)

)
. Equivalently, for all such s there exists a

locally integrable process Us : [0, T ]→ RK satisfying

d

dt
ŵ(s+ t) ∈ Gε(ŵ(s+ t);θ

)
+ Us(t) for a.e. t ∈ [0, T ],

and
sup

0≤u≤T

∥∥∥∥∫ u

0
Us(r)dr

∥∥∥∥
1
≤ ε.

Proof. For notational convenience, define xn by the detection rule xn ∈ arg minx∈X (θn)D
w
x (wn;θn)

for every n (even on forced rounds); this is Hn-measurable.
Let t ∈ (tn, tn+1). By the definition of the interpolation and tn+1 − tn = αn+1,

˙̂w(t) = wn+1 −wn

αn+1
= eIn+1 −wn.

Define the (deterministic) drift proxy and noise on (tn, tn+1) by

v(t) ≜ hxn(wn;θn)−wn, U(t) ≜ eIn+1 − hxn(wn;θn),

so that ˙̂w(t) = v(t) +U(t).

Step 1: v(t) ∈ Gε(ŵ(t);θ) for all large n. For n ≥ K we have wn ∈ int(∆K) ⊆ R, so
hxn(wn;θn) is well defined. Since xn is a minimizer of Dw

x (wn;θn), the point mass ν = exn belongs
to det(wn;θn), and hence hxn(wn;θn) ∈ sel(wn;θn). Therefore v(t) ∈ G(wn;θn).

Also, for any r ∈ [0, αn+1],

∥ŵ(tn + r)−wn∥1 = r

αn+1
∥wn+1 −wn∥1 = r

αn+1
αn+1∥eIn+1 −wn∥1 ≤ 2αn+1.

By Lemma 9, θn → θ a.s., and by Lemma 10, for every η > 0 there exists (a.s. finite) N1(η) such
that for all n ≥ N1(η),

G(wn;θn) ⊆ G(wn;θ) + ηB,

where B is the ℓ1 unit ball. Hence for all n ≥ N1(η) and all t ∈ (tn, tn+1),

d
(
v(t), G(wn;θ)

)
≤ η.

Choose η = ε/2, and then choose N2(ε) such that 2αn+1 ≤ ε/2 for all n ≥ N2(ε). For n ≥ N0 :=
max{N1(ε/2), N2(ε)} and all t ∈ (tn, tn+1), taking w′ = wn in the definition of Gε gives

∥ŵ(t)−w′∥1 + d
(
v(t), G(w′;θ)

)
≤ ε/2 + ε/2 = ε,

i.e., v(t) ∈ Gε
(
ŵ(t);θ

)
.
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Step 2: uniform smallness of the integrated noise. Fix s ≥ tN0 and define the shift
Us(t) := U(s+ t) on [0, T ]. We will show

sup
0≤u≤T

∥∥∥∥∫ u

0
Us(r)dr

∥∥∥∥
1

= sup
0≤u≤T

∥∥∥∥∫ s+u

s
U(r)dr

∥∥∥∥
1
≤ ε

for all sufficiently large s.
Decompose, for t ∈ (tn, tn+1),

U(t) =
(
eIn+1 − h̃n

)︸ ︷︷ ︸
M(t)

+
(
h̃n − hxn(wn;θn)

)︸ ︷︷ ︸
B(t)

.

Then M(t) is constant on (tn, tn+1) and∫ tn+1

tn

M(t)dt = αn+1
(
eIn+1 − h̃n

)
.

Thus the integrated martingale term over any union of whole intervals is a difference of the martingale
ξm from Lemma 11. Since ξm → ξ∞ a.s., we have

∆ξ(n) := sup
m≥n
∥ξm − ξn∥1 −−−→

n→∞
0 a.s.

Next, we claim that
∑∞

n=0 αn+1∥h̃n − hxn(wn;θn)∥1 < ∞ a.s. Indeed, on non-forced rounds,
Lemma 2 gives ∥h̃n − hxn(wn;θn)∥1 ≤ cmax

ncmin
, so using αn+1 ≤ cmax

cmin(n+1) we obtain a summable
bound of order 1/n2. On forced rounds, ∥h̃n − hxn(wn;θn)∥1 ≤ 2, and the forced schedule satisfies

∑
n:Fn=1

αn+1 ≤
cmax
cmin

∞∑
m=1

K−1∑
k=0

1
Km2 + k + 1 < ∞.

Therefore the bias series is absolutely summable, and its tail

∆B(n) :=
∞∑

k=n

αk+1∥h̃k − hxk(wk;θk)∥1

satisfies ∆B(n)→ 0 a.s.
Finally, the contribution from the two boundary (partial) intervals at the start and end of

[s, s+ u] is bounded by 4 supk≥n(s) αk+1 since ∥U(t)∥1 ≤ 2. Because αn+1 → 0, this boundary term
vanishes as s→∞.

Putting these together: let n(s) := max{n : tn ≤ s}. Then for any u ∈ [0, T ],∥∥∥∥∫ s+u

s
U(t)dt

∥∥∥∥
1
≤ 4 sup

k≥n(s)
αk+1 + ∆ξ(n(s)) + ∆B(n(s)).

Each of the three terms tends to 0 a.s. as s → ∞. Hence there exists an a.s. finite S(ε, T ) such
that for all s ≥ S(ε, T ) the right-hand side is at most ε, proving the desired noise bound.

Consequently, for all s ≥ S(ε, T ), we have ˙̂w(s+t) = v(s+t)+Us(t) with v(s+t) ∈ Gε(ŵ(s+t);θ)
for a.e. t ∈ [0, T ] and sup0≤u≤T ∥

∫ u
0 Us(r)dr∥1 ≤ ε. Thus ŵ(s+ ·) ∈ T ε,T

θ (ŵ(s)).
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Definition 4 (Asymptotic pseudo-trajectory (APT) for u.h.c DI). Consider a u.h.c. differential
inclusion and let Sx(0) be the set of solutions with initial value x(0); write S ≜

⋃
x(0) Sx(0) for the set

of all solutions. A bounded continuous curve z : [0,∞)→ Rm is an asymptotic pseudo-trajectory
(APT) of the DI if for every T > 0,

lim
t→∞

inf
σ∈S

sup
s∈[0,T ]

∥z(t+ s)− σ(s)∥ = 0.

