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Overview

From a narrow perspective, real analysis studies the calculus of real-valued functions of one (or
several) real variables. Unlike elementary calculus, we often encounter “pathological” functions.
From a broader perspective, most topics in real analysis can be extended to abstract measure
spaces. The core subjects are Lebesgue measure theory and Lebesgue integration theory. The
Riemann integral is usually regarded as a classical integral, while the Lebesgue integral is viewed
as modern integration. It is a foundation of modern analysis (modern partial differential equa-
tions, functional analysis, harmonic analysis, ...), and also a foundation of probability theory
and stochastic analysis.

Real analysis combines rigorous logical reasoning with rich geometric intuition. At the same

time, many exercises are difficult and require deep analytical thinking.

0.1 Limits of Continuous Functions

Let {f.} be a sequence of continuous functions on [0, 1], and suppose le fa(z) = f(x) for
n—oo
every x € [0,1]. If this convergence is uniform, then naturally f is also continuous on [0, 1].
However, without the assumption of uniform convergence, the situation is completely differ-

ent. In fact, we can construct a sequence {f,} such that
e 0< fo(z) <1,Vx €]0,1];
o {fn} is monotone decreasing in n;
e the limit function f is not Riemann integrable.

Even so, under the first two assumptions, one can verify that fol fn(x)dz converges to a

limit. Naturally, we ask: how can we define a new integral so that

f(x)dx = lim /1 fn(x) dx
n—oo 0

[0,1]

holds?
Related results will appear in 3.3 and 4.3.

0.2 Length of Curves

In mathematical analysis, we study plane curves and compute their lengths. Let I" be a continu-
ous curve in the plane, given by the parametric form I' = {(x(¢), y(t)),a < t < b}, where x(t) and

y(t) are continuous in t. We usually define the length of I' as the supremum of polygonal lengths
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obtained by joining finitely many points on I' in increasing order of t. When this supremum is

finite, we call I rectifiable. If x(t) and y(¢) are continuously differentiable, we have

= [ Jwor+ wora. )
For a general curve, we ask:
1. Under what conditions on z(¢) and y(t) can we guarantee that I' is rectifiable?
2. When those conditions hold, is formula (1) valid?

The first question has a complete answer: the curve is rectifiable if and only if z(¢) and
y(t) are of bounded variation. Then the second question becomes: when z(t) and y(t) are of
bounded variation, the integral in (1) is always meaningful. In general, however, the equality
does not always hold as stated, though it can be made valid after choosing a new parameter.

For bounded variation functions and the validity of (1) (that is, differentiability of bounded

variation functions and integrability of their derivatives), see 5.5.2.

0.3 Differentiation and Integration

The fundamental theorem of calculus states that differentiation and integration are inverse

operations. It has two forms:

F(b) - F(a) = / " (@) da, 2)

a

ié%wﬁ:ﬂm (3)

For the first formula, however, we can find continuous functions F' that are nowhere differ-
entiable, or functions for which F’(x) exists everywhere but is not Riemann integrable. These
issues motivate us to find a broader class of functions F' for which (2) remains valid.

For (3), the question is: how can we establish this identity for a broader class of integrable
functions? To answer this, we need a covering theory and the notion of absolutely continuous

functions; see 5.1 and 5.6.

0.4 Limitations of the Riemann Integral

Definition 0.4.1 (Riemann Integral). Let f(z) be a bounded function on [a,b], and take a
partition

Aca=zg< a1 <29 <+ <xp =,

with Riemann sum
n

S(f,8) = f&) (@i —zi),

i=1
where & € [wi—1,x;]. If there exists a constant I such that for every e > 0, there exists 6 > 0

and whenever
A Y max {z; — 251} < 6, (4)

1<i<n



we have

|S(f7A)_I| <¢g,

then f(x) is called Riemann integrable on [a,b], and I is called the Riemann integral of f(x) on
[a,b], denoted by

b
(R) [ () de.
When no confusion can arise, the (R) on the left is omitted.

Remark 0.4.1. In topological language, the convergence defined by (4) is called convergence of

a net.

The integrability problem is central in Riemann integration. Although the Darboux theorem
gives a necessary and sufficient criterion for integrability of f(x) on [a, b], it is still very difficult

to classify integrable functions directly from that criterion.
Example 0.4.1 (Dirichlet Function).
1, zeQnlo,1],
D(z) = ()
0, z¢€][0,1\Q,
is not Riemann integrable.

In addition, the class of Riemann integrable functions is not complete. If we impose extra

conditions, we get the following bounded convergence statement.

Example 0.4.2. Let f,(x) be a sequence of Riemann integrable functions on [a,b], and suppose
(1) there exists M > 0 such that |fn(z)| < M for all x € [a,b];
(2) there exists a real-valued function f(z) on [a,b] such that for all x € [a,b],

lim fu(z) = f(2).

Question: is f(x) Riemann integrable on [a,b]?

Remark 0.4.2. If f(x) is Riemann integrable, then

lim (R) / " b @) de = (R) / " b ) de.

n— oo

Finally, in Riemann integration, the conditions for exchanging limits and integrals, and for
iterated integration, are complicated. To overcome these limitations, we need to “design” a new
integral: the Lebesgue integral.

0.5 Lebesgue Integral and Lebesgue Measure
Definition 0.5.1 (Lebesgue Integral). Let f(x) be a real-valued function on [a,b] satisfying
m < f(z) < M,

and let
Am=y <y <ys<---<y,=M.

3



Define
Ei - {.’13 S [CL, b] ’ Yi—1 < f(l') < y2}7

and form

LU A) = 3 Em(E),
=1

where & € |yi—1,yi) is arbitrary. If there exists a constant I such that for every e > 0, there
exists § > 0 and whenever
def.
Al S max {y; —yi_1} <6,

1<i<n
we have
|SL(f7A) _I| <g,

then f(x) is called Lebesque integrable on [a,b], and I is called the Lebesgue integral of f(x) on
[a,b], denoted by

(0 [ fa)de.
[a,b]
When no confusion can arise, the (L) on the left is omitted.
The following two questions are essential:
o What is m(E;)? It generalizes the notion of length and is called Lebesgue measure.

o How is m(FE;) defined? What properties does it satisfy? Which sets can be assigned

Lebesgue measure?

Example 0.5.1 (Lebesgue Integral of the Dirichlet Function). Since the Dirichlet function (5)

has only two isolated values, 0 and 1, we have
Si(D,A) =m(QnNI0,1]).
Then what is the “length” of the set of all rational numbers in [0,1]7

Proposition 0.5.1 (Relation Between the Lebesgue and Riemann Integrals). If f(x) is Riemann

integrable on [a,b], then f(x) is Lebesque integrable on [a,b], and

b
(L) /M fa)de = (B) [ f(x)do.

Measure theory is built on the foundation of Cantor’s set theory. It began with work of
G. Peano and C. Jordan. Following the model of Riemann integration, Jordan established
integration on Jordan measurable sets, but this class has a major defect: there exist open sets
that are not Jordan measurable. Later, Borel further developed measure theory and established
Borel measure on the class generated from open and closed sets by basic operations such as
intersections, unions, and differences (the Borel class, a o-ring).

Lebesgue established measure theory on a larger class of sets. He proved that Lebesgue
measurable sets form a o-ring and clarified the relationship between Borel measurable sets and
Lebesgue measurable sets. Further development of measure theory relied on work by Riesz,

Caratheodory, and others.



Chapter 1

Sets and Point Sets

G. Cantor (1845-1918) is the founder of set theory. He introduced concepts such as cardinality,
accumulation points, open sets, and closed sets, and proved that transcendental numbers are
far more numerous than algebraic numbers. Cantor’s descriptive definition of a set is: when all
objects sharing a certain property are regarded as a whole, that whole is called a set, and those

objects are called elements of the set.

Definition 1.0.1 (Paradox). An argument is called a paradox if it leads to a conclusion opposite

to common judgment, while it is difficult to provide a justified refutation.

Definition 1.0.2 (Fallacy). A statement is called a fallacy if both the statement and its negation
can be proved by seemingly logically equivalent reasoning, and no error in the derivation can be
identified.

Cantor’s descriptive definition of sets leads to the famous Russell paradox (1903).

Example 1.0.1 (Russell Paradox). Let
E = {z|x € x},
then
EcEsE¢E.
1.1 Set Operations

The basic operations on sets are well known; we give only a simple example.

Example 1.1.1. Let f : [a,b] — R!. Then

a8 = U {#llf @] <n},
n=0

llf@l >0y = U fells@) > 1y,
n=1

Besides intersection, union, and difference, we also define symmetric difference and limit

operations for sets.



Definition 1.1.1 (Symmetric Difference). Let A, B be sets. Define
= (A\B) U (B\A),
called the symmetric difference of A and B, denoted by AAB.

To motivate the definition of set limits, let us recall limsup and liminf for sequences. Let
{an} be a real sequence and define

bx = sup a;,
i>k

then {bx} is monotone decreasing and hence convergent. We define

limsup a, = mf by, = inf sup a;.
n—00 kEoixk

Similarly, we define upper and lower limits of a sequence of sets.

Definition 1.1.2 (Limit Set). Let {Ax} be a sequence of sets. The set

is called the upper limit set of {Ax}, denoted by hm Ay orlimsup Ag. The set

k—00

is called the lower limit set of { Ay}, denoted by lim Ay or hm 1nf A, If

k—o0

lim A, = lim Ay,
k—oco k—o0

then this common set is called the limit set of {Ax}, denoted by klim A
—00

Remark 1.1.1. In fact, set inclusion forms a partial order. For any partially ordered set, one

oo
can define suprema and infima, and therefore limsup and liminf analogously. Here, |J Ay is the
k=i
supremum of {Ak}i":j.

Now let us look at a basic example.

Example 1.1.2. Let
[—1,1] U [L,2], k even;
A =
[—1,1]U[-2,—1], k odd.

Then
lim Ay, = [-2,2], im A = [-1,1].

k=00 k—o0

Think: 1. For an arbitrary sequence of sets { A}, do the upper and lower limit sets always
exist?
2. Assume hm Tn = x and hm rn, = r. Study limsup and liminf for the family of n-

dimensional balls {B Tp,Tn)}



Definition 1.1.3 (Monotonicity). Let {Ar} be a sequence of sets. If for every k € N,
Ap © Ap—1, (A 2 A1),

then {Ay} is called monotone increasing (decreasing), and both are called monotone sequences

of sets.
Theorem 1.1.1. Let {Ax} be a monotone sequence of sets. Then

lim Ak = lim Ak.
k—o0 k—o0

Proof. Consider the monotone increasing case. First, for fixed j € N,
[e.e] [e.e]
ﬂAk’gUAkal:1727
k=j k=l

Hence

N4cAU 4
k=j

=l k=l

Since j is arbitrary,

UMNacUAa
j=1k=j 1=l k=1

[c oo o}
Conversely, for any =z € (| U Ag,
I=1 k=l

o0
velJApl=1,2,--.
k=l

So there exists some k; such that = € A,. Because { Ay} is monotone increasing, for k > k; we

have x € A, hence

00
x e m Ak,
k=k;

which implies

LEGUﬂAk.

i=1k=j

Recall the monotone convergence theorem in classical analysis.

Proposition 1.1.1. Let {Ar} be a sequence of subsets of E. Then
(1) B\( Tim 4y) = lim (B\Ay),
k—o0 k—o0

(2) B\( lim Ay) = Tim (E\Ay).

lim
k—o00 k—o0



Proof. For (1), by De Morgan’s law,
2\(Jim A44) = 2\ (U 4)
=1 k=j

B\ A)

k=j

(E\Ag)

|
(@

<
Il
—

I
3
DX

<
Il

—_

i
<

= lim (E\Ag).

k—o0

Theorem 1.1.2. Let {Ax} be a sequence of sets. Then

(1) k@ A =A{z|Vj € N,3k > j,s.t.x € Ay}, i.e., there exists a subsequence { Ay, } such that
x € Ayg,.

(2) lim Ax = {z|3jo € N, s.t.Vk > jo,x € Ay}, i.e., from some index jo onward, x belongs

k—o00
to all A;.
Proof. This descriptive formulation follows directly from the definition of limsup/liminf. O

Example 1.1.3 (Structure of Non-convergence Points). Let {f,(x)} and f(x) be real-valued
functions on R'. Denote by D the set of points where {f,(x)} does not converge to f(x). Then

p=U (N U fellfat@ - @) > 1})-
k=1 N=1n=N

Remark 1.1.2. We will use this in the proof of Egorov’s theorem; see Theorem 3.3.2.

At the end of this section, we define Cartesian products. Let XY be nonempty sets. The
Cartesian product is
X xY ={(z,y)|lzr e X,yeY}.

The definition of infinite products is more subtle and is formulated via maps. Let { X, }aer

be a family of sets. Define

H X, = {x‘x I — U Xa, s.t,z(a) € X,,Va € I}.
acl acl

Conversely, a map can be viewed as an element of a product space:
{flf : X >Yvy=y¥

As a simple example, when X = {1,2,--- ,n}, elements of {X — Y} correspond one-to-one to

elements of Y XY x --- x Y.

Exercises 1.1
[Unless otherwise noted, page and problem numbers in exercises refer to the corresponding

page/problem in Zhou Minggiang’s Real Analysis, 2nd edition.]
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1. Prove Theorem 1.1.2.
2. Characterize convergence of a function sequence {f,(x)} to f(z).
3. P11 1,2,3

4. P63 1,2

1.2 Mappings and Cardinality

1.2.1 Mappings

Sets are a central object of study in mathematics. For a given set, one may introduce a topology
to obtain a topological space, or an algebraic structure (usually natural) to obtain a group, ring,
or field, or study both structures simultaneously. These are studies of individual sets in relative
isolation. A more effective approach is to classify a family of sets by grouping together sets with
the same properties (equivalent sets). A key way to realize this classification is to build relations

between sets, and one major tool is mappings between sets.

Definition 1.2.1 (Mapping). Let X,Y be sets. If there is a rule f such that for each v € X
there exists a unique y € Y corresponding to x, then this relation is called a mapping, also called

a function or transformation.
Let f: X — Y be a mapping, with A € X, B C Y. Define
f(A) ={f(z)|x € A}
as the image of A under f, and
fH(B) = {z|f(x) € B}
as the preimage of B under f. Question: is f~!(B) unique?

Definition 1.2.2. Let f: X — Y be a mapping. If for all x1,x9 € X with x1 # x2, one has

fla1) # f(z2),

then f is called injective (one-to-one). If f(X) =Y, then f is called surjective (onto). If f is

both injective and surjective, then f is called bijective.

Let f: X — Y be bijective. Define g: Y — X by

9(y) =z,
where y = f(x). Then g is called the inverse mapping of f, denoted by f~!. Clearly, f~!(f(z)) =
zand f(f(y)) =y

Proposition 1.2.1. Let f : X — Y be a mapping. Let {A;}ier and {B;}jes be families of
subsets of X and Y, respectively. Then
(1) f(U 4i) = U f(A);
i€l i€l



2) f(N A) S N f(A):
el el
) U A = U S (A);
el el
) 7NN A) = N FH(A);
el el
5) If B1,By CY and By N By = &, then
FH BN fH(B2) = 2,

and further
FUBHN (B = 2.

Proof. For (5), use X = f~Y(By U BY) = f~Y(By) U f~1(BY). O

Remark 1.2.1. This shows that a bijection f does not necessarily preserve set operations, while

its inverse f~1 preserves almost all of them. This is one reason for the following definitions:
1. A continuous function is defined as a map whose inverse image of every open set is open.
2. A measurable function is defined as a map whose inverse image of every Borel set is Borel.

Definition 1.2.3 (Composite Mapping). Let f : X — Y and g : Y — Z be mappings. Define
h: X —Z by
h(z) = g(f(z)),Vz € X,

called the composition of f and g, denoted by go f.

1.2.2 Characteristic Functions and Power Sets

Definition 1.2.4 (Power Set). Let X be a set. The set
P(X)={A|A C X}
is called the power set of X.

Definition 1.2.5 (Characteristic Function). Let X be a set. For any subset A C X, define

1, x€A
xa(z) =
0, =¢A.

This map is called the characteristic function of A.

Let X be a set and define
[:P(X) = x(X)

A xa,

where x(X) denotes the set of all characteristic functions on X. Then f is bijective.
Some basic properties of characteristic functions are listed below; their proofs are straight-

forward.

10



Proposition 1.2.2. Let A, B be sets. Then

1) If AN B =@, then xauB = XA + XB;

2) XAUB = XA\B T XB\A T XAnB = XA + XB — XAnB;
3) XAnB = XA X XB;

4) xa\B = XA — XanB = xa(l = xB);

Xa—xB, € A\B;

XB — X4, *€ B\A.

(
(
(
(

(5) xanB = |xa — xB| = {

These identities connect operations on sets with operations on functions. Furthermore, if

one introduces an order structure on the function space and considers lattice operations

XAV XB = XAUB; XA\ XB = XANB;

one obtains an isomorphism between the two structures in the lattice sense.
Think: Prove

lim Sup XA, = Xlimsup An > lim inf XA, = Xliminf A,, -
n—00

n—oo n— o0 n— oo

In fact, since the definitions of lim sup and lim inf only involve order structure and y gives

an isomorphism of the two order relations, the conclusion should hold.

Proposition 1.2.3 (Fixed Point Problem for Monotone Set Maps). Let X be nonempty and
f:P(X) = P(X) satisfy
ACB= f(A) C f(B).

Then there exists T € P(X) such that f(T)=T.

Proof. Let
S={AlA e P(z),AC f(A)}.

Since @ C f(@), S # @. Define

T=J A,

AeS

then T' € P(X). Now prove f(T) = T. First, for any A € S, A C T, so f(A) C f(T). Since
AC f(A), we get A C f(T). By arbitrariness of A, T C f(T'). On the other hand,

T C f(T) = f(T) C f3(T),
so f(T) € S. By maximality of T, we have f(T') C T. O

Example 1.2.1. Let f: X — X be a mapping. Define F': P(X) — P(X) by

Call F' the map induced by f. Clearly F' is monotone and has the trivial fixed point @. Question:

does F' have nontrivial fixed points?

11



1.2.3 Cardinality

One major question in set theory is how to describe and compare the number of elements in two
sets; this is essentially a classification problem. For a finite set A with n elements, we say A has

cardinality n, written A = n or CardA = n. What about infinite sets?

The algebraic viewpoint classifies by isomorphism.

The topological viewpoint classifies by homotopy/homeomorphism.

The differential-geometric viewpoint classifies by diffeomorphism.

The set-theoretic viewpoint classifies by equipotence.

Definition 1.2.6 (Equipotence). Let A, B be sets. If there exists a bijection from A to B, then
A and B are called equipotent, denoted A ~ B.

