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Overview

From a narrow perspective, real analysis studies the calculus of real-valued functions of one (or
several) real variables. Unlike elementary calculus, we often encounter “pathological” functions.
From a broader perspective, most topics in real analysis can be extended to abstract measure
spaces. The core subjects are Lebesgue measure theory and Lebesgue integration theory. The
Riemann integral is usually regarded as a classical integral, while the Lebesgue integral is viewed
as modern integration. It is a foundation of modern analysis (modern partial differential equa-
tions, functional analysis, harmonic analysis, ...), and also a foundation of probability theory
and stochastic analysis.

Real analysis combines rigorous logical reasoning with rich geometric intuition. At the same
time, many exercises are difficult and require deep analytical thinking.

0.1 Limits of Continuous Functions

Let {fn} be a sequence of continuous functions on [0, 1], and suppose lim
n→∞

fn(x) = f(x) for
every x ∈ [0, 1]. If this convergence is uniform, then naturally f is also continuous on [0, 1].

However, without the assumption of uniform convergence, the situation is completely differ-
ent. In fact, we can construct a sequence {fn} such that

• 0 ⩽ fn(x) ⩽ 1,∀x ∈ [0, 1];

• {fn} is monotone decreasing in n;

• the limit function f is not Riemann integrable.

Even so, under the first two assumptions, one can verify that
∫ 1

0 fn(x) dx converges to a
limit. Naturally, we ask: how can we define a new integral so that∫

[0,1]
f(x) dx = lim

n→∞

∫ 1

0
fn(x) dx

holds?
Related results will appear in 3.3 and 4.3.

0.2 Length of Curves

In mathematical analysis, we study plane curves and compute their lengths. Let Γ be a continu-
ous curve in the plane, given by the parametric form Γ = {(x(t), y(t)), a ⩽ t ⩽ b}, where x(t) and
y(t) are continuous in t. We usually define the length of Γ as the supremum of polygonal lengths
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obtained by joining finitely many points on Γ in increasing order of t. When this supremum is
finite, we call Γ rectifiable. If x(t) and y(t) are continuously differentiable, we have

L =
∫ b

a

√
(x′(t))2 + (y′(t))2 dt. (1)

For a general curve, we ask:

1. Under what conditions on x(t) and y(t) can we guarantee that Γ is rectifiable?

2. When those conditions hold, is formula (1) valid?

The first question has a complete answer: the curve is rectifiable if and only if x(t) and
y(t) are of bounded variation. Then the second question becomes: when x(t) and y(t) are of
bounded variation, the integral in (1) is always meaningful. In general, however, the equality
does not always hold as stated, though it can be made valid after choosing a new parameter.

For bounded variation functions and the validity of (1) (that is, differentiability of bounded
variation functions and integrability of their derivatives), see 5.5.2.

0.3 Differentiation and Integration

The fundamental theorem of calculus states that differentiation and integration are inverse
operations. It has two forms:

F (b) − F (a) =
∫ b

a
F ′(x) dx, (2)

d

dx

∫ x

0
f(t) dt = f(x). (3)

For the first formula, however, we can find continuous functions F that are nowhere differ-
entiable, or functions for which F ′(x) exists everywhere but is not Riemann integrable. These
issues motivate us to find a broader class of functions F for which (2) remains valid.

For (3), the question is: how can we establish this identity for a broader class of integrable
functions? To answer this, we need a covering theory and the notion of absolutely continuous
functions; see 5.1 and 5.6.

0.4 Limitations of the Riemann Integral

Definition 0.4.1 (Riemann Integral). Let f(x) be a bounded function on [a, b], and take a
partition

∆ : a = x0 < x1 < x2 < · · · < xn = b,

with Riemann sum

S(f,∆) =
n∑

i=1
f(ξi)(xi − xi−1),

where ξi ∈ [xi−1, xi]. If there exists a constant I such that for every ε > 0, there exists δ > 0
and whenever

|∆| def.= max
1⩽i⩽n

{xi − xi−1} < δ, (4)
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we have
|S(f,∆) − I| < ε,

then f(x) is called Riemann integrable on [a, b], and I is called the Riemann integral of f(x) on
[a, b], denoted by

(R)
∫ b

a
f(x) dx.