Equivalently: for all ε, T > 0 there exists t0 < ∞ such that for all t ≥ t0 there is a DI solution
segment σ : [0, T ]→ Rm with sups∈[0,T ] ∥z(t+ s)− σ(s)∥ ≤ ε.

Note that in this definition the comparison solution σ need not start exactly from z(t); we only
require that its initial condition be within ε of z(t). This is precisely the definition adopted in
Esponda et al. (2022), and see also Appendix C of Bianchi et al. (2024).

Definition 5 ((ε, T )-chains and internally chain transitive (ICT) sets). Let (X, d) be a compact
metric space and {Φt}t≥0 a continuous semiflow on X. For ε > 0 and T > 0, an (ε, T )-chain from
x to y is a finite sequence

x = z0, z1, . . . , zm = y, t1, . . . , tm ≥ T,

such that d
(
Φti(zi−1), zi

)
< ε for all i. A nonempty compact set L ⊂ X is ICT if: (i) L is invariant

(Φt(L) = L for all t ≥ 0); and (ii) for all x, y ∈ L and all ε, T > 0, there exists an (ε, T )-chain
entirely contained in L from x to y.

Proposition 5 (Interpolation ⇒ APT ⇒ ICT ω-limit set). The interpolation process ŵ is an a.s.
asymptotic pseudo-trajectory of the differential inclusion (18); and its ω-limit set Ω ≜ ω(ŵ) ⊂ ∆K

is internally chain transitive.

Proof. The first part follows from our Proposition 4 and Benäım et al. (2005, Theorem 4.2). The
second conclusion follows from Benäım et al. (2005, Theorem 4.3).

Proposition 6 (Constancy of minxDx on ICT sets). The map w 7→ minx∈X Dw
x (w) is constant on

Ω. Consequently (along the PAN iterates), minx∈X Dw
x (wn;θn) converges almost surely.

Proof. By Theorem 4, t 7→ minxD
w
x (w(t)) is nondecreasing along any solution and strictly increasing

off the stationary set of Corollary 1; the set of stationary values has empty interior. Hence
Proposition 3.27 of Benäım et al. (2005) applies: on the ICT set Ω = ω(ŵ) the function minxD

w
x is

constant.

Remark 3. The framework of Benäım et al. (2005) using the internally chain transitive set is
essentially the same as the “non-escape argument” in Davis et al. (2020, Section 3.3). In Benäım’s
framework, an ICT set is a compact invariant set with no proper attracting subset, see Benäım et al.
(2005, Proposition 3.20). If a Lyapunov function is nondecreasing along the DI and its stationary
values form a thin set (weak Sard), then every small sublevel that is forward invariant would have
to attract the whole ICT set; this forces the Lyapunov to be constant on that set. The proof in
Davis et al. (2020, Section 3.3) does the similar thing: they show the APT cannot keep re-entering
them—hence “non-escape”—so the Lyapunov must converge and be constant on the limit set.
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E.3 Algorithm 1 Attains Positive Information

The stochastic-approximation analysis in Section E.2 implies that the Lyapunov value converges
almost surely to a stationary value of the limiting differential inclusion. A priori, this limit could
be the degenerate value 0, corresponding to vanishing discriminative information as the allocation
approaches the simplex boundary. In this subsection we rule out this pathology. Using the gradient
lower bound from Lemma 1 and the asymptotic accuracy of the IDS sampling rule, we show that
whenever the information value becomes too small, the induced sampling dynamics creates a uniform
multiplicative “lift” on the geometric mean Gn =

∏K
i=1wn,i on non-forced rounds, while forced

rounds can only decrease Gn by a summable amount. Since Gn is uniformly bounded above on the
simplex, this yields a contradiction, and therefore the limiting information value must be bounded
away from 0 by an explicit instance-dependent constant.

Recall from Lemma 1 that for each x ∈ X there exists dx(θ) > 0 such that
∑K

i=1[∇wD
w
x (w;θ)]i ≥

dx(θ) on int(∆K). We set
d∗ ≜ min

x∈X
dx(θ) > 0. (43)

Proposition 7 (Interior start rules out zero information). There exists an instance-dependent
constant D∗ = D∗(θ) such that

lim
n→∞

Dw
xn

(wn;θn) ≥ D∗ ≜
c2

mind∗
8c2

max(K + 2) with probability one

where the limit exists by Proposition 6 and Lemma 2.

Proof. We consider only n ≥ K so that wn ∈ int(∆K). Assume for contradiction that on a set A
with P(A) > 0, limn→∞ minxD

w
x (wn;θn) < D∗.

Non-forced rounds give a uniform multiplicative lift. Conditioning on Hn and for non-forced
rounds n large enough such that h̃n,i ≥ hxn

i (wn;θn)/2 = wn,i[∇wD
w
xn

(wn;θn)]i/2Dw
xn

(wn;θn),

E
[

K∑
i=1

wn+1,i

wn,i

∣∣∣ Hn

]
= K + α̃n+1

(
K∑

i=1

h̃n,i

wn,i
−K

)

≥ K + α̃n+1

(∑
i[∇wD

w
xn

(wn;θn)]i
2Dw

xn
(wn;θn) −K

)
.

By (43), continuity in θ, and θn → θ a.s., there exists n0 such that, on A and for all non-forced
n ≥ n0, ∑

i

[∇wD
w
xn

(wn;θn)]i ≥ d∗/2, Dw
xn

(wn;θn) ≤ 2D∗ = c2
mind∗

4c2
max(K + 2) .