Ignoring the Russell paradox issue, equipotence is an equivalence relation between sets.! If

A ~ B, then A and B have the same cardinal number, written

|
I
|

Thus cardinality is a concept on equivalence classes of sets.

Intuitively, if A is equipotent to a subset of B, define

|
|

<

Conversely, if B is equipotent to a subset of A, define

|
\Y
|

Then we ask:

]| |

VoA
il &l
——
4
|
I
el
~

Theorem 1.2.1 (Cantor-Bernstein). If X is equipotent to a subset of Y, and Y is equipotent
to a subset of X, then X ~Y.

Using the following lemmas, we obtain a proof of Theorem 1.2.1.
Lemma 1.2.1. Let X7 C X, Y1 C Y5 be sets, and ¢ : X — Y a bijection, with
X; LY, i=1,2.

Then
(X2\X1) £ (Ya\Y1).

Proof. Omitted. O

! An equivalence relation can be viewed as the diagonal subset in the product space of two sets.

12



Lemma 1.2.2. Let {A;}icr and {B;}icr be two families indexed by the same set 1. Assume

members of {A;} are pairwise disjoint and members of {B;} are pairwise disjoint, and

Then
U4~ B
iel iel
Proof. Omitted. 0

Remark 1.2.2. If the two families use different index sets that are themselves equipotent, the

lemma still holds.

Proof. (Proof of Theorem 1.2.1). By hypothesis, there exist Y7 C Y and an injection/surjection
f: X — Y3; similarly there exist X3 C X and g : Y — X bijective onto X;. Write Y1 = f(X),
X1 =9(), Xo=go f(X). Then

x4y % x,,

where X9 = g(Y1) C X1. Let ¢ = go f. Then
XL X, C X
Set X3 = gO(Xl) C Xo. Then
XiCX =X % X5C Xo.

By Lemma 1.2.1,
(Xo\X1) £ (X2\X3).

Further, define X, 12 = ¢(X,,) with X,, C X,,_1 and Xy = X. Then
HX=XoDX1D2X9D---DX, D"
NXLX,2Xx, 8. 8X,,% ...

X = ( Ql(xn_l\xn)) U ( @1 Xn).
X = ( Ej (Xn\Xn+1)) U ( G Xn).

Il
MR

n=1 n
(5) For every n € N,
(X2n\Xont1) £ (Xoni2\Xont3),

id
(Xont1\Xont2) ~ (Xont1\Xoni2)- (1.1)

Now reorder the decompositions in (4) as

X = ( fj Xn) U (Xo\X1) U (X1\X2) U (X2\X3) U (X3\X4)U---,
n=1

X1 = ( fj Xn) U (X2\X3) U (X1\X2) U (X4\X5) U (X3\Xg)U---,
n=1

13



then by (5) and Lemma 1.2.2
X~X~Y.

In (1.1), id denotes the identity map. O
There is another proof of Theorem 1.2.1. We list it below, first requiring one lemma.

Lemma 1.2.3 (Decomposition Theorem Under Set Mappings). Let X, Y be sets. If f : X =Y
and g 1Y — X, then there are decompositions

X=AUA,ANA =02,

Y=BUB;,ANB; =g,

such that

Proof. Without loss of generality assume

Call a subset E2 C X separated if
Eng(Y\f(E)) = 2.

Let I' be the family of all separated sets. Since @ € I', ' is nonempty. We claim I' is closed

under arbitrary unions. Indeed, if A is a union of members of I', then

EeT, (Y\f(A)) c (V\f(E))

= VEelEng(Y\f(A) =92
= Ang(Y\f(4) =2
= A is separated.

With this property, define?

A= |JE.

FEel’
Then:

(1) By definition, A is maximal among separated sets under inclusion.
(2) Set B = f(A), By =Y\B, A1 = g(B1). We prove

ANA =@,andA; = X\A
First,
ANg(Y\f(A)=o=ANA =02.

Next prove A1 = X'\ A by contradiction. Suppose Jxg € X\ A and zo ¢ A;. Let A* = AU{zo}.

Then
A* =AU {330}

f(A4) € F(A%)

Y\f(4%) C Y\[(A)

(9 \F(4%) € g(Y\F(A))) + (AN g(Y\F(4)) = 2)
ANg(Y\f(4") = 2.

2This avoids explicitly invoking the well-ordering principle.

oy

4
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Since zo ¢ A1, we have 29 ¢ g(Y\f(A4*)) C g(Y\f(A)). Hence A* €T, but A G A*, contradict-

ing maximality. O

Using this lemma, Theorem 1.2.1 can be proved (left as an exercise).

Let us also see a corollary.
Corollary 1.2.1. Let C C AC B and B~ C. Then A ~ B.

Proof. Take f: B—+C G Aandg: A— AG B. O

Theorem 1.2.1 not only solves

s
VoA
il

}iA:B?
but also provides a convenient tool for proving equipotence. In the next part, we focus on the
following cardinalities:

1. finite sets;

2. countable sets;

3. [0,1];

4. P(X)=2% > X.

Definition 1.2.7 (Finite Set). Let A be nonempty. Write M, = {1,2,--- ,n}. If A ~ M, for
some n, then A is called finite and n is its cardinality. If A = M, for every natural number n,
then A is called infinite.

Definition 1.2.8 (Countable Set). A set equipotent to N is called countable. The cardinality of
a countable set is denoted by Ng.

The next two examples are standard countability examples.
Example 1.2.2. Any family of pairwise disjoint open intervals in R' is at most countable.
Proof. 1t suffices to build a one-to-one correspondence with a subset of Q. O
Remark 1.2.3. This property will be used in describing the structure of open sets in RL.
Example 1.2.3. The set of discontinuities of a monotone function f is at most countable.
Proof. Omitted. O
Theorem 1.2.2. FEvery infinite set A contains a countable subset.

Example 1.2.4 (Characterization of Function Discontinuity Points). Let f be real-valued. De-

fine the left jump at x by
w*(f’x) = Sl<1p |f(y - 0) - f('r)‘v
y<z
and similarly the right jump by
w(f,2) = sup [f(y +0) — f(=)].
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Then
f is discontinuous at x < w(f,x) = w_(f,x) +wi(f,z) > 0.

Now let

O = {z e R'w(f,z) > —},

T =

then the set of all discontinuity points of f on Rl is
o0
Q) = | J .
k=1

Theorem 1.2.3. For any set A,

P(A) =24 >

|

Proof. First define ¢ : A — P(A) by
x — {x},

so clearly P(A) > A. We prove strict inequality by contradiction. Assume P(A) = A. Then
there is a bijection ¢ : A — P(A). Let

B={xeAlz ¢ )}

Then B # @. Since v is onto, there exists z* € A with

b(a) = B.
Thus
€ B ' ¢ B,
a contradiction. Hence P(A) # A, and therefore P(A) > A. O

Now let us look at two examples on cardinality.
Example 1.2.5. The cardinality of the set F of all real-valued functions on R is 2%,

Proof. For any A C R!, define
p(A) = xa().

Then ¢ is a bijection between P(A) and all characteristic functions, so F > 2% On the other
hand, for each f € F define

g9(f) = Graph(f) = {(z, f(2)) |z € R'} € P(R?).

Hence F < P(R2) = 2%, Therefore F=2% O]
Remark 1.2.4. If one regards maps as elements of infinite product spaces, then F ~ RR. Hence
CardF = 2%,

Example 1.2.6. The cardinality of C(R'), the set of all continuous functions on R, is X.
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Proof. Write Q = {r1,79,--- ,7p,--- }. For each f € C(R!) define

f = (f(Tl)af(TQ)v”' 7f(7'n)7” ) € {{anxn € Rl}‘

By continuity, this map is injective. Conversely, if f # g, then Jz¢ € R! such that f(zg) # g(xo).
By density of Q, there is r, — x¢ with

7L11*>H010 f(rkn) # nlL)n(%O g(rkn )’

SO
kg, st f(kny) 7 g(kng)-

Hence the map is also onto and therefore bijective. Thus C(R!) < X. Since constant functions
form a subset of C(R!), clearly C(R!) > R. Therefore C(R!) = X. O

Exercises 1.2

1. Let f(x) be continuous on [a,b]. Then for any € > 0, there exist finitely many pairwise
disjoint intervals {[a;,b;)}_; and & € R, i =1,2,--- ,n, such that

‘f(x) - ZfiX[ai,bi)(m)‘ <¢e,Vx € [a,b].
1=1

2. Prove that the definition of cardinality for finite sets is well-defined.
3. If A is infinite, then A is equipotent to a proper subset of itself.

4. Give a bijection between (0,1) and [0, 1], and prove that no continuous bijection exists

between them.

5. Find the cardinality of C(R%).

6. Find the cardinality of monotone functions on R'.%
7. Find the cardinality of all maps from [0, 1] to N.

8. P18 1,2,3

9. P24 5,6,7,9,10
10. P28 13,14,15,16,17
11. P64 5,7,9,10

12. P69 27

3This uses that the set of all rational sequences has cardinality X; readers may prove this independently.
4This can also be used as a definition of infinite sets.
2011 midterm.
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1.3 Point Sets in R”

1.3.1 Metrics in R"

The n-dimensional Euclidean space R™ naturally carries the Euclidean distance. For any

T = ('rlaan"' ,.’En) 6Rn7y: (ylayQa"' 7?/n) eRna

define

n

d(a,y) = o = yln = (3o —wil?) .

=1

[N

It is easy to prove that d(z,y) satisfies:
(1) [Positive definiteness| d(x,y) > 0, with equality iff x = y;
(2) [Symmetry] d(z,y) = d(y,z);
(3) [Triangle inequality] d(z,y) < d(z, 2) + d(z,y).

Definition 1.3.1. Let {2*}%2, C R", 2 € R". We say = is the limit of {z*} as k — oo if

lim d(z*,z) = 0.

k—o0

Theorem 1.3.1. Let {z*}32, C R", z € R". Then

xk—>x<:>:vf—>$i,i:1,2,---.

Proof. Omitted. O
Definition 1.3.2. Let A C R™. If there exists M > 0 such that for all x € A,

o] < d(,0) < M,
then A is called bounded.

Theorem 1.3.2 (Bolzano-Weierstrass). If {x*} C R™ is bounded, then it has a convergent

subsequence in R™.

Theorem 1.3.1 and Theorem 1.3.2 are standard results from analysis, so we omit proofs.

1.3.2 Neighborhoods, Interior Points, Open Sets, Closed Sets

Let zg € R™. Define
Bs(zo) = {x € R"|d(z,x0) <}

as the d-neighborhood of xg, also denoted by Njs(xg) or B(zo,d).

Definition 1.3.3 (Open Set). Let A C R", xy € A. We call zy an interior point of A if there
exists § > 0 such that
N(;(x()) C A.

The set of all interior points is called the interior of A, denoted by ;1 A is called open in R™ if
A=A

Remark 1.3.1. The definition of openness depends on the chosen ambient space.
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Theorem 1.3.3. Open sets in R™ satisfy:
(1) @ and R™ are open;

(2) if {Gi}tier is a family of open sets, then \J G; is open;
el
(3) finite intersections of open sets are open.

n

Proof. For (3), let G;, i = 1,2,--- ,n, be open in R". Take xy € () G;. For each 1 < i < n,
i=1

since xg € G;, there exists §; > 0 such that Bs,(z¢) C G;. Let § = min{dy, d,--- ,d,}, then

Bé(x0> C G’MZ: 1727"' ) 1Yy

SO

n
Hence zq is an interior point of [ G;. ]
i=1

Definition 1.3.4 (Path Connectedness). Let A C R"™, x,y € A. We say z,y are path connected
in A if there exists a continuous map ¢ : [0,1] — A such that

p(0) =z, 0(1) = y.

A is called path connected if every pair x,y € A is path connected. A subset B C A is called a
connected component of A if

(1) B is path connected;

(2) B is maximal: for every path-connected By C A, one has By C B.

Theorem 1.3.4 (Structure Theorem of Open Sets in R™). Let G be open in R"™. Then G can
be written as the union of at most countably many path-connected components, each of which is
open:
G = U G,
i€l
where I is at most countable. Each component is called a component interval of G.

Proof. See [3], Theorem 4.2. O

Remark 1.3.2. For any x,y € G, define x ~ y if x and y are path connected. This is an

equivalence relation. For each v € G, let
Gy ={y € Gly ~ =},

then Gy is a path-connected component of G, and is open.

1.3.3 Limit Points and Closure

Definition 1.3.5 (Limit Point). Let A C R", 9 € R™. We call z¢ a limit point (accumulation
point) of A if for every §-neighborhood Ns(x¢),

(Ns(w0)\{zo}) N A # .

The set of all limit points is called the derived set, denoted by A'.
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x¢ is called an isolated point of A if there exists > 0 such that

(Ns(@o)\{wo}) N4 =2.

xo is called a boundary point of A if for every d-neighborhood Ng(z),

(Né(xo)\{l‘o}) NA#ga,

and
(Ns(wo)\{z0}) N A° # 2.
The set of all boundary points is called the boundary of A, denoted by BdA or JA.

Definition 1.3.6 (Closed Set). A C R"™ is called closed if A’ C A. Its closure is A = A’ U A.
Remark 1.3.3. The definition of closedness depends on the ambient space.
We have the following elementary fact.
Theorem 1.3.5. A C R" is closed in R™ iff A€ is open in R™.
Proof. Omitted. O
From the definitions of closed set and derived set, one easily obtains:

Example 1.3.1. For E{, E5 C R",
(El U EQ)/ = Ei U Eé

Hence
FEiUE, = E U FQ

Corollary 1.3.1. For A C R", the closure A is closed in R".
Proof. This follows by contradiction. O
The next theorem corresponds exactly to Theorem 1.3.3.

Theorem 1.3.6. Closed sets in R™ satisfy:
(1) @ and R™ are closed;
(2) if {Gi}ier is a family of closed sets, then (| G is closed;
el
(3) finite unions of closed sets are closed.

Proof. Consider complements, and apply De Morgan’s law with Theorem 1.3.3. O

We now prove the famous Heine—Borel theorem (finite open cover principle). We first define

refinement covers.

Definition 1.3.7 (Refinement Cover). Let A C R"™ and let {G;}icr be an open cover of A. We
call {U;}jes a refinement of {Gitier if {U;}jer is also an open cover of A, and for each j € J
there exists i; € I such that

Uj C G;

15
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Density is another frequent concept.

Definition 1.3.8 (Dense). Let A be nonempty. A set E is dense in A if A C E. If additionally
E C A, then E is called a dense subset of A.

With density, we define separability.
Definition 1.3.9 (Separable). A set A is called separable if it has a countable dense subset.
Second countability is also important.

Definition 1.3.10 (Second Countable). A topological space (2, 7) is called second countable if

T has a countable base.
Remark 1.3.4. 1. The proof of the next lemma uses that R"™ is second countable.

2. For R™, separability, second countability, and the Lindel6ff property below are equivalent.

In general topological spaces, they need not be equivalent.

Lemma 1.3.1 (Lindeloff Property). Let A C R™ and {G,}icr be any open cover of A. Then

{Gi}ier has a countable subcover of A.

Proof. For each x € A, since A C |J Gj, there exists iy € I such that x € G;,. Since G;, is
i€l
open, there exists §, > 0 with

N(gm (ZL‘) C Gzz .

Because Q™ is dense in R", there exists y, € Q" with d(yz,z) < d,/4. Choose e, € Q with
0z/4 < e5 < 05/2, then € Nj, (yz) C Gi,. Let X = {Ns, (y.)|x € A}. Then X is at most

countable and is a refinement of {G;}. Hence

AC U N(;xj (a:j) C U Gij,
=1 i=1

a countable cover of A. O
This lemma itself is also very useful.

Theorem 1.3.7 (Heine—Borel). A C R" is bounded and closed iff every open cover of A has a

finite subcover.

Proof. Necessity. Let {G;}icr be an open cover of A. By Lemma 1.3.1, assume it is at most

countable. Suppose no finite subcover exists. Then for each k& we can pick

Try1 € A\( LkJ G,)
=1

By Theorem 1.3.2, there is a subsequence (still denoted z) with z; — z¢9 € A. Then z¢ € Gy,
for some kg. Since Gy, is open, there exists § > 0 such that Ns(zog) C Gi,. From zj — xq, for
sufficiently large k we have d(zy,zo) < 6, i.e.

xg € Ns(xg) C Gy,

5The proof does not need explicit topological language; readers unfamiliar with point-set topology may ignore

this remark.
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contradicting the construction of xy.
Sufficiency. First, boundedness is easy. Next prove closedness by contradiction. Assume A
is not closed. Then Jxy € A’ with zg ¢ A. Let

1
Gn = {y € R"|d(y, z0) > E}’

then

A= Ghn,

P

but this cover has no finite subcover, contradiction. ]

Remark 1.3.5. 1. If every open cover of A C R™ has a finite subcover, then A is called compact
in R™.T 2. The necessity part fails in infinite-dimensional spaces. In fact, whether necessity

holds can serve as a criterion for finite dimensionality. The sufficiency part always holds.
For compactness, we give a sample problem.

Example 1.3.2. Let E C R" be compact and x € E°. Then x and E can be separated by open
sets, i.e., there exist disjoint open sets U,V such that x € U and E C V.

Proof. Sketch: first note any two distinct points in R™ can be separated by open sets; this yields
an open cover of F/. Then extract a finite subcover by compactness, and finally use closure of

open sets under finite intersections. ]

1.3.4 Extension Theorem for Continuous Functions on Closed Sets

In this section we discuss some properties of continuous functions and present an important

extension theorem.

Definition 1.3.11 (Continuous Function). Let E CR", f: E = R, xg € E. If for everye >0
there exists 6 > 0 such that whenever x € E N B(xo,0),

|f(z) — f(zo)] <e¢,

then f is continuous at xo. If f is continuous at every point of E, then f is continuous on F.
The set of continuous functions on E is denoted by C(E,R) or C(E).

Continuity has the following equivalent formulation.

Theorem 1.3.8. f is continuous at x iff for every neighborhood V,, of y = f(x), there exists a
neighborhood U, of x such that f(Uy) C V.

Continuous functions on bounded closed sets satisfy:

Proposition 1.3.1. Let F' C R"™ be bounded closed and f € C(F,R). Then
(1) f is bounded on F;
(2) f attains its supremum and infimum on F';
(3) f is uniformly continuous on F';

(4) if F is path connected, then f has the intermediate value property.

"More generally, for a topological space (€, 7), a subset A C Q is compact if every open cover has a finite

subcover.
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Proof. Omitted. O

Our goal is to find a method to extend a continuous function on a closed set F' to a continuous

function on R"™. First define continuous extension.

Definition 1.3.12 (Continuous Extension). Let f € C(E,R). A function g € C(R",R) is called

a continuous extension of f to R™ if

ge=f.