When no confusion can arise, the (R) on the left is omitted.

Remark 0.4.1. In topological language, the convergence defined by (4) is called convergence of
a net.

The integrability problem is central in Riemann integration. Although the Darboux theorem
gives a necessary and sufficient criterion for integrability of f(x) on [a, b], it is still very difficult
to classify integrable functions directly from that criterion.

Example 0.4.1 (Dirichlet Function).

D(x) =

1, x ∈ Q ∩ [0, 1],

0, x ∈ [0, 1]\Q,
(5)

is not Riemann integrable.

In addition, the class of Riemann integrable functions is not complete. If we impose extra
conditions, we get the following bounded convergence statement.

Example 0.4.2. Let fn(x) be a sequence of Riemann integrable functions on [a, b], and suppose
(1) there exists M > 0 such that |fn(x)| ⩽M for all x ∈ [a, b];
(2) there exists a real-valued function f(x) on [a, b] such that for all x ∈ [a, b],

lim
n→∞

fn(x) = f(x).

Question: is f(x) Riemann integrable on [a, b]?

Remark 0.4.2. If f(x) is Riemann integrable, then

lim
n→∞

(R)
∫ b

a
fn(x) dx = (R)

∫ b

a
f(x) dx.

Finally, in Riemann integration, the conditions for exchanging limits and integrals, and for
iterated integration, are complicated. To overcome these limitations, we need to “design” a new
integral: the Lebesgue integral.

0.5 Lebesgue Integral and Lebesgue Measure

Definition 0.5.1 (Lebesgue Integral). Let f(x) be a real-valued function on [a, b] satisfying

m ⩽ f(x) < M,

and let
∆ : m = y0 < y1 < y2 < · · · < yn = M.
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Define
Ei = {x ∈ [a, b] | yi−1 ⩽ f(x) < yi},

and form

SL(f,∆) =
n∑

i=1
ξim(Ei),

where ξi ∈ [yi−1, yi) is arbitrary. If there exists a constant I such that for every ε > 0, there
exists δ > 0 and whenever

|∆| def.= max
1⩽i⩽n

{yi − yi−1} < δ,

we have
|SL(f,∆) − I| < ε,

then f(x) is called Lebesgue integrable on [a, b], and I is called the Lebesgue integral of f(x) on
[a, b], denoted by

(L)
∫

[a,b]
f(x) dx.

When no confusion can arise, the (L) on the left is omitted.

The following two questions are essential:

• What is m(Ei)? It generalizes the notion of length and is called Lebesgue measure.

• How is m(Ei) defined? What properties does it satisfy? Which sets can be assigned
Lebesgue measure?

Example 0.5.1 (Lebesgue Integral of the Dirichlet Function). Since the Dirichlet function (5)
has only two isolated values, 0 and 1, we have

S∗
L(D,∆) = m

(
Q ∩ [0, 1]

)
.

Then what is the “length” of the set of all rational numbers in [0, 1]?

Proposition 0.5.1 (Relation Between the Lebesgue and Riemann Integrals). If f(x) is Riemann
integrable on [a, b], then f(x) is Lebesgue integrable on [a, b], and

(L)
∫

[a,b]
f(x) dx = (R)

∫ b

a
f(x) dx.

Measure theory is built on the foundation of Cantor’s set theory. It began with work of
G. Peano and C. Jordan. Following the model of Riemann integration, Jordan established
integration on Jordan measurable sets, but this class has a major defect: there exist open sets
that are not Jordan measurable. Later, Borel further developed measure theory and established
Borel measure on the class generated from open and closed sets by basic operations such as
intersections, unions, and differences (the Borel class, a σ-ring).