Hence, for non-forced n ≥ n0,

E
[

K∑
i=1

wn+1,i

wn,i

∣∣∣ Hn

]
≥ K + 2c2

max
c2

min
α̃n+1 ≥ K + 2 cmax

cmin(n+ 1) . (44)
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Since all the ratios satisfy wn+1,i/wn,i ≥ 1− cmax
cmin(n+1) , by the Bauer maximum principle (concavity

of
∑

i log(·) ) with Gn ≜
∏K

i=1wn,i we have

Gn+1
Gn

=
K∏

i=1

wn+1,i

wn,i
≥
(

1− cmax
cmin(n+ 1)

)K−1
(

K∑
i=1

wn+1,i

wn,i
− (K − 1)

(
1− cmax

cmin(n+ 1)

))
.

Since this inequality holds for every realization conditional on Hn, we may take conditional
expectations on both sides and use (44) for the sum to obtain, for all large non-forced n,

E
[
Gn+1
Gn

∣∣∣ Hn

]
≥
(
1− cmax

cmin(n+ 1)
)K−1(

1 + (K + 1)cmax
(n+ 1)cmin

)
≥ 1 + cmax

cmin(n+ 1) , (45)

where in the last inequality we used (1− x)K−1 ≥ 1− (K − 1)x and (1− (K − 1)x)(1 + (K + 1)x) =
1 + 2x− (K2 − 1)x2 ≥ 1 + x for x = cmax

cmin(n+1) and n large enough.

Forced rounds only decrease mildly. At a forced round, since wn+1,i ≥ (1 − cmax/(n +
1)cmin)wn,i, we have the deterministic bound

E
[
Gn+1
Gn

∣∣∣ Hn

]
= E

[
K∏

i=1

wn+1,i

wn,i

∣∣∣ Hn

]
≥
(

1− cmax
cmin(n+ 1)

)K

≥ 1− cmaxK

cmin(n+ 1) .

Recall the event
A ≜

{
lim

n→∞
min
x∈X

Dw
x (wn;θn) < D∗

}
,

and suppose for contradiction that P(A) > 0.
On the almost sure event where θn → θ and Lemma 2 holds, the bounds used above (in

particular, the existence of n0 ensuring
∑

i[∇wD
w
xn

(wn;θn)]i ≥ d∗/2 and Dw
xn

(wn;θn) ≤ 2D∗ on A

for all large non-forced n, as well as h̃n,i ≥ hxn
i (wn;θn)/2) imply that there exists a (random) time

N0 <∞ such that, on A, the one-step inequality

E[Gn+1 | Hn] ≥ an+1Gn for all n ≥ N0 (46)

holds, where an+1 is defined as

an+1 :=


1 + cmax

cmin(n+ 1) ,
√⌊

n

K

⌋
/∈ Z,

1− cmaxK

cmin(n+ 1) ,
√⌊

n

K

⌋
∈ Z.

Moreover, for any deterministic N ≥ K we have GN =
∏K

i=1wN,i > 0 almost surely.
Define the tail event

AN ≜ A ∩ {N0 ≤ N}.

Since A =
⋃

N≥1AN , there exists a deterministic N ≥ K such that P(AN ) > 0. Fix such an N for
the remainder of the argument. On AN , the inequality (46) holds for all n ≥ N .
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Now fix any m > N and consider the conditional law given (HN , AN ). Since AN enforces (46)
for every step n ≥ N , the tower property yields, for each n ≥ N ,

E[Gn+1 | HN , AN ] = E [E[Gn+1 | Hn]|HN , AN ] ≥ an+1E[Gn | HN , AN ].

Iterating from n = N to m− 1 gives

E[Gm | HN , AN ] ≥ GN

m−1∏
n=N

an+1.

Multiplying by P(AN | HN ) and taking conditional expectations gives

E[Gm1AN
| HN ] = P(AN | HN )E[Gm | HN , AN ] ≥ P(AN | HN )GN

m−1∏
n=N

an+1.

Taking expectations and using that GN is HN -measurable,

E[Gm1AN
] ≥

(m−1∏
n=N

an+1
)
E [P(AN | HN )GN ] =

(m−1∏
n=N

an+1
)
E[GN1AN

].

Since P(AN ) > 0 and GN > 0 almost surely, we have E[GN1AN
] > 0.

Finally, Gm =
∏K

i=1wm,i ≤ K−K for all m, hence E[Gm1AN
] ≤ K−K for all m. Therefore,

K−K ≥ E[Gm1AN
] ≥

(m−1∏
n=N

an+1
)
E[GN1AN

]. (47)

It remains to note that
∏m−1

n=N an+1 →∞ as m→∞. Indeed, for all sufficiently large n, log(1+x) ≥
x/2 for x = cmax

cmin(n+1) and log(1− y) ≥ −2y for y = cmaxK
cmin(n+1) , so

log
(m−1∏

n=N

an+1
)
≥

m−1∑
n=N

cmax
2cmin(n+ 1)NFn −

m−1∑
n=N

2cmaxK

cmin(n+ 1)Fn.

The first sum diverges because
∑

n NFn/(n+ 1) =∞, while the second sum converges because forced
rounds occur in blocks starting at n = Km2 and hence

∑
n Fn/(n+ 1) <∞. Thus

∏m−1
n=N an+1 →∞,

contradicting (47) since E[GN1AN
] > 0.

Therefore P(A) = 0, i.e., limn→∞ minxD
w
x (wn;θn) ≥ D∗ almost surely, and by detection

consistency limn→∞Dw
xn

(wn;θn) ≥ D∗ almost surely as claimed.