In general, continuous extension is difficult. To construct extensions on closed sets, we

introduce distance to a set.

Definition 1.3.13. Let x ¢ R", E C R", E # @. Define

dist(x, ) = inf d(z,

ist(, £) = inf d(,y)
as the distance from x to E. If E1, Eo C R"™ are nonempty, define
diSt(El,EQ) = inf diSt(l‘,Eg)
el
as the distance between sets Ey and Es.
The next theorem says distance functions are continuous.
Theorem 1.3.9. Let E be a nonempty subset of R™. Then
f(z) = dist(z, E)

s uniformly continuous on R™.

Proof. For every z € E,
d(z, z) < d(z,y) + d(y, 2).

Taking infimum over z on both sides gives

. - .
inf d(z,2) < d(z,y) + inf d(y, 2),

ie.
dist(z, F) < d(z,y) + dist(y, E).

Similarly,
dist(y, F) < d(y, x) + dist(x, F).

Since d(z,y) = d(y,z),
|dist(z, E) — dist(y, E)| < d(z,y) = |z — y|.
Done. O

Corollary 1.3.2. Let F' be a nonempty closed subset of R™, xg € R™. Then there exists yy € F
such that
diSt(l‘o, F) = d(a}(), y()).
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Proof. Apply (2) of Proposition 1.3.1. O
Now we state and prove the extension theorem for continuous functions on closed sets.

Theorem 1.3.10 (Tietze Extension Theorem). Let ' C R™ be closed, f € C(F), and |f(z)| <
M for all x € F. Then there exists g € C(R"™) such that

(1) glr = f;
(2) g(z)| < M for all x € R™.
Proof. Let
A={oeFI5 < fz) < M),

B={reF|-M<f(x) <>}

\iW\i

C={reFl-% <fl) <3}

Then A, B are closed and AN B = @.% Hence we can build a continuous function on R” equal
tolon Aand —1 on B, e.g.

—dist(z, A) + dist(z, B)

p(x) = dist(z, A) + dist(z, B)

For all x € R", |¢(x)| < 1. Let
g1(z) =
then |gi(x)| < M/3 for all z € R". Also
F(2) — g1(2)] < §M,vxeF:AuBuc.

Let f1(z) = f(x) — g1(z). Applying the same argument to fi, there exists a continuous function

g2 on R™ (constructed via distance functions) such that

(@)~ ga(@)] = |F (@ zgz | < CyMyzer

Continuing inductively, there exist

with -
gn(@)| < 3(5)" M, Ve € R,

1£(z) — Ga(2)] < (%)“M, Ve F

8If both A, B are empty, replace M by M/3 and iterate. If the bound can be reduced arbitrarily, then f = 0.
Otherwise after finitely many steps at least one of A, B is nonempty. If one is empty, replace it with any disjoint

closed set.
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Now prove {G,,} converges uniformly on R":

(Grip(@) = Gu(@)| =] 3 g@)| < X i)
i=n-+1 i=n-+1
> 1.2 i—1
< — (=
iz;lg(?))
1,2, O 2k
< g(g) M}% (g)

Hence {G,} converges uniformly on R". So

n—oo

G(z) = lim G,(x) = Z gn(T)
n=1
is continuous on R", and
G@)| = | gula)| < M.
n=1
For x € F, we have f(z) = G(x). O

Remark 1.3.6. In the extension theorem above, we essentially used a special case of Urysohn’s
lemma in R™. Urysohn’s lemma is one of the deeper theorems in topology, not easy to prove in
full generality. But in R™ (more generally, metric spaces), the distance function makes the proof

straightforward.

Theorem 1.3.11 (Urysohn Lemma). Two closed sets in a normal space can be separated by a

continuous function.

Theorem 1.3.12 (Urysohn Lemma in R™). Let E, F C R" be disjoint closed sets. Then there
exists f € C(R™) such that 0 < f < 1, with E C f~({1}) and F C f~1({0}).

Proof. Construct directly:

Another frequently used form is:

Theorem 1.3.13 (Urysohn’). Let K be compact and V' open with K C V. C R"™. Then there
exists a continuous function f with compact support’ such that 0 < f < 1, Supp(f) € V, and
flic = 1. Equivalently, xx < f < xv-

Think: (Partition of unity) Let K C R™ be compact and {V;}¥_, an open cover of K. Then
there exists a family of continuous compactly supported functions {h;}¥_, such that 0 < h; < 1,

Supp(h;) C V;, and
k

th(:c) =1,z e K.
i=1

Finally, we briefly introduce semicontinuity.

9The support of f is
E = {z|f(z) # 0},
denoted by Supp(f). By definition the support is closed; if also bounded, it is compact support.
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Definition 1.3.14 (Semicontinuity). A function f is upper semicontinuous if for all € > 0,
there exists 0 > 0 such that for all y € B(x,§),

fly) < f(z) +e

A function f is lower semicontinuous if for all ¢ > 0, there exists & > 0 such that for all
y € B(z,9),
flx) —e < f(y).

Remark 1.3.7. f is upper semicontinuous iff {z|f(x) < A} is open for every A € RL. f is

lower semicontinuous iff {x|f(z) > \} is open for every A\ € RL.

Proposition 1.3.2. Semicontinuous functions satisfy:
(1) If {fx}ren is a family of lower semicontinuous functions and

(sup fx)(u) = sup { fa(u)},

AEA AEA

then sup fy is lower semicontinuous;
A€A
(2) finite sums of lower semicontinuous functions are lower semicontinuous;

(3) lower semicontinuous functions attain their minimum on compact sets;

(4) if F,G are open and closed subsets of R, then xp is upper semicontinuous and x¢q 1is
lower semicontinuous;

(5) if f1 is upper semicontinuous, fo is lower semicontinuous, and f1 < fa, then there exists
a continuous f such that fi < f < fo.

Proof. We only prove (3). Let K be compact and f lower semicontinuous. By definition, for
fixed € > 0 and each = € K, there exists §, > 0 such that for all y € B(z,d,),

fly) < fz) +e.

Therefore {B(z,d;)} is an open cover of K. By Theorem 1.3.7, there is a finite subcover

zeK

{B(zi,0g,)},i=1,2,--+ ,n.
Hence f is bounded below and thus has an infimum. Let

A= i S

By definition of infimum, there exists {x,} with f(z,) — X. Since K C R! is bounded and

closed, by Bolzano-Weierstrass there is a subsequence 3, — xo. Then

N= inf flog) = liminf f(z,) > fz0) > A

1—00

Hence f(z9) = A. O

Exercises 1.3
1. Let X = {G C R"|G open}. Find X.
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2. P36 1,2,3,4,5,7
3. P40 2,5

4. P62 1,2,34956
5. P67 40,41

6. P69 28

1.3.5 Cantor Set

We now recursively define the middle-third Cantor set.

At step 1, set Iy = (0,1), remove the middle closed interval of length 1/3, namely ! =
[%, %], and obtain I; = Ip\I"!, which has two path-connected components I ; = (a1,1,b1,1) and
1172 = (al,g, b172). Write It = 111,

At step 2, for each Iy j, j € {1,2}, remove the middle closed third,
2.5 1 2
I = layy + 5 (b —ary), a + 5 (b — a1y)),

and write % = U I%J. The remaining set is Is = I;\I?, with four path-connected components
j=1

I ; = (a2,4,b25), j € {1,2,3,4}.

Continue inductively. Suppose step n has been completed, yielding I,, with 2" path-connected
components I, j = (anj, bnj), j € {1,2,---,2"}. At step n+ 1, for each I, ; remove the middle
closed third,

| 1 2
[0 = [an + 5 (bnj = @nyg), ang + 3 (bng = any)],

on ‘

set I"t1 = | 1", and let I,,;1 = I,\I"*'. Then I,,,; has 2"*! path-connected components
j=1

In+1,j = (anJrl,ja bn+1,j)7 ] € {17 27 o 52n+1}'

Thus I, and I* are defined recursively, and the Cantor middle-third set is

c_(ﬂlk)u{o 1} = [0, 1]\ (UI’“)
The Cantor set C has the following properties.

Proposition 1.3.3. Let C be the Cantor middle-third set. Then
(1) C is closed;

BN SEa.y
E:l k=1 3

(3)C—n;

(4) é: 9,

B)ccc(=c=C)

The general notion is the Cantor set, namely a nowhere dense perfect set. We first define

perfect sets.

10This problem seems misstated; F should likely be replaced by a bounded closed subset of G.
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Definition 1.3.15 (Perfect Set). A set E is called perfect if
E=F.
To aid understanding, we give a characterization in one dimension.

Proposition 1.3.4. E C R! is perfect iff E¢ is open and

N
E° = (ambn)a
1

where N may be oo, and for n # m, (am,bn) and (ay,b,) share no endpoints.

Proof. On one hand, since F is perfect, i.e. E = E’, we have E = FEUE' = E, so E is closed
and E¢ is open. By Theorem 1.3.4, E¢ is a countable union of disjoint connected open sets, and
in R! connected open sets are open intervals. Also, perfectness implies no isolated points in E,
equivalently component intervals of E¢ cannot share endpoints.
On the other hand,
E° open = E closed = E' C E,

E has no isolated points = E C F’,
thus the claim holds. O

Next define nowhere dense sets.

Definition 1.3.16 (Nowhere Dense Set). Let A, B C R". If A D B, then A is dense in B. If

A= @, equivalently for any xo € R™ and any € > 0, there exist x € B.(xq) and § > 0 such that
Bs(x) C Be(zg) and
Bs(x)NA =2,

then A is called nowhere dense (also sparse).

Further, a countable union of nowhere dense sets is called a first category set; sets that are

not first category are second category. These notions depend on the ambient space.
Example 1.3.3. The z-axis is of second category in RY, but of first category in R?.

Now we characterize one-dimensional nowhere dense perfect sets.

Let £ € R™ be a bounded nowhere dense perfect set, and define
m = inf{z|x € E}, M = sup{z|x € E}.

Since F is closed, m € E and M € E. By Proposition 1.3.4,
oo
E° = (—o0,m) U (M, o) U (an, by,
n=1

and for n # m, intervals (an,, by,) and (an, by,) share no endpoints. Assume b, < a,,. Since E is
nowhere dense, there are points of E° in b,, a,,. Hence there exists an open interval (¢, d) C E€,
which is another component interval lying between (an,, by,) and (an, by).

This shows that between any two component intervals of F¢, there is another one, and the
three have no common endpoints.

The following proposition reveals the structure of complements of one-dimensional nowhere

dense perfect sets and also gives the famous Cantor function.
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Proposition 1.3.5. Let E be as above. Then there exists ¢ : [m, M| — [m, M| with:

(1) ¢ is monotone, continuous, and surjective;

(2) ‘P‘(an,bn) = const.
Moreover, one can reorder the component intervals of E€ so that their order resembles that

of the complement of the Cantor set.

Proof. Step 1. Reorder component intervals of E¢ analogously to the Cantor complement order.

By Proposition 1.3.4,
o
E° = (—o0,m) U (M, o) U (an, bnl,
n=1

set (c1,1,d1,1) = (a1,b1). Choose the first interval in original order between (—oo, m) and (ay, b1),
denote it by (62’1, dg’l), i.e.

ng = inf{n|a, > m,b, < a1},

and set (c2,1,d21) = (@ny;,bn,,). Similarly choose the first interval between (ai,b;) and
(M, +00), denoted (6272,d272), i.e.

ng 2 = inf{nla, > by, b, < M},
and set (c2,2,d2,2) = (@ny o bn,,). Suppose after step k& we have chosen
O1 = (c1,1,d1,1),
Oz = (c2,1,d2,1) U (c2,2,d2,2),

2k—1

Or = | (yj»di;)-

j=1
Now reorder component intervals in Ule O; by position; between each adjacent pair choose one

component interval of E¢ with minimal original index. This gives 2¥ intervals

(Ck+1,j>dk+1,j)7j = 1727' o 72k7

and define
2k
Ok:—l—l — U (Ck-‘rl,jv dk-‘rl,j)v k= 0) 17 25 Ut
j=1
We claim E¢ = (—o0, m)U(M, 4+00) 2, O0;. Clearly U¥_, O; € E¢. Conversely, every (an, by) is
eventually chosen: if (a1,b1),- -, (an, by) are chosen by step k but (apn41,bn+1) is not, then it lies

between two component intervals of Ule O;, so it must be chosen at step k+ 1 by construction.
Step 2. Construct ¢ : [m, M] — [m, M]. Let Oy = {m, M} and define on O:

() m T m
x:
0 M =M

)

so jump size between adjacent components is M2_0m. On O U Oq, define

(701(:1;) = { #7 S <Clvl7d111)
po(x) =€ O

)
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™ On Og U O U Oy, define

then jump size is Mm

21
m+¢1‘ c1.1.d
DA endiy) - o (co1,do1)
_ M+ m-+M
pa() = — x € (c2,d22) >
v1(x) r e O
then jump size is Mz_gm. Continuing this process, define @11 from ¢p. On each (cx415, dkt1,5),

set the value to the average of neighboring component values. Then the jump size between

adjacent components is
M—-m
2k

Proceeding inductively yields a monotone increasing function ¥ on {m, M} U ( 21 OZ-),

M—m

5= between adjacent components of Ule 0;.

constant on each (cy j, d j), and with jump size

Now define ¢|o, = 9|0, and

pla) = sup {B(wly < 2.y € fm, 21} 0 ((J 0) .

i=1
SO ¢ is monotone increasing.
Step 3. Prove continuity of ¢. For any ¢ > 0 and fixed x € [m, M], choose k large so
that % < e Ifz € U, Oy, continuity at z is clear. If z € [m, M]\ U, Oy, then x lies
between two neighboring components of J}_; O;, say left (c;j,d; ;) and right (., d..). Let

4,37 7,]
d =max{z —¢;;,d; ; —x}. Fory € (x — 0,2+ 0),

-
27.7

lo(y) — ()| < w(cgﬂ;cléj) _¢<Ci,j ;di,j) < M2—km

Hence ¢ is continuous. O

< E.

Remark 1.3.8. This proposition shows that, up to ordering of component intervals, comple-
ments of one-dimensional nowhere dense perfect sets have the same structure as the complement
of the Cantor set.

1.4 Borel Sets and the Category Theorem

We now introduce Borel sets, which are fundamental in real analysis and probability theory.

First we define the o-ring mentioned in the overview.

Definition 1.4.1 (o-Ring). Let X be nonempty and I' C P(X). We callT' a o-ring on X if
(1) forall A,BeT, A\BeT;
(2) for {Ag}2, CT, k:!l A, eT.

Remark 1.4.1. 1. From the definition,

ANB = (AUB\((A\B) U (B\A)) €T.

(S

Also from Al\( Oﬁ Ak) = U (A1\4g) €T, we get
k=1

k=1
ﬁ A = Al\(Al\( ﬁ Ak)) el.
k=1 k=1
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2. The intersection of any family of o-rings is still a o-ring.

Definition 1.4.2 (Generated o-Ring). Let X be nonempty and ¥ C P(X). Define
U={TI"eP(X)|XcI’,;and T is a o-ring}.

Then
re)y=r

I"eU
1s called the o-ring generated by X.

Remark 1.4.2. In fact, I'(X) is the smallest o-ring containing 3.
Now we introduce an important generated o-ring: the Borel ring.

Definition 1.4.3 (Borel Ring). Let B(R™) be the o-ring generated by all open and closed subsets
of R™. This is called the Borel ring on R™.

Remark 1.4.3. 1. Clearly B(R") C P(R"), so B(R") < 2%. Is B(R") = R? Intuitively yes, but

the proof is nontrivial and requires transfinite induction, which we omit.

2. From the definition, (a,b] = Nr2;(a,b+ 1/n) and Q = |Jo2; r,, are both in B(R™).
We can further classify elements of B(R™); the simplest are G5 and F, sets.

Definition 1.4.4 (Gs, F; Sets). A C R" is called a G set if there exists a sequence of open
sets {G 32, such that

[e.e]
A= ﬂ Gi;
k=1
A CR" is called an F, set if there exists a sequence of closed sets {Fy}72, such that

(o]
A= F.
k=1
Remark 1.4.4. G5 sets are necessarily uncountable, but there exist Gy sets of very small
“length”.
Let us look at examples.
Example 1.4.1. Any closed set F' C R" is a Gs set. Indeed, define
1
G, = {z € R"|dist(z, F) < =},
n
then -
F =) Gh.
n=1
Example 1.4.2. R\Q is not an F, set, and Q is not a Gs set.
To prove Example 1.4.2, we need the famous Baire category theorem.

Example 1.4.3 (Baire Category Theorem). R™ cannot be expressed as a countable union of

nowhere dense sets'!.

HEquivalently, R is of second category. More generally: a nonempty complete metric space cannot be written

as a countable union of nowhere dense sets.
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Proof. Assume R" = |Jo2; A, where each A,, is nowhere dense. Choose zp € R", let By =
B(xg,1). Since A; is nowhere dense, it is not dense in B(xg, 1), so there exist z; € B(zg, 1)\ A1
and d1(< 1/2) with

B(z1,61) N A1 = @, B(x1,01) C By.

Let By = B(x1,01). Since As is nowhere dense, there exist xo € B(x1,d1)\A2 and (< 1/3)
such that
B(:CQ, 52) ﬁAiz =J, B(JJQ, (52) C Bs.

Continue inductively to obtain {z,} C R™ and §,(< 1/n) such that

k
B(xpi1,0611) N J Ai = 2,
i=1

B(l‘k+1,(5k+1) C B(JUk,(sk) c.--C B(xo, 1).

Since these are closed balls and 0 — 0, {z,,} is Cauchy. Let 2* € R™ be its limit. Then

x* e ﬁ B(xg, o). (1.2)
k=1

By assumption R"” = ;2 ; A, so x* € Ay, for some ko. From (1.2),

LS B(‘rkoJrl? 5/€0+1)7

contradicting B(Tky+1, Okg+1) N Agy = . O
Now reconsider Example 1.4.2. Suppose R\Q = J;2; F}, with each F,, closed. Then

QN F, = @ = F, is nowhere dense

LR- (gpn)u(r%r)

= R can be written as a union of countably many nowhere dense closed sets.

This contradicts Theorem 1.4.3.

Exercises 1.4

1. P59 4,5,6,7
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Chapter 2

Lebesgue Measurable Sets

2.1 Measures on Rings

2.1.1 The Ring Rj

Definition 2.1.1. Let R"™ be a family of subsets of R™. If whenever A,B € R"™ we have
AUB,A\B € R", then R"™ is called a ring on R™. In particular, if R™ € R", then R"™ is called

an algebra on R™.
Remark 2.1.1. Note the difference from the o-ring defined in Section 1.4.

Now let us examine a concrete example. The ring in this example and its higher-dimensional

generalization are crucial in what follows.