Lebesgue established measure theory on a larger class of sets. He proved that Lebesgue
measurable sets form a σ-ring and clarified the relationship between Borel measurable sets and
Lebesgue measurable sets. Further development of measure theory relied on work by Riesz,
Caratheodory, and others.
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Chapter 1

Sets and Point Sets

G. Cantor (1845–1918) is the founder of set theory. He introduced concepts such as cardinality,
accumulation points, open sets, and closed sets, and proved that transcendental numbers are
far more numerous than algebraic numbers. Cantor’s descriptive definition of a set is: when all
objects sharing a certain property are regarded as a whole, that whole is called a set, and those
objects are called elements of the set.

Definition 1.0.1 (Paradox). An argument is called a paradox if it leads to a conclusion opposite
to common judgment, while it is difficult to provide a justified refutation.

Definition 1.0.2 (Fallacy). A statement is called a fallacy if both the statement and its negation
can be proved by seemingly logically equivalent reasoning, and no error in the derivation can be
identified.

Cantor’s descriptive definition of sets leads to the famous Russell paradox (1903).

Example 1.0.1 (Russell Paradox). Let

E = {x|x ∈ x},

then
E ∈ E ⇔ E /∈ E.

1.1 Set Operations

The basic operations on sets are well known; we give only a simple example.

Example 1.1.1. Let f : [a, b] → R1. Then

[a, b] =
∞⋃

n=0

{
x

∣∣|f(x)| ⩽ n
}
,

{
x

∣∣|f(x)| > 0
}

=
∞⋃

n=1

{
x

∣∣|f(x)| ⩾ 1
n

}
.

Besides intersection, union, and difference, we also define symmetric difference and limit
operations for sets.
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Definition 1.1.1 (Symmetric Difference). Let A, B be sets. Define

C = (A\B) ∪ (B\A),

called the symmetric difference of A and B, denoted by A△B.

To motivate the definition of set limits, let us recall limsup and liminf for sequences. Let
{an} be a real sequence and define

bk = sup
i⩾k

ai,

then {bk} is monotone decreasing and hence convergent. We define

lim sup
n→∞

an = inf
k
bk = inf

k
sup
i⩾k

ai.

Similarly, we define upper and lower limits of a sequence of sets.

Definition 1.1.2 (Limit Set). Let {Ak} be a sequence of sets. The set

∞⋂
j=1

∞⋃
k=j

Ak

is called the upper limit set of {Ak}, denoted by lim
k→∞

Ak or lim sup
k→∞

Ak. The set

∞⋃
j=1

∞⋂
k=j

Ak

is called the lower limit set of {Ak}, denoted by lim
k→∞

Ak or lim inf
k→∞

Ak. If

lim
k→∞

Ak = lim
k→∞

Ak,

then this common set is called the limit set of {Ak}, denoted by lim
k→∞

Ak.

Remark 1.1.1. In fact, set inclusion forms a partial order. For any partially ordered set, one
can define suprema and infima, and therefore limsup and liminf analogously. Here,

∞⋃
k=j

Ak is the

supremum of {Ak}∞
k=j.

Now let us look at a basic example.

Example 1.1.2. Let

Ak =

[−1, 1] ∪ [1, 2], k even;

[−1, 1] ∪ [−2,−1], k odd.

Then
lim

k→∞
Ak = [−2, 2], lim

k→∞
Ak = [−1, 1].

Think: 1. For an arbitrary sequence of sets {Ak}, do the upper and lower limit sets always
exist?

2. Assume lim
n→∞

xn = x and lim
n→∞

rn = r. Study limsup and liminf for the family of n-
dimensional balls

{
B(xn, rn)

}
.
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Definition 1.1.3 (Monotonicity). Let {Ak} be a sequence of sets. If for every k ∈ N,

Ak ⊆ Ak−1, (Ak ⊇ Ak−1),

then {Ak} is called monotone increasing (decreasing), and both are called monotone sequences
of sets.

Theorem 1.1.1. Let {Ak} be a monotone sequence of sets. Then

lim
k→∞

Ak = lim
k→∞

Ak.

Proof. Consider the monotone increasing case. First, for fixed j ∈ N,

∞⋂
k=j

Ak ⊆
∞⋃

k=l

Ak, l = 1, 2, · · · .