E.4 Completing the Proof: Algorithm 1 Attains Optimal Value

In this final step we show that the limiting Lyapunov value identified in Section E.2 must coincide
with the global minimax value F ∗ = Γ∗, rather than an arbitrary stationary value of the differential
inclusion. We first formalize the minimax structure by introducing the saddle-point set E of the
concave–convex game F (w,µ) and select a representative saddle point whose weight vector is
strictly positive on every coordinate that can be positive at equilibrium (Lemma 12). Using this
representative, we define a Kullback–Leibler potential Vn = DKL(w∗∥wn) on the active face and
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prove a uniform negative-drift bound for Vn whenever the value gap F ∗ −minxD
w
x (wn;θ) stays

bounded away from zero. A Robbins–Siegmund almost-supermartingale argument then forces the
gap to vanish, yielding lim supn minxD

w
x (wn;θ) = F ∗ and, combined with the value convergence

from Section E.2, establishes minxD
w
x (wn;θn)→ F ∗ almost surely.

A pair (w∗,µ∗) is a saddle point of F if

F (w,µ∗) ≤ F (w∗,µ∗) ≤ F (w∗,µ) ∀w ∈ ∆K , µ ∈ ∆|X |.

The common value F ∗ ≜ F (w∗,µ∗) is the minimax value. Let

E ≜ {(w,µ) ∈ ∆K ×∆|X | : (w,µ) is a saddle point of F}.

For each i ∈ [K], define the attainable i-th coordinate set

Ewi ≜
{
wi ∈ [0, 1] : ∃(w,µ) ∈ E with (w)i = wi

}
,

and let K0 ≜ {i : Ewi = {0}} and K1 ≜ [K] \ K0.

Lemma 12 (A strictly positive representative). The saddle-point set E is nonempty, compact, and
convex. Consequently, there exists (w∗,µ∗) ∈ E such that (w∗)i = 0 for all i ∈ K0 and (w∗)i > 0
for all i ∈ K1.

Proof. The function F (w,µ) =
∑

x∈X µxD
w
x (w) is continuous on the compact convex set ∆K×∆|X |,

concave in w (as a nonnegative combination of concave maps Dw
x ), and linear (hence convex) in µ.

Therefore, Sion’s minimax theorem applies and yields

max
w∈∆K

min
µ∈∆|X |

F (w,µ) = min
µ∈∆|X |

max
w∈∆K

F (w,µ) = F ∗.

Since the max and min are attained by compactness and continuity, a saddle point exists and hence
E ̸= ∅.

Let (wn,µn) ∈ E be a convergent sequence with limit (w,µ) ∈ ∆K ×∆|X |. For every w′ ∈ ∆K

and µ′ ∈ ∆|X |, saddle-point inequalities give

F (w′,µn) ≤ F (wn,µn) ≤ F (wn,µ′).

Letting n → ∞ and using continuity of F yields F (w′,µ) ≤ F (w,µ) ≤ F (w,µ′), so (w,µ) ∈ E .
Thus E is closed. Since E ⊂ ∆K ×∆|X | and the latter is compact, E is compact.

Take two saddle points (w1,µ1), (w2,µ2) ∈ E and λ ∈ [0, 1]. Define wλ = λw1 + (1− λ)w2 and
µλ = λµ1 + (1− λ)µ2. Let F ∗ = F (w1,µ1) = F (w2,µ2) denote the common saddle value.

First, for any w′ ∈ ∆K , using linearity of F (w′, ·) and the saddle inequalities F (w′,µk) ≤ F ∗

for k = 1, 2, we obtain

F (w′,µλ) = λF (w′,µ1) + (1− λ)F (w′,µ2) ≤ λF ∗ + (1− λ)F ∗ = F ∗.

Second, for any µ′ ∈ ∆|X |, concavity of F (·,µ′) and the saddle inequalities F (wk,µ′) ≥ F ∗ give

F (wλ,µ′) ≥ λF (w1,µ′) + (1− λ)F (w2,µ′) ≥ F ∗.
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In particular, taking µ′ = µλ yields F (wλ,µλ) ≥ F ∗. On the other hand, taking w′ = wλ in the
first display yields F (wλ,µλ) ≤ F ∗. Therefore F (wλ,µλ) = F ∗, and the two displays imply

F (w′,µλ) ≤ F (wλ,µλ) ≤ F (wλ,µ′) ∀w′ ∈ ∆K , µ
′ ∈ ∆|X |.

Hence (wλ,µλ) ∈ E , proving convexity.
For each i ∈ K1, by definition of K1 there exists a saddle point (w(i),µ(i)) ∈ E such that w(i)

i > 0.
Define the average pair

(w∗,µ∗) ≜ 1
|K1|

∑
i∈K1

(w(i),µ(i)).

By convexity of E , we have (w∗,µ∗) ∈ E . If j ∈ K0, then wj = 0 for every (w,µ) ∈ E , hence w∗
j = 0.

If j ∈ K1, then
w∗

j = 1
|K1|

∑
i∈K1

w
(i)
j ≥ 1

|K1|
w

(j)
j > 0,

so w∗
j > 0.

Lemma 13 (Summability of harmonic compensators). Let qn,i = P(In+1 = i | Hn). Then

∞∑
n=0

K∑
i=1

qn,i

N2
n,i

< ∞ Pθ-a.s.

Proof. Fix i ∈ [K] and define

Y
(i)

n+1 ≜
1{In+1 = i}

N2
n,i

, n ≥ 0.

Since Nn,i increases by 1 exactly on rounds with In+1 = i, we have the deterministic bound
∞∑

n=0
Y

(i)
n+1 =

∑
n:In+1=i

1
N2

n,i

≤
∞∑

k=1

1
k2 < ∞ a.s.

Moreover,
E
[
Y

(i)
n+1 | Hn

]
= qn,i

N2
n,i

.

Define the martingale

M (i)
m ≜

m−1∑
n=0

(
Y

(i)
n+1 − E[Y (i)

n+1 | Hn]
)
, m ≥ 1.