Example 2.1.1. Let R} be the family of all finite unions of bounded left-open right-closed

intervals in R1:

{Gak’bk|akabk€R k=1,2,. }
k=1

Then R} is a ring on RL.

Proof. Let
m l
A= U(akvbk] B = U(C],d]ERO
k=1 j=1
Then
m 1
:U U(ak’bk C],d]>€7?,0,
k=1j=1
and l
A\B = U (Cak, b\ U (5 1)
j=1
m 1
U ﬂ ( ak, be)\ cj,de.
So it suffices to verify (ag, bg]\(cj, d;] € R} and closure under finite intersections. O

We now give a canonical decomposition for elements in Rj.
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Lemma 2.1.1 (Canonical Decomposition). If A € R}, then A can be written as a finite union

of pairwise disjoint left-open right-closed intervals.

Proof. Write

s

A= (ak, bk]

k=1

Use induction on m. The case m = 1 is clear. Assume true for m =1[. For m =141,

l

A= (ak, be] U (ar41, bis1).
k=1

Sort left endpoints and assume a;11 > a for k=1,... 1.
(1) If aj41 > maxj<g<; by, then by induction

! 7
A= (ar,be] = U (@, bil,
k=1 k=1

SO

@@k, i) U (@41, b1

C>

A=

k=1

is the required form.
(2) If there exists ko with 1 < ko <[ such that by, > aj41 > a,, let

b;go = max{bg,, br+1}-
Then
(akoa bk‘o] U (al—‘rl) bH—l] = (ak’ov ;90]7
and the conclusion follows from induction. O

Next we generalize Example 2.1.1 to higher dimensions. We first need a lemma: the Cartesian

product of rings is still a ring.

Lemma 2.1.2. Let R™ and R™ be rings of subsets of R™ and R™, respectively. Define

R”me:{UAkaHAkER", B, € R™, k:zl,...,r}.
k=1

Then R™ x R™ is a ring on R"™™,

Proof. Let

A= U(AkXBk)a B:U(CjXDj)ERnXRm,
k=1 j=1

with Ak,Cj € R" and By, D; € R™. Then

AUB=J | (4 x BLUC; x D;) € R" x R™.
k=1j=1

Also,
-U U ((4x N Cy) x (ByN D)) € R™ x R™.
k=1j=1
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And
A\B = Uﬂ(Akak C’XDj))

k=1j=1
U m ( Ak\C >< Bk) U (Ak X (Bk\D]))> eR™ x R™.
k=1j=1
So the family is closed under union and difference, hence it is a ring. O

Now define the higher-dimensional analog.

Definition 2.1.2 (The Ring R{}). Let Ry be the family of all finite unions of bounded left-open

right-closed boxes in R™:

l
0= { U It | Iy, is a bounded left-open right-closed box in R"},
k=1

where
I ={(x1,...,2p) €ER" | a; <x; < b;, i=1,...,n}.

We will see that R{ is also a ring on R".
Theorem 2.1.1. With the definition above, R{} is a ring on R", and
=Ry X Ry x - x R},

Proof. By Lemma 2.1.2,
Ry X Ry x - x Ry

is a ring on R™, and it contains all bounded left-open right-closed boxes. Hence
RECREx - X RE.

It remains to prove the reverse inclusion.

It is enough to show every element of R} x -+ x R} can be written as a finite union of
left-open right-closed boxes. Use induction on dimension. For n = 1, trivial. Assume true in
dimension n — 1. Let

AcRix xRy CR", A=BxC,

where

BeER x -~ xRy CR™  CeR}.

By induction,
Hence

and each factor is a box in R". So
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The next lemma is the higher-dimensional version of Lemma 2.1.1.

Lemma 2.1.3 (Canonical Decomposition). If A € R{}, then A can be written as a finite union

of pairwise disjoint left-open right-closed boxes.

Proof. Induct on n. For n = 1, this is Lemma 2.1.1. Assume true for n = k. For n = k + 1, let

m
a=Uners
r=1
with
IF = 1% x (a,, b)),

where I¥ is a box in R*. Reorder
ai, b]_,CLg, b27 <oy Ay, bm

as

a0<a1<---<al, 2 <1 <2m.

For each I**!, there are boxes Iﬁjl (possibly empty) such that
l
. o
= @ x (a1 al).
i=1

Apply the induction hypothesis in R¥. O

2.1.2 Measure on Ry

Now we construct a measure on the ring Rf.

Definition 2.1.3. Let R{ be the ring of finite unions of bounded left-open right-closed bozes in

R™. A real-valued function pn on R is called a measure on Ry if:

(1) p(2) = 0;
(2) (nonnegativity) (A) > 0 for all A € Ry;
(3) (countable additivity) for any pairwise disjoint sequence {A;}5°, C Ry, if

U 4i € RE, (2.1)
=1

then

M( G Ai) = iM(Ai)-
i=1 =1

Remark 2.1.2. In (2.1), we require the countable union to lie in R because Ry is only closed

under finite unions.

Definition 2.1.4. For A € Rj, suppose a canonical decomposition is



Define
k
i=1

where

Ii:{(:ci,...,xfl)\a§-<x§-§b§, j=1,...,n},

|I;| = H(b; — az-) :/I X1, (z) dx.
j=1 i

Clearly, mo(A) > 0 and mo(@) = 0.

Since a given A € R{j can have multiple canonical decompositions, we must show mg(A) is

independent of the decomposition.

Lemma 2.1.4. The definition of mo(A) does not depend on the chosen canonical decomposition

of A.

Proof. Step 1. If I is a single box, then mg(I) = |I|, independent of decomposition.
Suppose

is a canonical decomposition of I. Then

= fa@ide= [ o)

i=1""1

k k
:Z/I in(:r)d:U:Z|Ii|.

i=1"1i i=1

Step 2. Suppose A € R{ has two canonical decompositions

j=1
Then
k1
A= U U(L;ﬂjj),
i=1j=1
k !
Jj: U(IiﬂJj)a I; = U(Iiﬂjj).
i=1 j=1
By Step 1,
k ko1
mo(A) =YL =Y > |LnJj
i=1 i=1 j=1
1k !
=Y > ILnJdil=>"1Jj
j=1i=1 j=1
So mg(A) is well-defined. O
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Lemma 2.1.5. The set function mg on R{ has:
(1) (finite additivity) if Ay, ..., Ar € Ry are pairwise disjoint, then

(2) (monotonicity) if Ay, ..., Ax € Ry are pairwise disjoint and \Jf_; A; C A € R, then
Z mo < mo A)

(3) (finite subadditivity under covers) if A, Ay, ..., A, € RS and A C U, A;, then

=1
Proof. (1) Let
my )
A=L, i=1,...k
j=1
be canonical decompositions. Then
k k. m;
U4a=UUZL
=1 i=1j5=1
is a canonical decomposition, so
k. m;
mo( U 4) = ZZim—Zmo
=1 i=17=1
(2) Let
k
Agiq = A\ U A;.
Then Aj,..., Ary1 are pairwise disjoint and
k+1 k
= Z mo(AZ) > ZmO(AZ)
i=1 i=1

(3) By (1) and (2), mg is monotone on RY: if A C B, then mg(A) < mo(B). For A ¢ U, A;,
define

k-1
By =A;, By=A)\Ay, ..., Bk:Ak\<UAi>-
i=1

Then Bi, ..., By are pairwise disjoint and Ule A; = Ule B;. Hence

Ai) = mo( LkJ Bi) = Zk:mo(Bi) < Xk:mo A
=1

1 =1 =1

mo(4) < mo( |

k
1=

Theorem 2.1.2. mg is a measure on R{.
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Proof. By Lemma 2.1.5, it remains to prove countable additivity. Let { Ay} be pairwise disjoint
in Ry and
oo
A= U A € Rg
k=1
By monotonicity,

k
> mo(A;) <mo(A), Vk>1
=1
Let k — oc: -
ZMQ(Al) < mo(A)
=1

For the reverse inequality, let

be a canonical decomposition of A, and

my )
A=
j=1

one for A;. Write
Ii:{(x17"'7$n> ’aﬂr<$7~§br, 7“:1,...,71}.

Given ¢ > 0, choose inner closed boxes
If" ={(y1,- - yn) lar + 6 <y, <b,, r=1,...,n}
so that
W>WVUF*
Let

l
A= 1,
=1

so A% is bounded closed.

¥ 761 .
For each I}, enlarge slightly to open boxes IZ- 7 with

i,0% €
|1; J\—T < || < |] J|
Then

1,60 .
{I; ! ‘22172,--'; ]:1,2,...,77%}

is an open cover of A°%. By compactness, there exists ko such that

ko m;

CUUI(S

i=17=1

7

Hence
ko m;

—e<z|ﬁ|<zzu‘*r

=1 j=1

ko m;

<33 (1514 sgmer)

i=1j5=1
ko

< Z (mO(A 2Z+1) Zmo
=1
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By arbitrariness of ¢,

mO(A) S ZmO(Az)
i=1
O
Corollary 2.1.1. If A, A; € R§ and
Ac A,
i=1
then -
mo(A) < ZmO(A’)
i=1
Proof. Since
A= U (A; N A),
i=1
let B; = A; N A and
i—1
Ci=B\(U B;) e R}
j=1
Then C; N C; = @ for i # j, and
[e.e]
A= U C;.
i=1
Thus - -
mo(A) = mo(Ci) <> mo(A)
i=1 i=1
O

Exercises 2.1

1. Construct a measure p on a ring R{ such that

(1) for every r € Q, u*({r}) = 0;
(2) for every closed set F' C R\Q, p*(F) =0.

2. Let g be increasing and right-continuous on R. For each box in R™
I={(z1,...,2n) |a; <z; < b, i=1,...,n},

define

Prove that p is a measure on Rj.

3. Let u,v be measures on Ry and R{’. For A € R, B € Ry with u(A),v(B) < oo, define
(0 V)(A x B) = u(A)u(B),
Is p* v a measure on R{ "7
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4. Let §,R be o-rings on X, Y. Define
o
={UAixBi|A€S, B eRr}.
i=1

Is 7 a o-ringon X x Y?

2.2 QOuter Measure

Definition 2.2.1. For A C R", define
o0
mf{Zmo )| A e Ry, Ac A}
i=1
This is the outer measure induced by my.

Remark 2.2.1. In abstract form, for a measure space (X, R, p) with R a ring and p a measure
on R, define

1nf{Z,u )| Ai € R, ACUA}

=1

called the outer measure induced by p (see Definition 2.2.2).

Theorem 2.2.1. The outer measure mg satisfies:
(1) ms(2) = 0;
(2) if AC B CR", then m{(A) < m{(B);
(3) if A e Rf, then m§(A) = mo(A);
(4)

Proof. Proofs of (1) and (2) are omitted.
(3) Set Ay = A, A; = @ for i > 2. Then

AC UA“

=1
SO

A) < Zmo(Ai) =mp(A).
i=1
Conversely, for any cover A C U;2; A; with A; € Ry,

i=1

Taking infimum gives mo(A) < m§(A).
(4) Assume without loss of generality that

Z mg(A
i=1
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For any ¢ > 0, by definition of m{(A;) there exist A{ € R§ such that

Arc AL Y mo(ad) < mi(A) + o

j=1 j=1 2
Hence - o o
A=JAaclUUA4,
i=1 i=1j=1
and o e -
mi(4) <30 mo(4d) <3 (mp(4i) + o)
i=1j=1 =1
= Zmé(Az) +e
i=1
Let € ] 0. O

Example 2.2.1. We have:
(1) If zp € R™, then m§({zo}) = 0;
(2) m3(Q") = 0;
(3) If C is the middle-third Cantor set, then

mi(C) < mis( EJ L) < (%) S50 (n— oo);
=1

The measure mg on Ry is countably additive, but the outer measure m( is not.

Example 2.2.2 (Outer Measure Is Not Additive). First, if m§ were finitely additive, then it
would be countably additive. Indeed, if {E,}N_, are disjoint and

N N
mi( U En) = Y- mi(En),
n=1 n=1

then for any disjoint {E,}2° 4,

[e'S) N N [e'S)
mi(U En) = mi (U Ba) =X ms(En) = Y- mi(E),
n=1 n=1 n=1 n=1

while subadditivity gives the reverse inequality.

Now give a counterexample to countable additivity. For each x € (0,1), let

Ly ={€€(0,1)|{ -z €Q}.

Then (0,1) is a disjoint union of such classes. Choose one representative from each class to
form S (using the axiom of choice). Let Sy = S+ with ri, € (—1,1)NQ. Then Sy are disjoint

and

(0,1) C G Sk C (—1,2).
k=1
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So

1 =mg((0,1)) < my( U Sk) = > my(Sk) <mp((~1,2) = 3.
k=1

Since m{(Sk) = m§(S) and the series converges,
mgy(S) =0 = ZmS(Sk) =0,
k=1

which yields 1 < 0 < 3, contradiction.

Theorem 2.2.2. For any A C R", define

mg (A mf{ng ) | Ai € R§, diam(4;) <0, AC U AZ}.

=1

Then

Proof. Clearly, mi(A) < mg s(A).
For the opposite inequality, assume m{(A) < oo. Given € > 0, choose A; € Ry such that

Ac A, Zmo ) <my(A) +e.
i=1

Subdivide each box in each A; into finitely many boxes of diameter < §:

Ai:UiIl—U UI”C, diam (I ;k)<5.
j=1

j=1k=1
Then
oo my k
mg 5 (A <ZZZ|I7J | <m
i=1j=1k=1
Let € ] 0. O

Definition 2.2.2 (Abstract Outer Measure). Let X be a set, R C P(X) a ring, and p a measure
on R. Define

S(R)={AcCX|34€eR, AC DAZ-}.
i=1

For A € ¥(R), define

mf{z,u )| AC UAZ, A; € RY.

=1

This is called the outer measure induced by p.

Remark 2.2.2. We call (X, R,u) a measure space. If additionally u(X) = 1, it is a probability

space.
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Theorem 2.2.3. Let (X, R, 1) be a measure space and p* the induced outer measure. Then:
(1) if AC B, then p*(A) < p*(B);
(2) if A€ R, then p*(A) = p(A);
(3) (subadditivity) for A; € ¥(R),
M*( U Ai) <D (A
i=1 i=1

Proof. We only prove (2). The inequality p*(A) < p(A) is immediate. For the reverse, assume
p*(A) < co. By definition, for any € > 0 there exist A; € R such that

Ac A, D u(A) <p(A)+e.
i=1 i=1
We may assume A; N A; = @ for i # j (by standard disjointization). Then
A:Am(UAi) = JAn4)er,

i=1 =1

and

W(A) = S (AN A) < 3 p(A) < (A) +e
=1 =1

Let € ] 0. O

Remark 2.2.3. This proof pattern has already appeared several times and is worth noting.

2.3 Lebesgue Measure

In this section we define Lebesgue measure. We begin with Lebesgue measurable sets.

Definition 2.3.1 (Lebesgue Measurable Set). Let R{, mo, m{ be as above. A set A C R™ is
called Lebesgue measurable if for every E C R™,

mi(E) = mi(E N A) +mi(E N A°). (2.2)

Remark 2.3.1. 1. The family of all n-dimensional Lebesgue measurable sets is denoted by L™.
For A e L™, set m(A) = m§(A) and call it the Lebesgue measure of A.

2. Equation (2.2) is called the Carathéodory condition.

3. If £ € L", then
m(E) =m(E N (AU A9)

=m((ENA)U(EnNA)
=m(ENA)+m(ENA°).
So the Carathéodory identity always holds inside measurable sets; this is the original motivation

for introducing it.

Now show every set in Rf is Lebesgue measurable.

Theorem 2.3.1. If A € R{, then A c L.
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Proof. One side is immediate from subadditivity:
my(E) <mg(ENA) +mg(EN A9).

For the reverse, assume mg(E) < oo. For any € > 0, choose 4; € Ry with

00
EC UA“ Zmo <m0 E)—l-E.
=1

Then

[e.e] o)
EnAc | JAinA), EnA®c|J(AnA%,
i=1 i=1
and each intersection lies in R{j. Hence

my(ENA)+mi(ENA°) <> mg(AiNA)+ > mg(4; N A°)
=1 =1

= Z mo(4;) <mi(E) +e.
Let € | 0.
Remark 2.3.2. In later proofs of measurability, by subadditivity it is enough to prove
my(E) > mg(ENA) +mg(EN A°).
The following theorem implies that £ is a ring.

Theorem 2.3.2. We have:
(1) if m§(A) =0, then A e L™;
(2) the Cantor middle-third set C is Lebesgue measurable;
(3) if Ae L™, then A € L
(4) if A,B € L™, then AUB,ANB € L", and when AN B = &,

m(AU B) =m(A) +m(B).
Proof. We prove only (4). For any E C R",
my(E) = my(ENA) +mi(E N A°)
=m{(ENANB)+mi(ENANB°) +mi(EN A°).
Since (AN B¢) U A¢ = (AN B)¢, we get
my(E) > my(EN(ANB))+my(EN (AN B)°).

The opposite inequality is obvious, so AN B € L™. Then

AUB = (A°N BY)°,
and by (3), AUBe " If ANB =g,

my(AUB) =mi((AUB)NA) +mi((AU B) N A9)
=my(A) + my(B).

Hence L™ is a ring.
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In fact, L™ is a o-ring.

Theorem 2.3.3. Let L™, mg, m be as above. If A; € L™, i=1,2,..., then

UAi e L™

i=1

Moreover, if A;NA;j =@ for i # j, then

m( f_j A;) = im(Az)

Proof. By disjointization, let

k—1
Bi=Ai, By=A\Ai, ..., Bi=4\JA), ..
i=1
Then each By € L™ (Theorem 2.3.2),
k k
UBZ:UAZ (k:1)2) 500)7
=1 =1
and B; N B; = @ for i # j. So it suffices to treat disjoint {B;}.
For any F C R™ and any k € N,
k k
mi(B) =mi (B0 (U B)) +mi(En (U B))
i=1 i=1
k k
= > my(EnB)+mi(En (| B)°)
i=1 =1
k o0
> > mi(ENB) +mi(En (| B)).
=1 i=1

Let &k — oo:

(@
S

>Zm0 EmB)+m0(Em(
=1

mS(Eﬂ(DBi))erE‘;(Eﬂ(‘

i=1
Hence ;2 B; € L". Taking E = ;2 B; yields

m( Ej Bi) = im(Bl)
i=1 i=1

@
Il
—

(@
S

N
Il
—

The next two theorems are used frequently.