Hence
∞⋂

k=j

Ak ⊆
∞⋂
l=l

∞⋃
k=l

Ak.

Since j is arbitrary,
∞⋃

j=1

∞⋂
k=j

Ak ⊆
∞⋂
l=l

∞⋃
k=l

Ak.

Conversely, for any x ∈
∞⋂

l=1

∞⋃
k=l

Ak,

x ∈
∞⋃

k=l

Ak, l = 1, 2, · · · .

So there exists some ki such that x ∈ Aki
. Because {Ak} is monotone increasing, for k > ki we

have x ∈ Ak, hence

x ∈
∞⋂

k=ki

Ak,

which implies

x ∈
∞⋃

j=1

∞⋂
k=j

Ak.

Recall the monotone convergence theorem in classical analysis.

Proposition 1.1.1. Let {Ak} be a sequence of subsets of E. Then
(1) E\

(
lim

k→∞
Ak

)
= lim

k→∞
(E\Ak),

(2) E\
(

lim
k→∞

Ak

)
= lim

k→∞
(E\Ak).
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Proof. For (1), by De Morgan’s law,

E\
(

lim
k→∞

Ak

)
= E\

( ∞⋂
j=1

∞⋃
k=j

Ak

)

=
∞⋃

j=1

(
E\(

∞⋃
k=j

Ak)
)

=
∞⋃

j=1

∞⋂
k=j

(E\Ak)

= lim
k→∞

(E\Ak).

Theorem 1.1.2. Let {Ak} be a sequence of sets. Then
(1) lim

k→∞
Ak = {x|∀j ∈ N,∃k ⩾ j, s.t.x ∈ Ak}, i.e., there exists a subsequence {Aki

} such that
x ∈ Aki

.
(2) lim

k→∞
Ak = {x|∃j0 ∈ N, s.t.∀k ⩾ j0, x ∈ Ak}, i.e., from some index j0 onward, x belongs

to all Ak.

Proof. This descriptive formulation follows directly from the definition of limsup/liminf.

Example 1.1.3 (Structure of Non-convergence Points). Let {fn(x)} and f(x) be real-valued
functions on R1. Denote by D the set of points where {fn(x)} does not converge to f(x). Then

D =
∞⋃

k=1

( ∞⋂
N=1

∞⋃
n=N

{
x

∣∣|fn(x) − f(x)| ⩾ 1
k

})
.

Remark 1.1.2. We will use this in the proof of Egorov’s theorem; see Theorem 3.3.2.

At the end of this section, we define Cartesian products. Let X,Y be nonempty sets. The
Cartesian product is

X × Y =
{
(x, y)

∣∣x ∈ X, y ∈ Y
}
.

The definition of infinite products is more subtle and is formulated via maps. Let {Xα}α∈I

be a family of sets. Define∏
α∈I

Xα =
{
x

∣∣∣x : I →
⋃
α∈I

Xα, s.t., x(α) ∈ Xα, ∀α ∈ I
}
.

Conversely, a map can be viewed as an element of a product space:

{f |f : X → Y } ∼= Y X .

As a simple example, when X = {1, 2, · · · , n}, elements of {X → Y } correspond one-to-one to
elements of Y × Y × · · · × Y .

Exercises 1.1
[Unless otherwise noted, page and problem numbers in exercises refer to the corresponding

page/problem in Zhou Mingqiang’s Real Analysis, 2nd edition.]
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1. Prove Theorem 1.1.2.

2. Characterize convergence of a function sequence {fn(x)} to f(x).

3. P11 1,2,3

4. P63 1,2

1.2 Mappings and Cardinality

1.2.1 Mappings

Sets are a central object of study in mathematics. For a given set, one may introduce a topology
to obtain a topological space, or an algebraic structure (usually natural) to obtain a group, ring,
or field, or study both structures simultaneously. These are studies of individual sets in relative
isolation. A more effective approach is to classify a family of sets by grouping together sets with
the same properties (equivalent sets). A key way to realize this classification is to build relations
between sets, and one major tool is mappings between sets.