Its increments satisfy |M (i)
n+1 − M

(i)
n | ≤ 1/N2

n,i and hence
∑∞

n=0 E[(M (i)
n+1 − M

(i)
n )2 | Hn] ≤∑∞

n=0 1/N4
n,i <∞ a.s. Therefore M (i)

m converges almost surely to a finite limit.
Since

m−1∑
n=0

qn,i

N2
n,i

=
m−1∑
n=0

E[Y (i)
n+1 | Hn] =

m−1∑
n=0

Y
(i)

n+1 −M
(i)
m ,

and the right-hand side converges almost surely to a finite limit, the series
∑

n qn,i/N
2
n,i converges

almost surely. Summing over i ∈ [K] completes the proof.

40



Theorem 3. Under Assumptions 1–7, let {wn}n≥0 be the cost allocation sequence generated by
Algorithm 1 and iteration (11). Then, minx∈X Dw

x

(
wn;θn

)
→ Γ∗ almost surely. As a consequence,

for {pn}n≥0 from Algorithm 1, we also have minx∈X Dx
(
pn;θn

)
→ Γ∗ almost surely.

Proof. Fix a saddle-point representative (w∗,µ∗) as in Lemma 12, and write K1 = Supp(w∗). Define
the KL potential on the active face

Vn ≜ DKL(w∗ ∥ wn) =
∑

i∈K1

w∗
i log w∗

i

wn,i
≥ 0.

Since the forced-exploration schedule pulls every arm at least once, there exists a deterministic ninit

such that wn,i > 0 for all i ∈ K1 and all n ≥ ninit, so Vn <∞ for all n ≥ ninit.

Step 1: One-step drift bound on non-forced rounds. Fix n ≥ ninit and define

un+1,i ≜
wn+1,i − wn,i

wn,i
= αn+1

(eIn+1(i)
wn,i

− 1
)
, i ∈ K1,

so that wn+1,i = wn,i(1 + un+1,i). Then

Vn+1 − Vn = −
∑

i∈K1

w∗
i log(1 + un+1,i).

For all sufficiently large n, we have αn+1 ≤ cmax/(cmin(n+ 1)) ≤ 1/2, hence un+1,i ≥ −αn+1 ≥ −1/2
for every i. Using the inequality − log(1 + u) ≤ −u+ u2 (valid for u ≥ −1/2), we obtain

Vn+1 − Vn ≤ −
∑

i∈K1

w∗
i un+1,i +

∑
i∈K1

w∗
i u

2
n+1,i. (48)

Taking conditional expectation given Hn yields

E[Vn+1 − Vn | Hn] ≤ −α̃n+1
∑

i∈K1

w∗
i

( h̃n,i

wn,i
− 1

)
+Rn+1, (49)

where α̃n+1 = E[αn+1 | Hn], E[αn+1eIn+1 | Hn] = α̃n+1h̃n, and the quadratic remainder is

Rn+1 ≜ E

∑
i∈K1

w∗
i u

2
n+1,i

∣∣∣ Hn

 ≥ 0.

On non-forced rounds,

∑
i∈K1

w∗
i

( h̃n,i

wn,i
− 1

)
=
∑

i∈K1

w∗
i

(hxn
i (wn;θn)
wn,i

− 1
)

+ εn, (50)

where

εn ≜
∑

i∈K1

w∗
i

(
h̃n,i

wn,i
− hxn

i (wn;θn)
wn,i

)
.

Using the IDS gradient representation hxn
i (wn;θn)/wn,i = [∇wD

w
xn

(wn;θn)]i/Dw
xn

(wn;θn), define

gn ≜ ∇wD
w
xn

(wn;θn), Dn ≜ Dw
xn

(wn;θn) > 0.
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Then the main term in (50) equals

Sn ≜
∑

i∈K1

w∗
i

( [gn]i
Dn
− 1

)
= ⟨w

∗ −wn, gn⟩
Dn

. (51)

By concavity of Dw
xn

(·;θn),

Dw
xn

(w∗;θn) ≤ Dw
xn

(wn;θn) + ⟨gn,w
∗ −wn⟩ = Dn + ⟨gn,w

∗ −wn⟩,

so
Sn = ⟨w

∗ −wn, gn⟩
Dn

≥
Dw

xn
(w∗;θn)−Dw

xn
(wn;θn)

Dn
=
Dw

xn
(w∗;θn)−Dn

Dn
. (52)

Combining (49)–(52), we obtain on non-forced rounds

E[Vn+1 − Vn | Hn] ≤ −α̃n+1
Dw

xn
(w∗;θn)−Dn

Dn
+ α̃n+1|εn|+Rn+1. (53)

Step 2: Summability of error terms. By Proposition 7, there exists an a.s. finite n0 such that
Dn = Dw

xn
(wn;θn) ≥ D∗/2 for all n ≥ n0. Together with Assumption 7, this implies [gn]i/Dn is

uniformly bounded on n ≥ n0. By Lemma 2,∣∣∣∣∣ h̃n,i

wn,i
− hxn

i (wn;θn)
wn,i

∣∣∣∣∣ ≤ cmax
ncmin

hxn
i (wn,θn)
wn,i

= cmax
ncmin

[gn]i
Dn

= O(1/n)

Hence |εn| = O(1/n) implies
∑

n α̃n+1|εn| <∞ almost surely.
For the quadratic remainder, note that for i ≠ In+1 we have un+1,i = −αn+1, while for i = In+1,

un+1,In+1 = αn+1
( 1
wn,In+1

− 1
)

=
CIn+1(θ)
Bn+1

( Bn

Nn,In+1CIn+1(θ) − 1
)
≤ 1
Nn,In+1

.

Therefore, for all n, ∑
i∈K1

w∗
i u

2
n+1,i ≤ α2

n+1 + 1{In+1 ∈ K1}
N2

n,In+1

.

Taking conditional expectations gives

Rn+1 ≤ E[α2
n+1 | Hn] +

∑
i∈K1

qn,i

N2
n,i

.