Theorem 2.3.4 (Measure Limit for Increasing Measurable Sets). Let {E;}5°, be measurable
with
FhCE,C---CE,C---.
Then
( lim Ek> = klggo m(Ey).

k—o00
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Proof. Assume m(E})) < oo for all k; otherwise trivial. Define
B =F, B> :EQ\El, Ceey Bk:Ek\Ek717"'

Then By, € L™, pairwise disjoint, and

o0
U Be = lim E.
k—o0

k=1
Hence
m(klim EBy) =m( | Br) = > (m(By) — m(Ey 1))
- k=1 k=1
k
= kl;ngo z::l(m(EZ) —m(E;i—1)) = kl;ngo m(Ey),
with Fy = @. ]

With a finiteness condition, we get the decreasing version.

Theorem 2.3.5 (Measure Limit for Decreasing Measurable Sets). Let {E;}3°, be measurable

with
EFiDFE;D---DE, D+,
and
m(Ep) < oo.
Then

m( lim Ek) = klin;om(Ek)

k—00

Proof. Since
El\Ek CEl\Ek‘-‘rla k=1,2,...,

{E1\E} is increasing. By Theorem 2.3.4,

m(El\kILn;O Ex) = m( lim (E1\Ey)) = lim m(E1\By).

.
Using m(E7) < oo,

m(Ey) —m( lim By) = m(Ey) — lim m(Ey).
SO

m( lim Ek> = klirgom(Ek)

k—o0

Exercises 2.3
1. P92 1,2,3,4,5,6,7
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2.4 Relation Between Lebesgue Measurable Sets and Borel Sets

(Real variable theory) does not require as broad a background as is sometimes imag-
ined. Roughly speaking, three principles suffice: every measurable set is close to a
finite union of intervals; every measurable function is close to a continuous function;
every convergent function sequence is close to a uniformly convergent one. Most re-
sults are rather direct applications of these ideas. When students face a real-variable
problem, these are the three principles they most need to master. If one principle
appears to solve a genuine problem, one naturally asks whether this “closeness” is

sufficient; in practice, the answer is generally yes.

This section concerns Littlewood’s first principle.
Theorem 2.4.1. Every closed set F' C R" is Lebesgue measurable, i.e. F € L™.

Proof. Step 1. If F is bounded and closed, then F € £L". For any open box ;, it is measurable

because it is I minus 0/, and 0 has measure zero. For each z € F', define

Ie(2) ={y = (v, yn) | |y — @il <1/k}.
Then {I;(z) | z € F} is an open cover of F, so there exists a finite subcover

I(zY), ..., Iy(ah).

Let
Ik 4
j=1
Since L" is a o-ring, A € L™. We claim
o0
F =) 4.
k=1

Clearly F' C Ay, for every k, so F' C [, Ax. Conversely, if y € (), Ak, then for each k there exists
zF € F with
lyi —xk| < 1/k, i=1,...,n,

thus
Iy — ) < 2.

Hence zF — y, and since F is closed, y € F.
Step 2. If F' is an arbitrary closed subset of R", define

F, = FnB(0,k).
By Step 1, Fy, € L™. Also
o
F=J F.
k=1
By o-ring closure, F' € L. O

By definitions of open and Borel sets, we immediately get:
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Corollary 2.4.1. Every open set and every Borel set in R™ is Lebesgue measurable.

Theorem 2.4.2. If A € L™, then for every € > 0 there exist open G and closed F in R™ such
that
FCcACG, m(G\A)<e, m(A\F)<e.

Proof. Step 1. If A is bounded, there exists open G O A with m(G\A) < . By m(4) = m*(A),
for any € > 0 there exist A, € R{ such that

Ac A mA)+= >3 m(4).
k=1 2 k=1

Write canonical decompositions Ay = Ué'k:1 Iy j. Enlarge each box to an open box I j with

e
Ir; C Iy, m(Ig ) —m(Igy) < o
Then
oo g
Z Zm(Ili,j) <m(A)+e.
k=1j=1
Let
oo Ik
k=1j=1

Then G is open, A C G, and
m(G\A) = m(G) —m(A) < e.
Step 2. For general measurable A, there exists open G D A with m(G\A) < e. Define
Ar={z € Ak <|z|| <k+1}.

By Step 1, for each k there is open Gy O Aj such that

9
m(Gp\Ag) < ok
Let -
a=JG
k=1

Then G is open, A C G, and

m(G\A) < m( G (GK\4)) < fj m(Gi\A)

k=1 k=1
< €.

Step 3. Existence of closed F' C A with m(A\F) < e. Apply Step 2 to A°: there is open
G D A° with
m(G\A°) < e.

Let F' = G°. Then F is closed, F C A, and

m(A\F) = m(G\A°) < e.

49



The next theorem is a direct consequence of Theorem 2.4.2.

Theorem 2.4.3. If A € L™, then
(1) there exists a Gs set G* with A C G* and m(G*\A) = 0;
(2) there exists an Fy set F* with F* C A and m(A\F*) = 0.

Remark 2.4.1. Since both Gs and F, sets are Borel, Lebesque measurable sets differ from Borel

sets only by null sets from both outside and inside.

Theorem 2.4.4. Let A be a Borel set in R"™, and let B C R™ with m*(B) = 0. Then AUB
and A\B are in L™, and

m(AUB) =m(A), m(A\B)=m(A).
Proof. Since B € L™, both AU B and A\B are measurable. Also,
m(4) < m(AU B) < m(A) + m(B) = m(A),
m(A\B) < m(A) < m(A\B) + m(B) = m(A\B).
So equalities hold. 0
Theorem 2.4.5 (Translation Invariance). If A € L", then A+ {zo} € L™ and
m(A+ {xo}) = m(A4).
Proof. Because A € L™, there exists G5 set G* D A with
m(G*\A) = 0.

Then
A+ {.%'0} cG* + {x(]},

and
m* (G + {zo)\(A + {xmo})) = m*(G"\A) =0.
So (G*+{zo})\(A+{z0}) is measurable. Since G*+ {xo} is Borel (hence measurable), A+ {zo}

is measurable. The measure identity follows from standard translation invariance on boxes and

approximation. ]

Remark 2.4.2. Let p be a measure on B", finite on compact sets. If p is translation invariant,

then there exists constant A\ such that
w(B) = Am(B), VB e B".

We omit the proof.

Exercises 2.4
1. P98 1,2,3

2. P102 1,2,3 (replace the conclusion by m(E) > 9)
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2.5 Completeness of Lebesgue Measure

2.5.1 Existence of Non-Lebesgue-Measurable Sets

Example 2.5.1 (Nonmeasurable Set). Let I = [0,1]" be the unit cube in R™, and let Q™ be the

set of rational points. We aim to construct sets { Ay} such that:

(1) Ay NA; =0 fork #3j;

2)
)
) m

( {Ak} is uniformly bounded;
(3
(
(®

ICUAk,
k=1

(Ag) = m*(4;);

) Ay e L& Aj e LT,

These imply Ay is not Lebesgue measurable.
Construction: for each x € (0,1), define

4

Az ={£€(0,1) [ -z eQ}.

Then (0,1) is a disjoint union of the classes A,. Choose one representative from each class to
form A (aziom of choice). Let

A =A+r,, rmn.€(-1,1)NnQ.
Then { Ay} has the required properties.

Remark 2.5.1. 1. For any translation-invariant measure on R™ assigning positive measure to

cubes, the set A1 above is nonmeasurable.

2. This example also shows m™* is neither countably additive nor finitely additive.

2.5.2 Extension of Measures

For any A C R”, define

mf{Zm )| AcC UA,, A e,

=1

If for all £ C R",
m*™(E) =m*™(ENA)+m™(EnNA°),

then A is called second-order Lebesgue measurable.
Clearly every Lebesgue measurable set is second-order measurable. It might appear this

extends the measurable class, but the next theorem shows otherwise.
Theorem 2.5.1. For all A C R",
m*™(A) =m*(A).

Proof. Since R{ C L",
m*™(A) < m*(A).

o1



For the reverse inequality, assume m**(A) < oo. By definition, for any € > 0 there exist A € L"
such that

o o
Ac U An Y m(4y) <m™(A) +e.
k=1 k=1

For each k, by definition of m*(Ay) there exist Bf € R§ with

o e.9] . e
Avc U Bj, Do mo(By) <m(Ap) + op.
j=1 j=1
Hence o e
Ac U By,
k=1j=1
SO o o0 o
* % €
mH(A) < 30 mo(B) < Y (m*(4n) + o)
k=1j=1 k=1
<m*(A) + 2e.
Let € L 0 to get m*(A) < m**(A). O

Theorem 2.5.2 (Uniqueness of Measure Extension). Let R be a o-ring of subsets of R™ with

RG CR. Let ju be a measure on R satisfying
plry = m|rz,
i.e. wW(A) =m(A) for all A € Rf. Then
pln = m|pn,
where B" is the smallest o-ring containing Ry .

Proof. Step 1. For every open set G C R", u(G) = m(G).
For each x € G, there is a left-open right-closed box I(y,,r,) with rational center y, and

rational side length r, > 0 such that
I(yg,7m2) C G.

Hence

G = U I(yacﬂ”x)'

zeG

This family is at most countable, so

G = U I(yl‘]mrxk)
k=1
Disjointize into boxes { B }. By countable additivity of 1 and m,
WG =3 (B = 3 m(Br) = m(G).
k=1 k=1

Step 2. For every bounded closed set F' C R", u(F) = m(F).
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Take open G D F. Then
G = (G\F)UF,

1(G) = m(G) = m(G\F) + m(F) = u(G\F) +m(F),
hence
u(F) = u(G) — w(G\F) = m(F).

Step 3. For every closed set F' C R", u(F) = m(F).
Let

Fy = FNB(0,k).

By Step 2, u(Fy) = m(Fy). Since Fy, T F, by continuity from below,
p(F) = lim pu(Fy) = lim m(Fy) = m(F).
k—o0 k—o0
Step 4. For every Borel set E € B", u(E) = m(E).
Given ¢ > 0, choose open G, and closed F. with

F.C FCG,,

m(E\F.) <&, m(G\E) <e.

Then
m(Ge) — m(F:) < 2e.

Also
m(F:) < m(E) < m(Ge),
p(Fe) < p(E) < p(Ge),

and by previous steps u(F.) = m(Fz), u(G:) = m(G;). Let £ | 0 to conclude u(E) = m(E). O

Remark 2.5.2. For measures on R' induced by monotone right-continuous functions, all sets

may be measurable; this does not contradict the theorem above.
Finally, we give an example of a Lebesgue measurable set that is not Borel.

Example 2.5.2 (Lebesgue Measurable but Non-Borel Set). Let C be the middle-third Cantor
set, and let {(ay,bx)} be component intervals of its complement. Let ¢ : [0,1] — [0,1] be the

Cantor function constructed as in Proposition 1.5.5, so

Ol (apbr) = Ck-

Define )
f(x) = 5($+Lp($)), S [07 1]'

Then f(0) =0, f(1) =1, and f is strictly increasing; hence bijective. For every k,

(b)) = 50— ).
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So

o0

(5 Do) -
k=1
Since -
m(f)uf(Uar b)) =1,
k=1
we obtain )
m(f(C)) = 5

By the construction in Example 2.5.1, choose a Lebesque nonmeasurable set A C f(C). Let
B=f14)cc.

Then
0<m*(B) <m(C)=0,

so B € L. But B is not Borel; otherwise f(B) = A would be Borel (see exercise), contradicting

nonmeasurability of A.

Exercises 2.5

1. If f(x) is strictly increasing, show that both f=! : B* — B" and f : B® — B" are bijections.
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Chapter 3

Lebesgue Measurable Functions

3.1 Definition and Basic Properties
First, for convenience in later arguments, we adopt the convention
0-00=0.

Definition 3.1.1 (Almost Everywhere). Let E C R™ be Lebesgue measurable, and let P(x) be a
statement about x € E. If there exists a null set Ey C E such that P(x) holds for all x € E\Ey,

then we say P(x) holds almost everywhere on E, written as
P(z) holds for a.e. x € E.

Example 3.1.1. By Definition 3.1.1, we can define the notions “finite almost everywhere” and

“bounded almost everywhere.” These are different concepts.

Definition 3.1.2 (Lebesgue Measurable Function). Let E C R™ be Lebesgue measurable, and
let

f:E— RU{+o0}.
We call f a Lebesgue measurable function if for every ¢ € RU {£o0},
E(z|f(z) > c) ={z € E|f(x) > ¢}
is Lebesque measurable.!

Remark 3.1.1. 1. Sometimes one does not assume E is measurable, but then one assumes f

is finite-valued® and
E = U E(z|f(x) > —n)
n=1

is measurable.
2. For extended real-valued f, one may equivalently require E(z|f(xz) > ¢) to be measurable

for all c € RU{xoo}. In particular, taking ¢ = —oo implies E is measurable.

!Unless otherwise stated, we abbreviate {x € E|f(x) > ¢} by E(z|f(x) > c).
2Finite-valued means the range of f does not contain £oo.
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3. (Borel measurable function) Let E € B" and f : E — R U {xoc}. If for every c €
R U {+£o0},
E(z|f(z) > ¢) € B",
then f is called Borel measurable. Every Borel measurable function is Lebesgue measurable.

Definition 3.1.3 (Measurable Function on an Abstract Measure Space). Let (X, R,u) be a
measure space, E € R, and f: E — RU{xoo}. If for every c € RU {xo0},

E(z|f(z) >¢) € R,
then f is called p-measurable.

Theorem 3.1.1. Let E € L, f : E — RU{+oo}, and let D C R be a dense subset. If for
everyr € D,

E(z|f(x) >r) e L,
then f is Lebesgue measurable on E.

Proof. Left as an exercise. O

Theorem 3.1.2. Let E € L™ and f: E — RU{£o00}. The following are equivalent:

(1) f is Lebesgue measurable on E;
(2) for every c € RU {£o0},

E(z|f(x) <c) € L™
(3) for every c € RU {£o0},

E(z|f(z) <c) e L™
(4) for every c € RU {£o0},

E(z[f(x) > ¢) € L™
(5) for every c,d € RU {£o0},

E(zle < f(x) <d) e L™

Proof. Left as an exercise. O

Corollary 3.1.1. Let E € L™ and f : E — RU{xoo}. If f is Lebesgue measurable, then for
every ¢ € RU {£o0},
E(x|f(x) =c¢c) € L™

Proof. This follows directly from Theorem 3.1.2. O

Example 3.1.2. Let E € L™. The indicator function xg is Lebesque measurable. In particular,

the Dirichlet function is both Lebesgue measurable and Borel measurable.

Theorem 3.1.3. Let E € L™, and let f,g be Lebesgue measurable on E. Then:
(1) for every a € R, af is Lebesgue measurable;
(2) f+ g is Lebesque measurable;
(3) fg is Lebesque measurable;
(4) if g(x) # 0 for x € E, then f/g is Lebesque measurable;
(5) max{f,g} and min{f, g} are Lebesgue measurable;
(6)

6) sup{fr}, inf{fr}, hm 1, and lim fj, are Lebesque measurable.

k—o00

o6



Proof. For (4), it is enough to show 1/g is measurable.

For (5),
E(z|max{f(z),g9(z)} > ¢) = E(z|f(z) > ¢) UE(z|g(z) > ¢).
For (6),
T fi () = inf { sup ful@) }.
The remaining parts are standard. O

Example 3.1.3. Let E; € L™, i =1,2,..., k. Then

k
x(z) =) aixg,(z) (3.1)
i=1

is Lebesgue measurable.
Remark 3.1.2. A function of the form (3.1) is called a simple function (or step function).

Example 3.1.4. If f is Lebesgue measurable on E, and A C E with A € L™, then the restriction

fla is Lebesque measurable.

Example 3.1.5. Let £ € L™. If f is continuous on E, then f is Lebesque measurable.

Exercises 3.1
1. P127 1,2,3,4,5,6,7

2. P129 8,9

3.2 Structure of Lebesgue Measurable Functions

Theorem 3.2.1. Let E C R" be Lebesgue measurable.
(1) If f is a nonnegative Lebesgue measurable function on E and finite a.e., then there exists

an increasing® sequence of simple functions {pr}ie, such that
wr — f a.e. on E.

If in addition f is bounded, then
ok = f.
(2) If f is Lebesque measurable on E and finite a.e., then there exists a sequence of simple

functions {@i}72 such that
lokl < |fl a.e. on E,

and
wr — f a.e onE.
If f is bounded, then
ok = f.

3That is, f|a is the restriction of f to A.
Namely, or < Qri1.
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Proof. Step 1. For each natural number &, define

—1 1
Ek,i E(x‘QTSf($)S27)’ Z:1727 7k2k
Set
%7 WS Ek,u
pr(z) = k2

Then ¢, < pr41, and if z € Ey;,

1

0= flz) —prl(e) < 5

Since f is finite a.e. on F, the set Es = {z € E|f(z) = +o0} has measure zero. For z € E\E
and any ¢ > 0, choose ko so that f(z) < ko and 27% < e. Then z € Ej, ,, for some io, hence

0. F(@) ~ pro(@) < g <

Thus ¢ — f a.e. If f(z) < M on E, then for k > M the same estimate holds for all x € E, so

ok = f.
Step 2. Let

f+:max{f,0}, f_:max{—f,O}, f:f+_f_'

Apply Step 1 to fT and f~ to obtain simple functions ¢ 7 f* and ¢y 7 f~ a.e., with o < fT
and ¢, < f7. Then

or—Uk = fT—fT =,
and

ok — k]l < o+ < fH 47 =]
So part (2) follows. ]
Following this theorem, a standard strategy for statements about measurable functions is:
1. prove it for indicator functions;
2. prove it for simple functions;
3. prove it for nonnegative measurable functions;
4. decompose into positive and negative parts, then prove it for general measurable functions.

Lemma 3.2.1. Let I}, Fs, ..., F CR™ be pairwise disjoint closed sets, and define

k
p(z) = Z aiXF,(T).
i=1

Then k 1S continuous.
¥ | Uiq F;
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Proof. Fix xg € Ui?:l F;. Then zy € Fj, for some 79. Since the F; are pairwise disjoint and

closed, for each i # g,
9; = dist(xo, F;) > 0.

Set 60 = min@gm 51 If
k

S (U Fz) ﬂB(Q?o,(S()),

i=1
then z € F;,, hence
lp(z) — p(z0)| =0 <e Ve>0.

So (‘O‘Ule F, is continuous.

O]

The next theorem is Lusin’s theorem, corresponding to Littlewood’s second principle: every

measurable function is close to a continuous one.

Theorem 3.2.2 (Lusin’s Theorem). Let E C R" be Lebesgue measurable, and let f be Lebesgue

measurable on E and finite a.e. Then for every § > 0, there exists a closed set F' C E such that

flF is continuous and
m(E\F) < 0.