Definition 1.2.1 (Mapping). Let X,Y be sets. If there is a rule f such that for each x ∈ X

there exists a unique y ∈ Y corresponding to x, then this relation is called a mapping, also called
a function or transformation.

Let f : X → Y be a mapping, with A ⊂ X, B ⊂ Y . Define

f(A) = {f(x)|x ∈ A}

as the image of A under f , and

f−1(B) = {x|f(x) ∈ B}

as the preimage of B under f . Question: is f−1(B) unique?

Definition 1.2.2. Let f : X → Y be a mapping. If for all x1, x2 ∈ X with x1 ̸= x2, one has

f(x1) ̸= f(x2),

then f is called injective (one-to-one). If f(X) = Y , then f is called surjective (onto). If f is
both injective and surjective, then f is called bijective.

Let f : X → Y be bijective. Define g : Y → X by

g(y) = x,

where y = f(x). Then g is called the inverse mapping of f , denoted by f−1. Clearly, f−1(f(x)) =
x and f(f−1(y)) = y.

Proposition 1.2.1. Let f : X → Y be a mapping. Let {Ai}i∈I and {Bj}j∈J be families of
subsets of X and Y , respectively. Then

(1) f( ⋃
i∈I

Ai) = ⋃
i∈I

f(Ai);
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(2) f( ⋂
i∈I

Ai) ⊆
⋂

i∈I
f(Ai);

(3) f−1( ⋃
i∈I

Ai) = ⋃
i∈I

f−1(Ai);

(4) f−1( ⋂
i∈I

Ai) = ⋂
i∈I

f−1(Ai);

(5) If B1, B2 ⊂ Y and B1 ∩B2 = ∅, then

f−1(B1) ∩ f−1(B2) = ∅,

and further
f−1(Bc

1) ∩ (f−1(B1))c = ∅.

Proof. For (5), use X = f−1(B1 ∪Bc
1) = f−1(B1) ∪ f−1(Bc

1).

Remark 1.2.1. This shows that a bijection f does not necessarily preserve set operations, while
its inverse f−1 preserves almost all of them. This is one reason for the following definitions:

1. A continuous function is defined as a map whose inverse image of every open set is open.

2. A measurable function is defined as a map whose inverse image of every Borel set is Borel.

Definition 1.2.3 (Composite Mapping). Let f : X → Y and g : Y → Z be mappings. Define
h : X → Z by

h(x) = g(f(x)), ∀x ∈ X,

called the composition of f and g, denoted by g ◦ f .

1.2.2 Characteristic Functions and Power Sets

Definition 1.2.4 (Power Set). Let X be a set. The set

P(X) = {A|A ⊂ X}

is called the power set of X.

Definition 1.2.5 (Characteristic Function). Let X be a set. For any subset A ⊂ X, define

χA(x) =

1, x ∈ A;

0, x /∈ A.

This map is called the characteristic function of A.

Let X be a set and define
f : P(X) → χ(X)

A 7→ χA,

where χ(X) denotes the set of all characteristic functions on X. Then f is bijective.
Some basic properties of characteristic functions are listed below; their proofs are straight-

forward.
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Proposition 1.2.2. Let A, B be sets. Then
(1) If A ∩B = ∅, then χA∪B = χA + χB;
(2) χA∪B = χA\B + χB\A + χA∩B = χA + χB − χA∩B;
(3) χA∩B = χA × χB;
(4) χA\B = χA − χA∩B = χA(1 − χB);

(5) χA△B = |χA − χB| =

χA − χB, x ∈ A\B;

χB − χA, x ∈ B\A.

These identities connect operations on sets with operations on functions. Furthermore, if
one introduces an order structure on the function space and considers lattice operations

χA ∨ χB = χA∪B, χA ∧ χB = χA∩B,

one obtains an isomorphism between the two structures in the lattice sense.
Think: Prove

lim sup
n→∞

χAn = χlim sup
n→∞

An , lim inf
n→∞

χAn = χlim inf
n→∞

An .

In fact, since the definitions of lim sup and lim inf only involve order structure and χ gives
an isomorphism of the two order relations, the conclusion should hold.