Since
∑

n E[α2
n+1 | Hn] ≤

∑
n(cmax/(cmin(n+ 1)))2 <∞ and Lemma 13 yields

∑
n

∑
i qn,i/N

2
n,i <∞

almost surely, we conclude
∞∑

n=0
Rn+1 < ∞ Pθ-a.s. (54)

Step 3: Forced rounds contribute a summable perturbation. On forced rounds, In+1 is
Hn-measurable, and for every i ∈ K1 with i ̸= In+1 we have wn+1,i = (1− αn+1)wn,i, hence

Vn+1 − Vn = −
∑

i∈K1

w∗
i log wn+1,i

wn,i
≤ −

∑
i∈K1\{In+1}

w∗
i log(1− αn+1) ≤ − log(1− αn+1) ≤ 2αn+1

for all large n (so that αn+1 ≤ 1/2). Since
∑

n:Fn=1 αn+1 <∞ under the forced schedule, the total
forced-round contribution is almost surely summable.
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Step 4: Robbins–Siegmund and identification of the limiting value. Let

vn ≜ min
x∈X (θn)

Dw
x (wn;θn).

By Proposition 6, vn converges almost surely to a finite limit v∞. We show that v∞ = F ∗.
Suppose for contradiction that v∞ ≤ F ∗ − δ on an event of positive probability, for some

δ > 0. Then for all sufficiently large n, we have vn ≤ F ∗ − δ/2 and, by detection consistency,
Dn = Dw

xn
(wn;θn) ≤ vn + o(1) ≤ F ∗ − δ/3. On the other hand, since minxD

w
x (w∗;θ) = F ∗ and

θn → θ almost surely, continuity implies Dw
xn

(w∗;θn) ≥ F ∗ − δ/6 for all large n. Therefore, for all
large n on this event,

Dw
xn

(w∗;θn)−Dn ≥ δ/6.

Using (53) together with the summability of the error terms established above, we can write for all
sufficiently large n,

E[Vn+1 | Hn] ≤ Vn − Un +Wn,

where

Un ≜ NFnα̃n+1
Dw

xn
(w∗;θn)−Dn

Dn
≥ 0, Wn ≜ α̃n+1|εn|+Rn+1 and

∞∑
n=0

Wn <∞ a.s.

Robbins–Siegmund’s almost-supermartingale theorem then implies
∑

n Un <∞ almost surely.
However, on the event {v∞ ≤ F ∗−δ} and for all large n, Dn ≤ F ∗+1 andDw

xn
(w∗;θn)−Dn ≥ δ/6,

hence
Un ≥ NFnα̃n+1

δ/6
F ∗ + 1 .

Since α̃n+1 ≥ cmin/(cmax(n+ 1)) and
∑

n NFn/(n+ 1) =∞, we obtain
∑

n Un =∞ on this event, a
contradiction. Therefore P(v∞ ≤ F ∗ − δ) = 0 for every δ > 0, i.e., v∞ ≥ F ∗ almost surely.

Finally, by definition of F ∗ = maxw∈∆K
minx∈X Dw

x (w;θ) and since θn → θ, we also have
vn ≤ F ∗ + o(1), hence v∞ ≤ F ∗. Combining yields v∞ = F ∗ almost surely. This proves
minx∈X Dw

x (wn;θn)→ F ∗ almost surely.

Step 5: Transfer from cost allocations to sample allocations. For each x ∈ X (θn),

Dx(pn;θn) = C̄θ(pn)
C̄θn(pn)

inf
ϑ∈Altx(θn)

K∑
i=1

wn,i
KL(Pθn,i∥Pϑ,i)

Ci(θ) = C̄θ(pn)
C̄θn(pn)

Dw
x (wn;θn).

By continuity of Ci(·) and θn → θ, the prefactor C̄θ(pn)/C̄θn(pn)→ 1. Therefore minxDx(pn;θn)−
minxD

w
x (wn;θn)→ 0 almost surely, and hence minxDx(pn;θn)→ F ∗ almost surely.

Remark 4 (Boundary separation on potentially active arms). When the saddle-point set is not a
singleton, different algorithms may converge to different saddle points. For instance, it may happen
that Epi = [0, 1/2] for some coordinate i, so both boundary (pi = 0) and interior (pi > 0) saddle
points exist. The KL-potential argument used in the proof of Theorem 3 implies a simple but useful
boundary-separation property for coordinates that are positive in a saddle-point representative.
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Let (w∗,µ∗) be chosen as in Lemma 12, so that (w∗)i > 0 for all i ∈ K1, and recall the KL
potential on the active face

Vn ≜ DKL(w∗∥wn) =
∑

i∈K1

w∗
i log w∗

i

wn,i
.

Robbins–Siegmund yields that Vn converges almost surely in Theorem 3; in particular, Vn is almost
surely bounded, say supn Vn ≤ V̄ <∞ on an event of probability one. Fix any i ∈ K1. Since each
term in the sum defining Vn is nonnegative, we have

w∗
i log w∗

i

wn,i
≤ Vn ≤ V̄ ∀n,

hence log w∗
i

wn,i
≤ V̄ /w∗

i and therefore

wn,i ≥ w∗
i exp

(
− V̄

w∗
i

)
> 0 ∀n.

Consequently, infnwn,i > 0 for all i ∈ K1, and every accumulation point of (wn) assigns strictly
positive mass to all coordinates in K1. Equivalently, each potentially active arm (i.e., one that is
positive in some saddle point) receives a linear number of samples under the PAN/IDS dynamics
started from the interior.

We view this as a robustness feature of IDS-style sampling dynamics: it prevents the algorithm
from selecting sparse boundary saddle points that would “starve” potentially active arms (e.g., pi → 0,
leading to sublinear sampling).