Proof. Step 1: Assume m(E) < oco. For each k € N, define

' k.~ k

Then Ej; N Ey ; = @ for i # j, and

[o¢]
E:( U Ek,i)uE,muEm,

1=—00

where Eio = E(z|f(x) = £00) and m(E+s) = 0. Since

o0

m(E) = Z m(Ey;) + m(Etoo),

1=—00
for given § > 0 we can choose 7; such that

—ip—1 ) 6

(X + X )mBr) < g

i=—00 i=ip+1

Define ‘
N i— 1

i=—ig

For each 4, choose closed F}; C Ej; with

o
m(Eki\Fk;) < ok

Let

i
Fe= U Fris vr=ouln.

i=—ip
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By Lemma 3.2.1, 9 is continuous on Fy, and for = € F,

1
|f(z) = Ye(@)] = |f(2) — onl2)] < -
Also,
0
Set -
F =) F
k=1
Then F' is closed and
m(E\F) = m( |J(B\Fy)) <> m(B\Fy) <4
k=1 k=1
Moreover, each 9|F is continuous and
1
Yrle) — f@) < 7 Vw e,

so Y = f on F. Hence f|p is continuous.
Step 2: If m(FE) = oo, apply Step 1 on truncated pieces and combine them to obtain the

same conclusion. O

Corollary 3.2.1. Let E C R" be Lebesgue measurable, and let f be Lebesgue measurable on E

and finite a.e. For every § > 0, there exists a continuous function ¢ on R™ such that
m(B(al f(2) # () < 4.
Proof. This follows immediately from Theorem 3.2.2 and Theorem 1.3.10. O

Corollary 3.2.2. Let E C R" be Lebesgue measurable, and let f be Lebesgue measurable on E

and finite a.e. Then there exists a sequence of continuous functions {py} such that
wr — f a.e. on E.

Proof. Apply Theorem 3.2.2 recursively. Choose closed sets Fj, C E such that
(e Ur) <
k’

and f is continuous on Uf 1 Fi. Let ¢ be a continuous extension to R" of f |ul€_1 r- Then ¢ = f

on UF_, F;, and therefore
oo
m(B\ J Fi) =
k=1
Hence ¢, — f a.e. on E. O

Theorem 3.2.3. Let f : [0,1] — [0,1] be strictly increasing and continuous, with f([0,1]) =
[0,1]. Then
B=f"(B).
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Proof. Let
A={f"YB)|BeB, Bclo1]}.

We prove in two steps.
Step 1: Prove B C A.
(1) If Ay, Ay € A, then Ay = f~1(By) and Ay = f~1(By) for some By, By € B. Thus

Al\AQ = f_l(Bl\BQ) c A.

(2) If A; € A with A; = f~1(B;), then

s

A = f‘1< G Bi) €A
=1

=1

So A is a o-ring.

(3) Since f is continuous, preimages of open or closed subsets of [0, 1] are open or closed in
[0, 1], hence belong to A. Therefore B C A.

Step 2: Let g = f~!. Then g is also strictly increasing and continuous. By Step 1, B C

9~1(B) = f(B), so
FHB) € fTHf(B)) = B

Combining with Step 1 gives B = f~1(B). O

Remark 3.2.1. This proof method is typical and is often called the “good-set principle”: first

collect all sets with the desired property, then show that this family forms an appropriate class.

3.3 Almost Everywhere Convergence and Convergence in Mea-

sure

In this section we introduce two important notions of convergence and their relationship.

3.3.1 Almost Everywhere Convergence
Definition 3.3.1 (Almost Everywhere Convergence). Let E C R™ be Lebesgue measurable, and
fofe : E—RU{xo0}, k=1,2,...,

be Lebesgue measurable. If
fr(x) = f(x)
for a.e. x € E, then we say {fr} converges to f almost everywhere on E, written

fi—f ae onFkE,

or
fka'—eff rzekFE.

In Theorem 3.4.1 we will see that measurable functions generalize continuous functions. In
real analysis, even pointwise limits of continuous functions need not be continuous. In measure

theory, however, a.e. limits preserve Lebesgue measurability.
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Theorem 3.3.1. Let E C R™ be Lebesgue measurable, and let fr, : E — RU{xoo} be Lebesgue
measurable for k=1,2,.... If
=5 f zek,

then f is measurable on E.
Proof. Left as an exercise. O
Next we present the classical Egorov theorem. We first need a lemma.

Lemma 3.3.1. Let E C R™ be Lebesgue measurable with
m(E) < .
Let f, fi. be measurable extended real-valued functions on E, finite a.e., and suppose
S f z€E.

For every € > 0, define
Ex(e) = E(z[| fu(z) — f(z)] > ).
Then -
fim (U Buee)) =0
Proof. Let

B(e) = T Bile) = () U B
J=1k=j

The set E(e) contains points where the deviation |fi — f| > ¢ happens infinitely often. Since
fr = f a.e., m(E(e)) = 0. Then the conclusion follows from continuity of measure from above
(using m(FE) < 00). O

The Egorov theorem below corresponds to Littlewood’s third principle: a.e. convergence is

nearly uniform convergence on large subsets.

Theorem 3.3.2 (Egorov). Let E C R" be Lebesgue measurable with
m(E) < oo.
Let f, fi. be measurable on E, finite a.e., and assume
LS f zeE.
Then for every 6 > 0, there exists a measurable subset Es C E such that m(Es) < 6 and
fe = f on E\E;.

Proof. Let
Eo=E(z|3k: |fr(z)| = o0 or |f(z)| = 0),

so m(Ep) = 0.

62



In Lemma 3.3.1, take ¢ = 1/m for m = 1,2,.... Then for each m, there exists j,, such that

n4$iE4;»<£;
Define e
Es=6u(lJ U Ek(i))
m=1k=jm,
Then
m(Es) < i Qim = .

Now fix € > 0, choose mg with 1/mg < . If x € E\Es, then for all k > jp,,,

@) — fl@)] < Wlm <e.
Hence fr = f on E\Es. 0

Remark 3.3.1. The finite measure assumption in Egorov’s theorem cannot be removed.

Example 3.3.1. Let fx(x) = Xx(0,1) (7). Then
fx s X(0,00) T € R.

But for any set Es with m(Es) < oo, uniform convergence on R\Es fails.

3.3.2 Convergence in Measure

Definition 3.3.2 (Convergence in Measure). Let E C R"™ be Lebesgue measurable with m(E) <
oo, and let f, fi be measurable and finite a.e. on E. If for every e > 0,

lim m(E(al|fi(e) - f(2)] > ) =0,
—00
then {fi} is said to converge to f in measure on E, written

S it f x€eE,

or
fk=f zekE.

Convergence in measure is fundamental in probability theory. It is weaker than uniform

convergence and typically weaker than almost everywhere convergence.

Definition 3.3.3 (True in Measure). Let P,(x) be a sequence of statements about x € E. If

Jim m(E(z|P,(z) is false)) = 0,

then we say this sequence of statements is true in measure.

The next theorem gives a basic implication between the two convergences.
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Theorem 3.3.3. Let E C R™ be Lebesgue measurable with m(E) < oo. Suppose f, fr are

measurable and finite a.e. on E, and
fr 5 f zek.

Then
fkﬁ)f rz e L.

Proof. Fix e > 0 and 6 > 0. By Theorem 3.3.2, there exists F5 C E with m(E;s) < § such that
frx = f on E\Es. Hence there is ko such that for k > ko,

|fe(z) — f(z)| <e Vax € E\Es.

Therefore
E(x|lfr(x) — f(2)| > €) C E,
SO
m(E(z||fr(z) — f(x)] > €)) <d (k> ko).
This is exactly fi, = f. 0

Remark 3.3.2. The condition m(E) < oo in Theorem 3.3.3 is essential. For example,

17 |$’ 2 ka
x pr
i) { 0, |a| <k,

satisfies fr, ©5 0 on R, but fr, # 0 on R.

Theorem 3.3.3 shows that a.e. convergence implies convergence in measure on finite-measure

sets. The converse generally fails.

Example 3.3.2. Construct a sequence on [0,1] by blocks:

fia(z) =1, ze€]0,1],

1, 0,3), 0, 0,1),
R DS R e

and in general,

1, =€ [5%r, o),
fri(z) = * [2’{1 ) k=1,2,...,i=1,2,...,2"1
0, otherwise,

Then this sequence converges to 0 in measure but not almost everywhere.
Hence convergence in measure is strictly weaker than almost everywhere convergence.

Theorem 3.3.4 (Riesz). Let E C R™ be Lebesgue measurable. Let f, fr. be measurable and finite
a.e. on E. If
fk =z f reF,

then there exists a subsequence {fy,} such that
fkj s f zek.
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Before proving Theorem 3.3.4, we record a corollary.

Corollary 3.3.1. Let E C R" be Lebesgue measurable with m(E) < oo, and let f, fr be mea-
surable and finite a.e. on E. Then fi, % f on E if and only if every subsequence {fx.} has a
further subsequence {fk‘ij} such that

fk:l-]. a;er re k.

Proof. Necessity follows from Theorem 3.3.4.
For sufficiency, argue by contradiction. If fi # f, then there exist €g,dp > 0 and a subse-
quence { fg, } such that
m(E(@||fr,(x) — f(z)] > €0)) = o Vi
By the assumption on subsequences, { fx,} has a further subsequence { fkij} with fkij 5 f. By
Theorem 3.3.3, this implies fk?ij 2 f, contradiction. O

Proof of Theorem 3.3.4. Since fi, = f, for each j € N we can choose k; (strictly increasing)
such that

m(E (x|l @)~ 1@ > ) < o

Y
Define
1
Ej = E(a/fi, (v) - f(2)| > 5;).
Then
Zm(Ej) < 00,
j=1
S0
lim E;) = 0.
il i Fa) =0
For z ¢ lim E;, there exists jo(x) such that for all j > jo(x),
1
iy (o) = F@)] < o
which implies fi;(v) — f(x). Hence fi, % fon E. O

When introducing a new convergence notion, one naturally asks about uniqueness of limits.

To address this, we introduce Cauchy sequences in measure.

Definition 3.3.4 (Cauchy in Measure). Let E C R™ be Lebesque measurable with m(E) < oc.
A sequence of measurable functions {fr} on E is called Cauchy in measure if for every e > 0
and § > 0, there exists K such that whenever i,j > K,

m(E(|fi(x) - f;(x)| > ) < 4.

Remark 3.3.3. A Cauchy sequence in measure is sometimes also called a measure-Cauchy

sequence.

Theorem 3.3.5. Let E C R™ be Lebesque measurable with m(E) < oo. Then {fx} is Cauchy

in measure if and only if there exists a Lebesgue measurable function f on E such that
fr ﬁ) f zek.
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Proof. Sufficiency is immediate from the definition of convergence in measure.

For necessity, choose inductively a subsequence { fi,} such that

(B (x|l fiy e )~ i (@) = 00)) < o

Set .
Ay = B(a]|fiy (@) = fis (@)] = 55).

Then Y, m(A;) < oo, so m(lim A;) = 0. For x ¢ lim Aj, the series of successive differences is

summable, hence { fi;(7)} is Cauchy in R and converges pointwise. Define

f(x) = lim fi,(2)
j—oo
on this full-measure set and extend on the null set arbitrarily; then f is measurable and

Ik; S f onE.

Therefore f; 2 f by Theorem 3.3.3.
Finally, use the Cauchy-in-measure property of the full sequence: for given £, > 0, choose
J so that for all & > kj,

m(E(|| fe = fo,1 > €/2)) <6/2,
and choose j > J large enough so that
m(E(z|| fi; — f] > /2)) <d/2.
Then for all k > ky,
m(E(z||fi — f| > €)) < m(E(z||fi — fi;| > €/2)) + m(E(2||fi, — f] > €/2)) <.

Hence f;, = f. O

Exercises 3.3
1. P140 1,3,4,5,6
2. P144 1,2

3. P149 10,11,13,15

3.4 Characterizations of Measurability and Composition Mea-

surability

We now present a necessary and sufficient condition for function measurability.

Theorem 3.4.1 (Characterization of Measurable Functions). Let E C R™ be Lebesgue measur-
able. Then f: E — R is Lebesque measurable if and only if for every Borel set B C R,

E(z|f(z) € B)
is Lebesgue measurable.
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Proof. Sufficiency is immediate: for each t € R, (t,00) € B, so E(z|f(x) > t) is measurable.

For necessity, use the good-set principle again. Define
S ={B CcR| f71(B) is Lebesgue measurable in E}.

(1) If By, € S, then f~1(By) is measurable, so
(U B = U B
k=1 k=1

is measurable. Hence S is closed under countable unions.
(2) If By, By € S, then

FTHB1INBy) = fH(B1) N fH(By)

is measurable. So S is closed under finite intersections.
(3) If B € S, then

E=/f"'®R) =Y BUB=fYB)uUf B,

so f~1(B°) is measurable. Thus S is closed under complements in R, hence under differences.

So § is a o-ring. Also, for every interval (c,d) C R,
7 (e.d)) = B[ f(z) > ) N B(a|f(z) <d) € S.
Therefore all Borel sets belong to S, and necessity follows. 0

Remark 3.4.1. Recall: a real-valued function on R is continuous iff the preimage of every open
set is open. In this sense, measurable functions extend continuity.
Now consider
ELR LR

where both f and g are Lebesgue measurable. Is go f : E — R always measurable? We have

E(z|go f(z) > t) = E(z|g o f(x) € (t,00))
= E(z|f(z) € g7'((t,0)))-

The set g='((t,00)) is Lebesgue measurable, but not necessarily Borel. So Theorem 3.4.1 does

not directly imply measurability of go f. In fact, g o f need not be measurable.

Exercises 3.4

1. Give a direct example showing that the composition of two Lebesgue measurable functions

need not be measurable.
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Chapter 4
Lebesgue Integral

In this chapter we build Lebesgue integration step by step. We begin with nonnegative measur-
able functions on finite-measure sets, then extend to general measurable functions on general

measurable sets.

4.1 Integrals of Nonnegative Measurable Functions on Finite-
Measure Sets

With the foundations of previous chapters, we now formalize the Lebesgue integral beyond the

introductory definition.

Definition 4.1.1 (Lebesgue Integral). Let E C R™ be Lebesgue measurable with m(E) < oo.
Let f: E — R be nonnegative, bounded, and measurable, so there exist 0 < mg < My < 0o such
that

mg < f(SU) < My, ze€E.

Take a partition D of [mg, Mp):
mo=1Yyo <Y1 < <yp = M.
Set

5(D) = = v
( ) ogr?flfq(ylﬂ yz)a

and for arbitrary & € [yi, yi+1] define

k1
S(f,D) =) &m(E),
i=0

where
Ei={r e E|y < f(z) <yit1}
If there exists a constant S such that for every € > 0 there is § > 0 with

(D) <d = |S(f,D)—-S|<e,

then f is called Lebesgue integrable on E, and S is called the Lebesgue integral of f on E, denoted
by
(@) [ fa)do.
E
6
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When no confusion occurs, (L) is omitted.

Example 4.1.1. If E C R" is Lebesque measurable and m(E) = 0, then every bounded mea-

surable function on E is Lebesgue integrable and

/Ef(x)dx =0.

Example 4.1.2 (Dirichlet Function). The Dirichlet function (see 5) is Lebesgue integrable on

[0,1], and
/ D(z)dx = 0.
[0,1]

Theorem 4.1.1. Let E C R™ be Lebesgue measurable with m(E) < oo. If f is bounded and

Lebesgue measurable on E, then f is Lebesque integrable on E.
Proof. Define
k—1 B k—1
i=0 i=0
Standard estimates give
S(f,D) < S(f,D), S(f,D)—S(f,D)<dD)m(E).

For nested refinements Dy C Dy C --- with §(D;) — 0, the lower sums are increasing and upper
sums are decreasing, with the same limit. This common limit is the desired integral value, and

every sufficiently fine partition gives a Riemann-type sum close to it. O

Theorem 4.1.2. Let {E;}", C P(R") be Lebesgue measurable, pairwise disjoint, and let E =
i B If m(E) < oo, then

/Ef(x)da:—i[&f(m)dx

Proof. Write the defining sums for F and split each level set by F;. Then pass to the limit in
the partition mesh. O

Theorem 4.1.3 (Linearity). Let E C R"™ be Lebesgue measurable with m(E) < co. If f,g are

nonnegative bounded measurable functions on E, and o, 8 > 0, then af + Bg is integrable and

(@t @+ 9@ de=a [ f@)de+ s [ go)da.

Proof. Scalar multiplication follows directly from the definition. For addition, partition both
ranges and use a common refinement in the (f, g)-plane. Upper and lower estimates squeeze the

integral of f 4+ g between sums converging to [ f + [ g. O

Theorem 4.1.4 (Monotonicity). Let E C R™ be Lebesque measurable with m(E) < oo. If f,g
are integrable on E and f < g a.e. on E, then

/ f(x)dx §/ g(z) dz.
E E
Proof. Set h=g— f >0 a.e. Then

o fr= oo

70



Theorem 4.1.5. Let E C R™ with m(FE) < oo, and let f be nonnegative, bounded, and measur-
able on E. If

/ f(z)dx =0,
E
then f =0 a.e. on F.

Proof. Left as an exercise. O

Theorem 4.1.6. If f is nonnegative and Riemann integrable on [a,b], then f is Lebesgue inte-

grable on [a,b] and
b
(0 [ fayde=(R) [ fa) .
[a,b] a

Proof. Since f is Riemann integrable, it is bounded. Let {Dy} be nested partitions with mesh

going to 0, and let g, be the step functions built from infima and suprema on partition

or < f < Y, /@k—>/abf, /¢k—>/abf‘

Passing to limits gives equality of the two integrals. O

subintervals. Then

Exercises 4.1

1. Let f be bounded and measurable on R™. Prove that

1@ = [, L

is continuous.
2. Prove that f is Riemann integrable on [a, b] if and only if f is continuous a.e. on [a, b].

3. P220 1,2,3,4,5,6

4.2 Integrals of General Measurable Functions on General Mea-

surable Sets

We now remove boundedness of f and finite-measure assumption on E, while first keeping f > 0.

Definition 4.2.1. Let E C R" be Lebesque measurable and f > 0 measurable on E. Let {E}}

be an increasing measurable exhaustion of E with
oo
Ey C Epy1, m(E) <oo, E= ] E
k=1

Define truncations
[f]m(x) = min{f(m)7 m}
If

lim [flk(z) dz < oo,
k—oo J R,

then f is Lebesgue integrable on E, and we define

/f(m)da:: lim [ [flx(z) de.
E

k—oo J
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The definition must be independent of the chosen exhaustion and truncation indices.

Lemma 4.2.1. Let E C R" be Lebesgue measurable and f > 0 measurable on E. Let {E,(Cj)},

j = 1,2, be two increasing finite-measure exhaustions of E, and let {m,(;)}, 1= 1,2, be increasing

sequences with m,(:) —o0. If

el B [f]mf:) dz < oo,
then
klggo bor [f]m;(f) do = klggo BY [f]m;(cl) de.
Proof. Let
g — klggo 0 [f]m;” dz.