Proposition 1.2.3 (Fixed Point Problem for Monotone Set Maps). Let X be nonempty and
f : P(X) → P(X) satisfy

A ⊂ B ⇒ f(A) ⊂ f(B).

Then there exists T ∈ P(X) such that f(T ) = T .

Proof. Let
S =

{
A|A ∈ P(x), A ⊂ f(A)

}
.

Since ∅ ⊂ f(∅), S ̸= ∅. Define
T =

⋃
A∈S

A,

then T ∈ P(X). Now prove f(T ) = T . First, for any A ∈ S, A ⊂ T , so f(A) ⊂ f(T ). Since
A ⊂ f(A), we get A ⊂ f(T ). By arbitrariness of A, T ⊂ f(T ). On the other hand,

T ⊂ f(T ) ⇒ f(T ) ⊂ f2(T ),

so f(T ) ∈ S. By maximality of T , we have f(T ) ⊂ T .

Example 1.2.1. Let f : X → X be a mapping. Define F : P(X) → P(X) by

F (A) = f(A).

Call F the map induced by f . Clearly F is monotone and has the trivial fixed point ∅. Question:
does F have nontrivial fixed points?
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1.2.3 Cardinality

One major question in set theory is how to describe and compare the number of elements in two
sets; this is essentially a classification problem. For a finite set A with n elements, we say A has
cardinality n, written A = n or CardA = n. What about infinite sets?

• The algebraic viewpoint classifies by isomorphism.

• The topological viewpoint classifies by homotopy/homeomorphism.

• The differential-geometric viewpoint classifies by diffeomorphism.

• The set-theoretic viewpoint classifies by equipotence.

Definition 1.2.6 (Equipotence). Let A, B be sets. If there exists a bijection from A to B, then
A and B are called equipotent, denoted A ∼ B.

Ignoring the Russell paradox issue, equipotence is an equivalence relation between sets.1 If
A ∼ B, then A and B have the same cardinal number, written

A = B.

Thus cardinality is a concept on equivalence classes of sets.
Intuitively, if A is equipotent to a subset of B, define

A ⩽ B.

Conversely, if B is equipotent to a subset of A, define

A ⩾ B.

Then we ask:
A ⩽ B

A ⩾ B

}
⇒ A = B?

Theorem 1.2.1 (Cantor–Bernstein). If X is equipotent to a subset of Y , and Y is equipotent
to a subset of X, then X ∼ Y .

Using the following lemmas, we obtain a proof of Theorem 1.2.1.

Lemma 1.2.1. Let X1 ⊂ X2, Y1 ⊂ Y2 be sets, and φ : X → Y a bijection, with

Xi
φ∼ Yi, i = 1, 2.

Then
(X2\X1) φ∼ (Y2\Y1).

Proof. Omitted.
1An equivalence relation can be viewed as the diagonal subset in the product space of two sets.
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Lemma 1.2.2. Let {Ai}i∈I and {Bi}i∈I be two families indexed by the same set I. Assume
members of {Ai} are pairwise disjoint and members of {Bi} are pairwise disjoint, and

Ai ∼ Bi.

Then ⋃
i∈I

Ai ∼
⋃
i∈I

Bi.

Proof. Omitted.

Remark 1.2.2. If the two families use different index sets that are themselves equipotent, the
lemma still holds.

Proof. (Proof of Theorem 1.2.1). By hypothesis, there exist Y1 ⊂ Y and an injection/surjection
f : X → Y1; similarly there exist X1 ⊂ X and g : Y → X1 bijective onto X1. Write Y1 = f(X),
X1 = g(Y ), X2 = g ◦ f(X). Then

X
f−→ Y1

g−→ X2,

where X2 = g(Y1) ⊂ X1. Let φ = g ◦ f . Then

X
φ∼ X2 ⊂ X1.

Set X3 = φ(X1) ⊂ X2. Then
X1 ⊂ X ⇒ X1

φ∼ X3 ⊂ X2.

By Lemma 1.2.1,
(X0\X1) φ∼ (X2\X3).