F Examples

We illustrate two simple pathologies in linear best-arm identification (BAI) under unit noise
variance and unit costs. Throughout, the mean of arm i is mi ≜ ⟨ai,θ⟩, and the optimal arm is
I∗ ≜ arg maxi∈[K]mi (assumed unique). For j ̸= I∗, define the gap and contrast direction

∆j ≜ mI∗ −mj , uj ≜ aI∗ − aj .

Given an allocation p ∈ ∆K , let

Vp ≜
K∑

i=1
piaia

⊤
i

denote the (normalized) design matrix. In Gaussian linear BAI with unit variances, the usual
Chernoff-type information rate against rival j takes the form

Dj(p;θ) ≜
∆2

j

2u⊤
j V

−1
p uj

, j ̸= I∗, (55)

and the maximin value is Γ∗ ≜ maxp∈∆K
minj ̸=I∗ Dj(p;θ).
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F.1 Uniform allocation can be arbitrarily suboptimal

Consider a d = 2 linear bandit with parameter θ = (1,−C)⊤ for some C > 0. Let K ≥ 2 and define
arms

a1 = e1, a2 = e1 + εe2, ak = αe1, k = 3, . . . ,K,

where α ∈ (0, 1) is fixed and 0 < ε < (1− α)/C. The means satisfy

m1 = 1, m2 = 1− Cε, mk = α, k ≥ 3,

so I∗ = 1 and arm 2 is the unique near competitor:

∆2 = Cε, ∆k = 1− α > ∆2, k ≥ 3.

The associated contrast directions are

u2 = a1 − a2 = −εe2, uk = a1 − ak = (1− α)e1, k ≥ 3.

Fix p ∈ ∆K and write S ≜
∑K

k=3 pk and s ≜ p1 + p2 + α2S. A direct calculation gives

Vp =
[
s εp2

εp2 ε2p2

]
, det(Vp) = ε2p2(s− p2) = ε2p2(p1 + α2S),

and hence

V −1
p = 1

det(Vp)

[
ε2p2 −εp2

−εp2 s

]
.

Plugging into (55) yields

D2(p;θ) = (Cε)2

2 · p2(s− p2)
s

= (Cε)2

2 · p2(p1 + α2S)
p1 + p2 + α2S

,

Dk(p;θ) = (1− α)2

2 · 1
(1− α)2e⊤

1 V
−1
p e1

= s− p2
2 = p1 + α2S

2 , k ≥ 3.

Now consider the uniform allocation pi = 1/K. Then S = (K − 2)/K and

s = 2 + α2(K − 2)
K

, s− p2 = 1 + α2(K − 2)
K

.

Therefore

Dunif
2 = (Cε)2

2 ·
1
K ·

1+α2(K−2)
K

2+α2(K−2)
K

= (Cε)2

2 · 1 + α2(K − 2)
K[2 + α2(K − 2)] = Θ

(
(Cε)2

K

)
,

whereas for k ≥ 3,

Dunif
k = s− p2

2 = 1 + α2(K − 2)
2K −→ α2

2 .

Hence the bottleneck under uniform sampling is the hard rival 2:

min
j ̸=1

Dunif
j = Dunif

2 = Θ
(

(Cε)2

K

)
.
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By contrast, allocating only between arms 1 and 2 (set p1 = p2 = 1
2 and pk = 0 for k ≥ 3) gives

D2(p;θ) = (Cε)2

8 , Dk(p;θ) = 1
4 , k ≥ 3,

so for ε sufficiently small we have minj ̸=1Dj(p;θ) = (Cε)2

8 and thus Γ∗ ≥ (Cε)2/8. Consequently,

Γ∗

minj ̸=1D
unif
j

≳
(Cε)2/8

Θ((Cε)2/K) = Ω(K) −−−−→
K→∞

∞.

Interpretation. All distractors k ≥ 3 lie on the e1 axis and contribute no direct information in the
e2 direction that separates arms 1 and 2 (since u2 = −εe2). Uniform sampling wastes a 1− 2/K
fraction of samples on these distractors, forcing the worst-case information rate to decay as 1/K,
whereas an optimal design concentrates on arms 1 and 2 and maintains a Θ((Cε)2) rate.

F.2 β-tuned top-two sampling can be arbitrarily suboptimal

We next exhibit a simple instance where a fixed-β top-two rule can be arbitrarily worse than the
maximin (IDS-style) allocation. Consider d = 2, K = 4, parameter θ = (−1,−2)⊤, and arms

a1 = e1, a2 = e2, a3 = le1, a4 = e1 + le2,

where l > 1. Then I∗ = 1 with gaps

∆2 = 1, ∆3 = l − 1, ∆4 = 2l,

and contrast directions

u2 = (1,−1)⊤, u3 = (1− l, 0)⊤, u4 = (0,−l)⊤.

For p ∈ ∆4, the design matrix is

Vp =
[
p1 + l2p3 + p4 lp4

lp4 p2 + l2p4

]
, det(Vp) = l4p3p4 + l2(p1p4 + p2p3) + p1p2 + p2p4,

and

V −1
p = 1

det(Vp)

[
p2 + l2p4 −lp4

−lp4 p1 + l2p3 + p4

]
.

A direct substitution into (55) yields

D2(p;θ) = det(Vp)
2
(
p1 + p2 + l2p3 + (l + 1)2p4

) ,
D3(p;θ) = det(Vp)

2
(
p2 + l2p4

) , D4(p;θ) = 2 det(Vp)
p1 + l2p3 + p4

.

One can verify that D2(p;θ) ≤ min{D3(p;θ), D4(p;θ)} for all p ∈ ∆4, so the maximin value is
Γ∗ = maxp∈∆4 D2(p;θ). In particular, the feasible allocation p† = (0, 0, 1

2 ,
1
2) gives the lower bound

Γ∗ ≥ D2(p†;θ) = l4

4(2l2 + 2l + 1) = Θ(l2).
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By contrast, a top-two Thompson sampling rule with fixed tuning β = 1
2 concentrates asymptot-

ically on the leader and its closest challenger in mean, which in this instance yields the limiting
allocation

pTT =
(

1
2 ,

1
2 , 0, 0

)
.