It suffices to prove for every finite-measure measurable A C E and M > 0,
/ [f]ar dz < SO, (4.1)
A
Choose k large enough that M < m,(cl). Then

[ihde< [ )l o+ MmAVELD)

Let £ — oo. Since A\E,il) 1 @, the second term goes to 0, proving (4.1). Taking A = E,E:Q) and
M = mf) yields

i (1)
S /E,<f> g e < 5

By symmetry we get the reverse inequality. ]
Definition 4.2.2. For measurable f : E — RU {£o0}, define

fT =max{f,0}, f~ =max{—f,0}.
These are called the positive and negative parts of f.

By definition,
fl=F"+F"

Definition 4.2.3. Let E C R" be Lebesgue measurable and f : E — R U {z+oo} measurable. If
both f* and f~ are Lebesque integrable, then f is called Lebesgue integrable on E, and

/ f(z)dx :/ fH(z)dx —/ f(z)dz.

E E E

Theorem 4.2.1. Let E C R" be Lebesgue measurable and f measurable on E. Define
E*® = E(z|f(x) = £00).

If f is Lebesgue integrable, then
m(E>) = 0.
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Proof. Since |f| is integrable, for any k,

km(ENE) < [ (flede < [ 1f]da.
Ey E
Let & — oo. [

Theorem 4.2.2 (Finite Additivity in the Region). Let Ey1, E5 C R™ be disjoint measurable sets
and E = E1 U FEs. If f is Lebesgue integrable on E, then f is integrable on E1 and Ea, and

[ sayde = [ fadat [ j(@)do.

Es
Proof. Apply the definition to f* and f~ with the induced exhaustions E; N F}, from an exhaus-
tion {Fy} of E, then subtract. O

Theorem 4.2.3. Let E C R" be measurable. If |f| < F a.e. on E and F is Lebesgue integrable
on E, then f is Lebesque integrable on E.

Proof. From
O§f+§F, 0< fm <F ae.,
we get
/f*S/F<oo, /f*S/F<oo.
E E E E
Hence f is integrable. O

Theorem 4.2.4 (Linearity). Let E C R™ be measurable, f,g € L*(E), and o, 3 € R. Then
af +Bg € LYE) and

[E(Off‘i‘ﬁg)d%:a/Efdx—i-B/Egdx.

Proof. The scaling rule follows from truncations and sign decomposition for v > 0, then for

a < 0 by af = —(|a|f). For addition, first prove for nonnegative functions using

L+ 9la < [l + [glv < f + glam,
then pass to general functions via positive and negative parts. O

Theorem 4.2.5 (Monotonicity). Let E C R™ be measurable and f,g € L*(E). If f < g a.e. on

E, then
/fdxg/gdx.
E E

Proof. Apply linearity to h=9g — f > 0 a.e. O

Corollary 4.2.1. If f € L'(E), then

[ o
E
Theorem 4.2.6. Let E C R" be measurable and f € L'(E) with f >0 a.e. If

< [ 7@l da.

/ f(x)dx =0,
E
then f =0 a.e. on F.

73



Proof. Tt is enough to prove m(E(z|f(z) > «)) = 0 for every a > 0. O

Example 4.2.1. The improper Riemann integral may exist while the Lebesque integral fails due
to lack of absolute integrability. For example, sinz/x on [1,00) is conditionally convergent in

the improper Riemann sense but not Lebesgue integrable on [1,00).

Theorem 4.2.7 (Absolute Continuity of the Integral). Let E C R™ be measurable and f €
LY(E). For every ¢ > 0, there exists 6 > 0 such that for every measurable e C E,

/ef(:n) dx

€
J A1 = [ (17l dw < 5,
E E
and set 6 = ¢/(2kg). Then for m(e) < 9,

m(e) <0 = <e.

Proof. Choose kg so that

J191 [ U81= 170h0) de -+ Bom(e) < =
e E
Hence |, f1 < 1] < a

Theorem 4.2.8 (Countable Additivity in the Region). Let E C R™ be measurable, and let { E}}

be pairwise disjoint measurable subsets with
o
E=J E..
k=1

Then f € LY(E) if and only if:
(1) f € LY(Ey) for all k;
(2)

|f(x)| dz < oo.
Y
Moreover, when f € L*(E),

/Ef(x)dx:kz::l/Ek f(x) dx.

Proof. Necessity: from finite additivity on partial unions and monotonicity for |f|.

Sufficiency: choose an exhaustion F;, of E and define

G = Furr (U B).
k=1

Then .
1=y [ <o
so f € LY(E). The series formula follows by controlling the tail with >~ [, B, 1 f]- O

Corollary 4.2.2. Let f >0 on R" with f € L'(R™). Define

o(B) = [ fla)do
E
for measurable E. Then ¢ is a measure on (R, L™).
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Proof. This follows from ¢(&) = 0, monotonicity, and countable additivity in the region. O

Theorem 4.2.9. If f € L*(E) on measurable E C R"™, then
lim km(E(al|f(z)] > k) = 0.
k—o0

Proof. For each k,

Em(B@f =0 < [ e

E(z||f|=k)

Since m(E(z||f| > k)) — 0 and the integral is absolutely continuous in the region (Theorem
4.2.7), the right side tends to 0. O

For Ej, = E(z|k < f(z) <k +1), one gets
ka(Ek) < 00
k=1

for f € LY(E); conversely, on finite-measure F, this condition implies integrability.

Theorem 4.2.10. Let E C R™ be measurable and f > 0 measurable on E. Then f € L'(E) if

and only if

S(f) def sup{/Eh(x) dr | h < f a.e., and h is simple} < 00.

Moreover, if f € L\(E), then
| sy de = s(7).

Proof. If f € L'(E), monotonicity gives S(f) < [z f. For the reverse inequality, approximate f
by level simple functions on Ej and use truncations. Taking limits yields [, f < S(f). O

Exercises 4.2

1. P221 7,8,9

4.3 Limit Theorems for the Lebesgue Integral

This section presents core limit-exchange results in Lebesgue integration.

Theorem 4.3.1 (Lebesgue Dominated Convergence Theorem). Let E C R™ be measurable. Let
fn, f € LY(E) with either

fo =5 f or fu T f.

Assume there exists F € L'(E) such that
|ful < F  a.ce. on E for all n.

Then
JLH&O/Efn(x)dx:/Ef(m)dx.
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Proof. First |f| < F ae., so f € LY(E). Fix ¢ > 0. Choose measurable E,, C E with

m(Ep) < oo and
€
F<-.
/E\Em 6

On FE,,, convergence in measure and absolute continuity of the integral imply

2e
J =<3

/ o — f] <2 F<t.
E\Em E\Epm, 3

Hence [ |fn — f| < ¢, giving the conclusion. O

for n large. On E\E,,,

Example 4.3.1. Without integrable domination, the conclusion can fail even under uniform

1k, xe|0,k),
fr(z) = { 0. ek oo) z € [0,00).

convergence. Let

Then fr =0, but
/ fr(zx)dx=1+40.
[0,00)

Example 4.3.2. Pointwise a.e. convergence alone is not enough. Let

k, xe€l0,1/k),

Jile) = { 0, zel[l/k1],

on [0,1]. Then fi, “% 0 but
/ Jr(x)de =1+ 0.
[0,1]

Theorem 4.3.2 (Levi’s Lemma). Let E C R™ be measurable, and let {f,} be a monotone
increasing sequence of integrable functions on E (or monotone decreasing, with the analogous
sign condition). If

lim / fn(z)dr < oo,

n—0o0 E

then there exists f € L'(E) such that

a.e

fn =1,

Jgrgo/jEfn(x)dx:/Ef(a:)dx.

Proof. Assume f, 1. Define f(x) = lim,, f,(x), measurable. Apply dominated convergence to

and

truncations on finite-measure exhaustions to show f € L'(E) and identify limits of integrals. [J

Theorem 4.3.3 (Fatou’s Lemma). Let E C R™ be measurable and f, € L*(E).

If there exists h € L*(E) with h < f,, a.e. for all n, then lim fn s integrable and

—n—00

lim fo(e)dz < hm/fn

E n—o0 n—o00

If there exists H € LY(E) with f, < H a.e. for all n, then lim,_, f,, is integrable and

lim / fn(a:)dxg/ lim f,(z)dz
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Proof. For the first statement, define

pr(x) = nf{fp(2), fera(2),. .. }.

Then ¢y, 1 lim f,, and each ¢ € L'(E), with

E n—oo JE

Apply Levi (Theorem 4.3.2) and pass to the limit. The second statement follows by applying
the first to —f;,. O

Remark 4.3.1. The dominated convergence theorem, Levi’s lemma, and Fatou’s lemma are

equivalent in strength.

Example 4.3.3. Without one-sided integrable control, Fatou-type conclusions can fail. A mov-
ing spike sequence on [0,1] with value —k on one 1/k-subinterval and 0 elsewhere has constant

integral —1, but liminf can be —oo.

Theorem 4.3.4 (Vitali-Type Limit Theorem). Let E C R™ be measurable, and let { fy} C L'(E)
satisfy:

(1) (uniform absolute continuity of integrals) for every e > 0, there exists § > 0 independent
of k such that

me) < § —> /|fk|<e;

(2) (uniform decay on the unbounded part) for every € > 0, there exists measurable F C E
independent of k such that
/ | fil <&
E\F

(3) fo S for fp X f on E.
Then
lim /Efk(x) dx = /Ef(x) dzx.

k—o0

Proof. Choose bounded measurable F' C E so the tails on E\F are uniformly small. On F, use

convergence in measure plus uniform absolute continuity to bound

[ 15= 1.

Together with the tail bound and Fatou for f, this gives

15— g0,

hence convergence of integrals. O

Theorem 4.3.5 (Term-by-Term Integration). Let E C R™ be measurable and f, € L*(E) with

;/Eyfn(x)\dx < o0,

Then Y02 fn(z) converges a.e. on E. If
f@) =" falx),
n=1
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then f € LY(E) and
/Ef(x) dx = ,;/Efn(x) dx.
Proof. Set
n=1

Then F,,, T F' and by Levi,

/EFZE/EV,MOO.

So the series converges absolutely a.e. Let S,,, = > 1" fn. Then S,,, = f and |S,,| < F. Apply

dominated convergence. O

Theorem 4.3.6 (Continuity of Parameter-Dependent Integrals). Let EE C R™ be measurable,
B(yo,0) C R™, and
f:E X B(yp,d) > R
with:
(1) for eachy, f(-,y) is measurable on E;
(2) for a.e. x, f(z,-) is continuous on B(yg,J);

(3) there exists F € LY(E) such that |f(x,y)| < F(z) a.e. for all y.
Then

1) = [ flay)de
is continuous on B(yo,?).

Proof. Take yy — y, set gi(x) = f(z,yx) and g(x) = f(z,y). Then g =% g and |gy| < F. Apply

I(yk):/Egk—)/E!]:I(y)-

dominated convergence:

O]

Theorem 4.3.7 (Differentiability of Parameter-Dependent Integrals). Let E C R™ be measur-
able and
f:Ex(a,b) >R
with:
(1) for each y € (a,b), f(-,y) is measurable;
(2) for a.e. x, f(x,-) is differentiable on (a,b);
(3) there exists F € LY(E) such that

a.e. forally € (a,b).
Then

is differentiable on (a,b) and



Proof. Use difference quotients

e CALE RS ()

Then g, 5 0,f(-,y) and |gn| < F a.e. Dominated convergence yields differentiation under the
integral sign. O

Exercises 4.3
1. P185 1,5,6,7
2. P191 11

3. P222 12,18,19,20,21,23

4.4 Relation Between Lebesgue Integrable Functions and Con-

tinuous Functions
Lebesgue integrable functions are closely connected to continuous functions.

Theorem 4.4.1. If f € LY (R"), then for every ¢ > 0 there exists a continuous compactly
supported function g on R™ such that

L @) = g(a) da < <.
R

Proof. Choose k large and M large so that the tail and truncation errors satisfy

[ s
JR7\B(0,k)

By Lusin’s theorem, there exists closed F C B(0,k) with small complement where [f]as is

€

€
<5 Lo (A0 < 5

continuous. Extend continuously to R™ by a compactly supported g with support in B(0, k).
Then split the integral over R™\B(0, k), B(0,k)\F, and F. O

Remark 4.4.1. This means every L' function can be decomposed into a compactly supported

continuous part plus an arbitrarily small L' remainder.

Corollary 4.4.1. If f € L'(R"), then

im [ If@ ) - @) de =0,

Proof. Left as an exercise. O
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4.5 Fubini Theorem

In this section we study the relation between multiple and iterated integrals, and when integra-

tion order can be exchanged.

Theorem 4.5.1 (Tonelli Theorem). Let f(x,y) > 0 be Lebesgue measurable on R™ = RP x RY.
Then:

(A) for a.e. x € RP, f(x,-) is measurable on RY;

(B)

)= [ fo.y)dy
Ra

is measurable on RP;

(©)

/ flz,y)dxdy = F(x)dx.
Rn Rp

Define
F ={f > 0 measurable on R" | f satisfies (A), (B), (C)}.

Lemma 4.5.1. For F above:
(1) if f € F and a > 0, then af € F;
(2) if f,g€ F, then f+g€ F;
(3)if f,g€ F, g€ L*(R"), and f —g >0 a.e., then f — g € F;
(4) if fr € F and fr, T f a.e., then f € F.

Proof. (1) and (2) are immediate. For (3), use finiteness of the section integral of g a.e. and
linearity of section integration. For (4), apply Levi in R™ and then in R? to pass limits through
both integrals. O

Proof of Theorem 4.5.1. Start with indicator functions of rectangles I; x I, for which all state-
ments are explicit. Then extend to open sets, closed sets, null sets, and general measurable sets
by the good-set principle and monotone approximation. Next extend from indicators to simple
functions, and then from simple functions to arbitrary nonnegative measurable functions using
Lemma 4.5.1. [

Remark 4.5.1. 1. The roles of p and q are symmetric, so integration order can be exchanged
under Tonelli assumptions.

2. The theorem also holds on any measurable subset E C R™ by replacing f with fxg.

Theorem 4.5.2 (Fubini). Let f € L}(R") on R® = RP x R4. Then:
(A) for a.e. x € RP, f(z,-) is measurable on RY;

(B)
Pa) = [ fay)dy

is measurable on RP;

(©)
/Rnf(x’y)dxdy:/Rq/Rpf(JU’y)dxdy:/W/qu($>y)dyd$-

Proof. Apply Tonelli theorem to f and f~ separately and subtract. O
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Definition 4.5.1 (Section). Let E C R" = RP x R%. For each x € RP, define
E(x) ={y e R?| (z,y) € E}.

This is the section of E at x. If E is Lebesque measurable, Tonelli implies: for a.e. x, E(x) is

measurable, m(E(x)) is measurable in x (defined a.e.), and

m(E) = . m(E(x)) dx.

Remark 4.5.2. Similarly one defines E(y); these are sometimes denoted by E, and EY.
Corollary 4.5.1. Let f > 0 be measurable on measurable E C R", and define
EY = E(z|f(x) > y).
Then -
/ flx)dx = / m(EY) dy.
E 0

Proof. Consider
D={(z,y) [z B, 0<y< f(z)}

By Fubini/Tonelli, compute m(D) first by integrating in y, then in z, to obtain the layer-cake

formula. ]

Corollary 4.5.2. If A C RP and B C R? are Lebesque measurable, then A x B C R" is
measurable and
m(A x B) =m(A)m(B).

Proof. Apply Tonelli to xaxp(x,y) = xa(z)xs(y). O
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Chapter 5

Measure Derivatives and the

Newton-Leibniz Formula

At the beginning of this chapter we introduce an abstract measure class and then develop

differentiation of measures and applications.

Definition 5.0.1 (Radon Measure). A measure p on a topological space containing all Borel
sets is called a Radon measure if it is inner reqular and locally finite. Inner reqular means: for

every measurable set F,
w(E) =sup{u(F) | F C E, F closed}.
Locally finite means: for every x, there is an open neighborhood U of x with p(U) < oco.

Our discussion in this chapter is centered around Radon measures.

5.1 Vitali Covering Theorem

Definition 5.1.1 (Vitali Covering). Let E C R"™, and let F be a family of closed balls in R™.
We call F a Vitali (fine) cover of E if for every x € E and every € > 0, there exists BS € F
such that

x € B

x’

diam(BS) < e.
If F is a fine cover of E, then
Fs ={B € F|diam(B) < ¢}

is also a fine cover of E.
If additionally p*(E) < oo and there exists open G D F with u(G) < oo, then

F§ ={BeF|BcCQG, diam(B) < 4}
is still a fine cover of F.
Theorem 5.1.1 (Vitali). Let F be a family of nondegenerate closed balls in R™ with
d* = sup{diam(B) | B € F} < cc.
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Then there exists an at most countable disjoint subfamily G C F such that

where B is the concentric ball with radius 5 times that of B.

Proof. Partition F by dyadic diameter levels and choose maximal disjoint subfamilies induc-
tively. Any remaining ball at level k£ + 1 must intersect a previously chosen ball of level at most
k + 1. The diameter comparison yields containment inside a 5-dilate of the chosen intersecting
ball. n

Corollary 5.1.1. Let E C R"™ and let F be a fine cover of E by closed balls, with bounded

diameters. Then there exists a countable disjoint subfamily G C F such that for every finite

subset
{Bl,...,Bk} cg,
one has i
E\ U Bj C U E
Jj=1 BeG\{Bi,...,Bx}
Proof. Apply Theorem 5.1.1 to the remaining part after removing finitely many selected balls.

O

Corollary 5.1.2. Let p be a nonnegative Radon measure on R"™, let E C R™ with u*(E) < oo,

and let F be a fine cover of E. Then for every e > 0, there are finitely many pairwise disjoint
balls By, ..., By € F such that

w8\ U B) < =
j=1

Proof. Restrict to balls contained in an open G D E with finite measure, use Corollary 5.1.1,

and then use countable additivity and tail control of measure. O

Corollary 5.1.3. Let u be a nonnegative Radon measure on R™, let E C R", and let F be a
fine cover of E. Then there is a countable disjoint family {B;} C F such that

i (B E_j B;) =0.

Proof. Localize on bounded annuli, apply Corollary 5.1.2 on each localization with geometric

errors, then add a final fine-cover selection on the remainder. O

Remark 5.1.1. 1. These results play the same role as finite covering arguments in classical
analysis: local estimates on balls are upgraded to global statements by almost full disjoint-ball
COVerings.