For this allocation, VpTT = 1
2I2, so

min
j ̸=1

Dj(pTT;θ) = D2(pTT;θ) = 1
8 .

Consequently,
Γ∗

minj ̸=1Dj(pTT;θ) ≥ 8D2(p†;θ) = Θ(l2) −−−→
l→∞

∞,

showing that a fixed-β top-two rule can be arbitrarily suboptimal relative to an IDS-style allocation
that targets the maximin information rate.

G Additional Numerical Examples

We consider a simple d = 3, K = 6 linear instance in which the best arm is a1 = e1 and the closest
competitor is a2 = e1 + 1

2e2 under θ = (1,−0.02, 0), so the gap is only ⟨a1 − a2,θ⟩ = 0.01 and
identifying the best arm requires accurately estimating the nuisance coordinate θ2. Crucially, there
are two arms aligned with e2, namely a3 = a4 = e2, but with different noise levels: arm 3 has low
variance σ2

3 = 0.04 while arm 4 has variance 1.
In the equal-cost version (all ci ≡ 1), the low-variance arm 3 is genuinely preferable, and LinGapE

behaves similarly to PAN and Track-and-Stop: the median stopping times are 460 (PAN), 450
(Track-and-Stop), and 595 (LinGapE) pulls (Figure 2, Left Panel).
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Figure 2: Budget needed to reach posterior threshold. Left: uniform cost. Right: Heterogeneous cost.
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We then modify only one number: we set the cost of arm 3 to c3 = 100 while leaving the arms,
θ, and variances unchanged. This creates a “cost trap”: arm 3 is 25× less noisy but 100× more
expensive, so it is four times worse per unit budget than its cheap duplicate arm 4. A cost-aware
method should therefore switch almost entirely to sampling arm 4 to learn θ2 efficiently in budget.

The results are collected in Figure 2, Right Panel. Empirically, PAN and Track-and-Stop remain
stable, reaching the target posterior error after about 1.25×104 and 1.10×104 budget units in median,
respectively. In contrast, a naive (cost-agnostic) LinGapE implementation becomes dramatically
cost-inefficient: its median budget to target jumps to 3.42× 104 (about a 3× increase relative to
PAN/Track-and-Stop and ∼ 60× relative to its equal-cost median when “budget” coincides with
pulls), with a heavy tail (95th percentile 1.28 × 105) and occasional failures to reach the target
within the budget cap (0.7% of runs).

This experiment highlights that heterogeneous costs can qualitatively change the optimal
allocation, and that plugging a standard LinGapE rule into a cost-budgeted setting without
explicitly incorporating costs can lead to a severe performance collapse even when the underlying
geometry and noise model are unchanged.

H Auxiliary facts

In this section, we compile several classical results on set-valued maps and differential inclusions
that facilitate our proofs.

Envelope theorem. Let X be a choice set and let t ∈ [0, 1] be the relevant parameter. Consider
the parameterized objective function f : X × [0, 1]→ R, and define the value function v : [0, 1]→ R
and the optimal choice correspondence (set-valued function) X∗ by

v(t) = sup
x∈X

f(x, t) and X∗(t) = {x ∈ X : f(x, t) = v(t)}.

The Envelope theorem, Milgrom and Segal (2002, Theorem 1), states that: Assume that for a given
t ∈ [0, 1] and for some x∗ ∈ X∗(t) the partial derivative ft(x∗, t) exists. If v is differentiable at t,
then v′(t) = ft(x∗, t).

Upper hemicontinuity for compact-valued correspondence. Beavis and Dobbs (1990,
Theorem 3.2) provide an equivalent characterization of upper hemicontinuity for compact-valued
set-valued map F : X ⇒ Y . F is upper hemicontinuous at x ∈ X if, and only if, for every
sequence {xn} converging to x and every sequence {yn} with yn ∈ F (xn), there exists a converging
subsequence of {yn} whose limit belongs to F (x).

Berge’s Maximum Theorem. Below is a rephrase of Beavis and Dobbs (1990, Theorem 3.6).
Let X ⊂ Rm, Y ⊂ Rk and Ξ : X ⇒ Y be a set-valued map with nonempty, compact values.
Let f : X × Y → R be a continuous function. Define the set-valued function M : X ⇒ Y , the
maximizers M(x) ≜ arg maxy∈Ξ(x) f(x, y), and the corresponding value function v : X → R by
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v(x) = maxy∈Ξ(x) f(x, y). If Ξ is continuous at x, then v is continuous at x and the set-valued
function M is closed, compact-valued and upper hemicontinuous at x.

Existence of solutions to a differential inclusion. Consider the autonomous differential
inclusion

ẋ(t) ∈ F (x(t)), x(0) = x0,

where F : Rm ⇒ Rm satisfies: (i) graph(F ) = {(x,y) : y ∈ F (x)} is closed; (ii) F (x) is nonempty,
compact, and convex for every x ∈ Rm; (iii) there exists c > 0 such that supz∈F (x) ∥z∥ ≤ c(1 + ∥x∥)
for all x ∈ Rm. Then, for every initial condition x0 ∈ Rm, there exists an absolutely continuous
trajectory x : [0,∞)→ Rm such that ẋ(t) ∈ F (x(t)) for almost every t ≥ 0. See, e.g., Aubin and
Cellina (1984, Chapter 2.1).

Existence of measurable selections. Aubin and Cellina (1984, Corollary 1, Section 1.14) states
that, let f : X × U → X be continuous, where U is a compact separable metric space. Assume that
there exist an interval I and an absolutely continuous function x : I → Rn, such that

x′(t) ∈ f(x(t), U) for almost every t ∈ I.

Then, there exists a Lebesgue measurable function u : I → U such that

x′(t) = f(x(t), u(t)) for almost every t ∈ I.
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