2. Compare the strength of the four statements carefully. Theorem 5.1.1 assumes only a
bounded-diameter ball family and gives coverage after dilation. Corollary 5.1.8 requires fine

covering and yields measure-theoretic almost-full coverage by disjoint original balls.

Exercises 5.1

1. P248 1,2
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5.2 Hahn Decomposition Theorem

Definition 5.2.1 (Positive Set, Negative Set). Let o be a Radon measure on R™. A set A C R"

is called positive for p if for every pu-measurable E,
p(ANE) >0.

A set B C R™ is called negative for p if for every p-measurable E,
w(BNE)<O0.

Remark 5.2.1. If A is positive, then A is measurable and p(A) > 0. But u(A) > 0 alone does

not imply A is positive.
The goal is to decompose R" into one positive and one negative part.

Lemma 5.2.1. Let p be a Radon measure on R™.
(1) If A1, Ag are positive sets, then Ay U Aa, A1 N Ag, and A1\ Az are positive.
(2) If By, By are negative sets, then By U By, B1 N By, and B1\ B2 are negative.

(3) If A is positive and B is negative, then for every measurable F,
wWENANB)=0.

Proof. For (1), use set decompositions of intersections and sign constraints term by term. Part

(2) follows from (1) by replacing p with —p. Part (3) is immediate from both inequalities. [

Theorem 5.2.1 (Hahn Decomposition Theorem). For any Radon measure p on R™, there exist

a positive set A and a negative set B such that
ANnB=w@, R"=AUB.
Proof. Work first on each annulus
My ={zeR" |k <|z| < k+1}.

Take the infimum of p over negative subsets of My, build an increasing sequence of negative sets
approaching this infimum, and pass to the union. The complement is then shown to be positive

by contradiction using maximality of the infimum and Lemma 5.2.1. Combine annuli. O
Remark 5.2.2. Define
wH(E) = w(ENA), p(E) = —p(ENB).

Then
po=pt—p
This is the Jordan decomposition of a signed Radon measure.
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5.3 Derivatives of Radon Measures

We now extend the derivative concept from analysis to Radon measures.

Definition 5.3.1 (Derivative). Let v, i be nonnegative Radon measures on R"™. For each x € R",
define

T I/(B(.CU,T)) T.r r
Dov(a) = 4 A q(Bla,ry) MP@m) =090,
00, Ir > 0 with p(B(x,r)) =0,
o YE@)
D, v(x)= rLo+ u(B(z,r))’ #(B(@,r)) > 0 ¥r >0,
00, Ir > 0 with w(B(z,r)) = 0.

If upper and lower derivatives coincide, we denote the common value by
D,v(x).

Example 5.3.1 (Average Value for Continuous Density). Let f > 0 be continuous and locally

integrable on R™. Let u = m (Lebesgue measure) and

V(E):/Ef(a?)dx.

Then
fB(w) f(y)dy — f(a).

Lemma 5.3.1. Let v, u be nonnegative Radon measures on R™.

Duv(a) =l = B )

(1) If
Ec{zeR"|D,v(r) <a},
then
vV'(E) <aup*(E).
(2) If
Ec{zeR"|Dyv(z) > b},
then

v (E) > bu*(E).

Proof. Use Vitali covering selections built from balls where the local ratio is near the liminf or

limsup threshold, then apply Corollary 5.1.3 and countable additivity. O

Theorem 5.3.1. Let v, u be nonnegative Radon measures on R™.
(1) Dyv exists and is finite pi-a.e. on R™.

(2) Dyv is p-measurable.

Proof. For existence and finiteness, apply Lemma 5.3.1 to sets where D,v = oo and where
D,y < Eul/. Both have zero p-measure. For measurability, approximate derivatives through

measurable ball-measure maps
v v(B(z,), @ p(B(a,r)).
Then pass to limsup/liminf operations. ]
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For a measurable set E with u(FE) > 0, write

][Efduzu(lE)/Efdﬂ-

Theorem 5.3.2 (Average Value Theorem). If f € L (R™), then

lim fy)dy = f(z)
r=UJB(z,r)

for a.e. x € R™.

Proof. This is the Lebesgue differentiation theorem. Approximate f in LlloC by continuous

functions and apply Lemma 5.3.1 to the error measure. O

Remark 5.3.1. A stronger form is

1)~ f@)ldy =0

a.e. Such points are called Lebesgue points.

Corollary 5.3.1. Let E C R™ be Lebesque measurable. Then for a.e. x € E,

lim m(E N B(x,r))

70 m(B(z,1)) =L

Proof. Apply Theorem 5.3.2 to f = xg. O

Remark 5.3.2. For positive-measure nowhere-dense perfect sets, the pointwise ratio is always
< 1 for each fized r > 0, yet the limit above is still 1 a.e.

Exercises 5.3
1. Let {zx},{yx} C R™ be discrete sequences and define

HE) = Y ben(B) 4 m(E), v(E)= Y 5, (B).
k=1 k=1

Find D,v(x).

5.4 Radon-Nikodym Theorem

For Radon measures we have the analog of the Newton-Leibniz principle.

Definition 5.4.1 (Absolute Continuity). Let v, be Radon measures on R™. We say v is

absolutely continuous with respect to p (written v < p) if for every measurable E,
[ul(E) =0 = [v|(E) =0,
where |p| = pu™ 4+ p=. When p > 0, this is equivalent to u(F) =0 = v(E) = 0.
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Theorem 5.4.1 (Radon-Nikodym). Let p be a nonnegative Radon measure on R", and let v
be a Radon measure with v < p. Then there exists a locally p-integrable function f such that

for every measurable E C R"™,

v(E) = / fdu= / D,vdp. (5.1)
E E
Proof. Step 1: every u-measurable set is v-measurable under v < p.
Step 2: for
E* ={D,v =00}, Eg={D,v =0},
prove
v(E™®) = D,vdp, v(Ep) = D,vdp.
Eoe Ey

Step 3: decompose any measurable E into derivative level sets
Ey={z € E|Dy(z) € [t",t" ™)}, t>1,
and sandwich v(E) between ¢ [ D,vdyp and t=' [ D,vdu. Let t — 1. O

Corollary 5.4.1. Let i be a nonnegative Radon measure on R™ and let f € L (). Then

loc

lim f(y)du = f(z)
r—=0JB(z,r)

for p-a.e. x.

Proof. Apply Theorem 5.4.1 to the signed measure

V(E):/Efdﬂ-

Then f = D,v a.e. O

D, </fdu) —f aec

so measure differentiation is the inverse of integration.

Remark 5.4.1. Formally,

Definition 5.4.2 (Mutual Singularity). Let v, be nonnegative Radon measures on R™. We

write v L u if there exists measurable B C R™ such that
W(R™B) =0, v(B)=0.
Remark 5.4.2. In general, singularity does not imply absolute continuity.

Theorem 5.4.2 (Lebesgue Decomposition Theorem). Let p > 0 be a Radon measure on R",

and let v be a Radon measure. Then
V = VAC + Vs,
where vac < 1 and vy L p.
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Proof. Define
&= {ACR" | u(R"\A) = 0},

choose B € £ minimizing v(A) over £ (via infimizing sequence and intersection), and set
vac =v|p, Vs= V’]R”\B'
Minimality gives vac < u, while vs L u follows from definition of £. O
Remark 5.4.3. For nonnegative p,
D,v = D,yvpc p-a.e., Duvs=0 p-a.e.
under the theorem assumptions.

Example 5.4.1. With u=m on R,
W(E) = [ @) dut Y e (B)
i=1

is the sum of an absolutely continuous part and a singular atomic part.

Exercises 5.4

1. Does there exist a non-atomic Radon measure singular to Lebesgue measure?

5.5 Monotone Functions and Functions of Bounded Variation

5.5.1 Monotone Functions

This section parallels the previous one because a monotone function induces a measure.
Theorem 5.5.1. Let f be monotone increasing on [a,b]. Then f is differentiable a.e. on [a,b].

Example 5.5.1 (Monotone Function Discontinuous on a Dense Set). Let Y (ay, + 8,) < oo with
an, Bn >0, let {z,} = Q, and define

f(z) = Z anHo(x — xp) + Z BnHi(x — ),

n=1 n=1
where
1, >0,
0, =<0,

1, >0,
0, =<0O.

Ho(z) = { Hy(z) = {
Then f has dense discontinuities but is still differentiable a.e. by Theorem 5.5.1.

Remark 5.5.1. For background on the Heaviside function, see [4].
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Lemma 5.5.1. Let f be monotone increasing on |a,b]. If

E Cc{z €la,b] | Df(z) < a},

then
[*(E) < am*(B).
If
Ec{aeab | D) > B},
then
fH(E) =z Bm*(E),
where
. x+h)— flz) — — flz+h)— f(z
Drte) = i LEEN A0 i Sae ) f)

and f*(E) = m*(f(E)).

Proof. Construct fine covers by intervals on which difference quotients satisfy the desired bound,

apply Vitali covering, and estimate image measure by interval lengths. O

Proof of Theorem 5.5.1. Define
E>® ={Df = c}.
By Lemma 5.5.1, m(E*°) = 0. For
Ej={Df <a<p<Df},

Lemma 5.5.1 gives
B (EZ) < f*(BS) < am*(EY),
so m(E?) = 0. Take countable rational pairs o < 3. O

Theorem 5.5.2. If f is monotone increasing on [a,b], then

b
[ f@ds < 10) - f@.
Proof. Use difference quotients

WENELCE T BT

then apply Fatou/Levi type passage and monotonicity bounds. ]

Theorem 5.5.3 (Fubini Term-by-Term Differentiation). Let fi be monotone increasing on |a, b],

and suppose Y roq fr(x) converges a.e. on [a,b]. Then
d o0 o0
(X h@) =Y fi@)
k=1 k=1
a.e. on [a,b.

Proof. Set S =5 fr, so S is monotone and differentiable a.e. Then write
S'(x) =Y filz) + (@),
k=1

with 7, = >72,41 fk- Show 7, | 0 a.e. via Theorem 5.5.2 and convergence of the tail at

endpoints. Let n — oo. ]

90



5.5.2 Functions of Bounded Variation

Definition 5.5.1 (Function of Bounded Variation). Let f be finite-valued on |a,b].

partition

define

If
\/(f) = Sup{\/(A) | A partition of [a,b]} < oo,

a

then f € BV[a,b] and \/°(f) is called total variation.

Example 5.5.2. Fvery bounded monotone function on [a,b] is in BV][a,b], and

Example 5.5.3. If f is Lipschitz on [a,b] with constant L, then f € BV [a,b] and
b

\/(f) < Llb—al.

a

Example 5.5.4 (Continuous but Not of Bounded Variation).

1
in| — € (0,1
xsm<$2>, x € (0,1],

0, z=0.

fz) =

Theorem 5.5.4. Functions in BV [a,b] satisfy:
(1) boundedness;

(2) linear closure and

b

b b
V(af +Bg) < lal\/(£) +181\/(9)

(3) pmduct closure with standard estimate;

(4) Vo (f) =0 < f constant;

(5) restriction monotonicity on subintervals;

(6) additivity of total variation at a split point c:
b c b
V) =V + Vi
a a c

For a



Proof. Only (6) and (7) are nontrivial here. For (6), refine partitions by inserting ¢ and pass to

suprema in both directions. For (7), for each fixed partition pass limit inside finite sums:
yun:gg;yuMSAm

then take supremum over A. ]

Remark 5.5.2. Property (6) implies

T

z = \/(f)

a

18 monotone increasing.
Theorem 5.5.5 (Jordan Decomposition Theorem). If f € BV]a,b] and

o@) = (VD +7@). hw) = L (V) - @),

then g, h are increasing on [a,b] and

f=9—h
Proof. For z <y,
) — (o) < \i/(f) _ \j/(f) -V,
which gives monotonicity of both \/(f) + f(x). 0

Corollary 5.5.1. If f € BV]a,b], then its discontinuity set is at most countable, f is differen-
tiable a.e., and f' € L'[a,b].

Theorem 5.5.6. If f € BVla,b], then f and \/5(f) have the same continuity/discontinuity

points, and at each discontinuity xo the one-sided oscillations satisfy

T

w;f(a:o) = lim+ |f(x) = f(zo)| = lim+ \/(f),

Ty T=TG g

wy (wg) = lim |f(x) = f(wo)l = lim \/(f).

T T=TG xg

Proof. One inequality is immediate from
() = f(wo)l < \/(f)-
o

The reverse inequality follows by choosing near-optimal partitions and isolating the first subin-
terval. O

Theorem 5.5.7. If f € BV|a,b|, then

a.e. on [a,b.

92



Proof. Approximate variation by piecewise monotone envelopes and use the term-by-term dif-

ferentiation theorem (Theorem 5.5.3) on a suitable positive series of monotone error terms. [

Remark 5.5.3. Consequently,
b b
[ 1r@)lds < V).
a a

Theorem 5.5.8 (Hally). Let F C BV]a,b] with

b

sup (|£(a)| + \/(f)) < M.

fer a

Then every sequence in F has a subsequence converging pointwise to a function in BV [a,b).

Proof. First handle monotone families via diagonal extraction on rational points. Extend limits
by monotonicity and adjust values at countably many discontinuities. Then reduce general BV

case through Jordan decomposition. O

Exercises 5.5
1. P255 10,11,12
2. P281 11

3. P283 7,8

5.6 Absolutely Continuous Functions
This section gives necessary and sufficient conditions for the Newton-Leibniz formula.

Theorem 5.6.1. If f € L'[a,b] and

Fa) = | C ey at,

then F' is differentiable a.e. and

Proof. Write . .
Fz) = / £t — / £ () dt.

Then F' € BV]a,b], hence differentiable a.e. Use approximation of f by continuous functions in

L' together with variation estimates to conclude F’ = f a.e. O

Definition 5.6.1 (Absolute Continuity). A real-valued function f on [a,b] is absolutely contin-
wous if for every e > 0 there exists § > 0 such that for every finite family of pairwise disjoint

intervals

[xlvyl]a M) [mnayn] C [a, b],
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then
-21 |f(yi) = flai)| <e.
The class is denoted by AC|a,b]. -
Lemma 5.6.1 (Singular Function). Suppose f is nonconstant on [a,b], differentiable a.e., and
f'(z)=0 ae.
Then f ¢ AC|a,b].

Proof. If f were absolutely continuous, then by definition and Vitali-type interval selection
one obtains arbitrarily short disjoint interval families with arbitrarily small total increment,

contradicting nonconstancy under f' =0 a.e. O

Theorem 5.6.2. (1) If f € ACla,b], then f € Cla,b].
(2) If f,g € ACla,b] and o, 8 € R, then af + g € AC[a, ).
(3) If f € ACla,b], then f € BV][a,b).
(4) If f € L'[a,b] and

Fa) = [ s
then F € AC|a,b. '
Proof. Standard and omitted. O

Now let f € AC]a,b] and define

o) = [ foa

By part (4) of Theorem 5.6.2, g € AC[a,b]. Hence h = g — f € ACJa,b]. By Theorem 5.6.1,
W(z)=g¢'(z)— f'(x) =0 a.e.
and by Lemma 5.6.1, A must be constant. Therefore
f(z) = /m f'(t) dt + const.

Evaluating at x = b yields: '
Theorem 5.6.3 (Newton-Leibniz). If f € AC|a,b], then

10 - 1@ = [ fwa
For a.e. differentiable f with f’ € L'[a,b], define
fu@) = f@) = [ Foae
Then f/(z) =0 a.e., s
f@) = [ £ dt+ fle) = frclo) + )

which is the decomposition into absolutely continuous and singular parts.

This parallels the Radon-Nikodym section. Compare the two frameworks.
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Appendix

A Another Construction of Lebesgue Measure

Below we reconstruct Lebesgue measure from the viewpoint of abstract measure theory.

Measurable Sets and Measures

Definition A.1 (Measurable Space). Let X be a nonempty set, and let M be a o-algebra on
X. Then the pair (X, M) is called a measurable space.

Definition A.2 (Measure). Let (X, M) be a measurable space. A function p: M — [0, +00]

1s called a measure on this measurable space if it is countably additive.
Remark A.1. Naturally, we assume that p is not identically +o0.

Proposition A.1. Let (X, M) be a measurable space, and let i1 be a measure on it. Then p

has the following properties:
(1) (@) = 0;
(2) finite additivity;
(3) monotonicity;
(4) continuity from below: if Ay C Ay C -+, then

Jim p(A, (UA)

(5) continuity from above: if Ay D Ag D -+ and u(Ay) < +oo, then

i 4 = ([ 42)
Now let us look at some examples of abstract measures.

Example A.1 (Counting Measure). Take the measurable space (X, P(X)). Define p: P(X) —
NU {oo} by mapping each set A to its cardinality.

Remark A.2. In fact, all series theory can be viewed as integration theory for counting measure.

Example A.2 (Dirac Measure). If x € E, then 6,(F) = 1. If v ¢ E, then §,(E) = 0.
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average value theorem, 87 Fubini theorem, 80

average value theorem for nonnegative contin- function of bounded variation, 91

uous functions, 86
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Hahn decomposition theorem, 85
Hally theorem, 93

Heine-Borel theorem, 21

Bolzano—Weierstrass theorem, 18
Borel measurable function, 56
Borel ring, 31
boundary, 20 . )
. increasing measurable sequence, 46
boundary point, 20 . . i
interior point, 18

bounded variation, 2 . .
isolated point, 20

Cantor function, 29
Cantor middle-third set, 27

Cauchy sequence in measure, 65

Jordan decomposition theorem, 92

Lebesgue decomposition theorem, 88

characterization of function discontinuities, 15 Lebesgue dominated convergence theorem, 75

)
characterization of measurable functions, 66
closed set, 20

closure, 20

Lebesgue integral, 3, 69, 72
Lebesgue measurable function, 55

Levi lemma, 76

compact set, 22 limit point, 19

compact support, 25 Lindeloff property, 21

component interval, 19 Lusin theorem. 59
)

continuous extension, 23

continuous function, 22 negative set, 85
convergence in measure, 63 Newton-Leibniz formula, 94
countable set, 15 non-Borel Lebesgue measurable set, 53

nowhere dense set, 28
decreasing measurable sequence, 47

dense, 21, 28 open set, 18
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parameter-dependent integral continuity, 78

path connectedness, 19
perfect set, 28

positive set, 85

Radon measure, 83
Radon-Nikodym theorem, 88
rectifiable curve, 2
refinement cover, 20
Riemann integral, 2

Riesz theorem, 64

ring, 33

second countable, 21

section, 81

semicontinuity, 26

separable, 21

simple function, 57

singular function, 94

singularity, 88

structure theorem of open sets in R™, 19

support, 25

term-by-term integration, 77
Tietze extension theorem, 24
Tonelli theorem, 80

true in measure, 63
Urysohn lemma, 25

Vitali covering, 83

Vitali-type limit theorem, 77
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