Further, define Xn+2 = φ(Xn) with Xn ⊂ Xn−1 and X0 = X. Then
(1) X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ · · ·
(2) X φ∼ X2

φ∼ X4
φ∼ · · · φ∼ X2n

φ∼ · · ·
(3) X1

φ∼ X3
φ∼ X5

φ∼ · · · φ∼ X2n+1
φ∼ · · ·

(4) X and X1 decompose as

X =
( ∞⋃

n=1
(Xn−1\Xn)

)
∪

( ∞⋃
n=1

Xn

)
.

X1 =
( ∞⋃

n=1

(
Xn\Xn+1

))
∪

( ∞⋃
n=1

Xn

)
.

(5) For every n ∈ N,
(X2n\X2n+1) φ∼ (X2n+2\X2n+3),

(X2n+1\X2n+2) id∼ (X2n+1\X2n+2). (1.1)

Now reorder the decompositions in (4) as

X =
( ∞⋃

n=1
Xn

)
∪ (X0\X1) ∪ (X1\X2) ∪ (X2\X3) ∪ (X3\X4) ∪ · · · ,

X1 =
( ∞⋃

n=1
Xn

)
∪ (X2\X3) ∪ (X1\X2) ∪ (X4\X5) ∪ (X3\X4) ∪ · · · ,
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then by (5) and Lemma 1.2.2,
X ∼ X1 ∼ Y.

In (1.1), id denotes the identity map.

There is another proof of Theorem 1.2.1. We list it below, first requiring one lemma.

Lemma 1.2.3 (Decomposition Theorem Under Set Mappings). Let X, Y be sets. If f : X → Y

and g : Y → X, then there are decompositions

X = A ∪A1, A ∩A1 = ∅,

Y = B ∪B1, A ∩B1 = ∅,

such that
f(A) = B, g(B1) = A1.

Proof. Without loss of generality assume

f(X) ⫋ Y, g(Y ) ⫋ X.

Call a subset E ⊂ X separated if

E ∩ g(Y \f(E)) = ∅.

Let Γ be the family of all separated sets. Since ∅ ∈ Γ, Γ is nonempty. We claim Γ is closed
under arbitrary unions. Indeed, if A is a union of members of Γ, then

E ∈ Γ, (Y \f(A)) ⊂ (Y \f(E))
⇒ ∀E ∈ Γ, E ∩ g(Y \f(A)) = ∅
⇒ A ∩ g(Y \f(A)) = ∅
⇒ A is separated.

With this property, define2

A =
⋃

E∈Γ
E.

Then:
(1) By definition, A is maximal among separated sets under inclusion.
(2) Set B = f(A), B1 = Y \B, A1 = g(B1). We prove

A ∩A1 = ∅, andA1 = X\A.

First,
A ∩ g(Y \f(A)) = ∅ ⇒ A ∩A1 = ∅.

Next prove A1 = X\A by contradiction. Suppose ∃x0 ∈ X\A and x0 /∈ A1. Let A∗ = A∪ {x0}.
Then

A∗ = A ∪ {x0}
⇒ f(A) ⊂ f(A∗)
⇒ Y \f(A∗) ⊂ Y \f(A)
⇒

(
g(Y \f(A∗)) ⊂ g(Y \f(A))

)
+

(
A ∩ g(Y \f(A)) = ∅

)
⇒ A ∩ g(Y \f(A∗)) = ∅.

2This avoids explicitly invoking the well-ordering principle.
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Since x0 /∈ A1, we have x0 /∈ g(Y \f(A∗)) ⊂ g(Y \f(A)). Hence A∗ ∈ Γ, but A ⫋ A∗, contradict-
ing maximality.

Using this lemma, Theorem 1.2.1 can be proved (left as an exercise).
Let us also see a corollary.

Corollary 1.2.1. Let C ⊂ A ⊂ B and B ∼ C. Then A ∼ B.

Proof. Take f : B → C ⫋ A and g : A → A ⫋ B.

Theorem 1.2.1 not only solves

A ⩽ B

A ⩾ B

}
⇒ A = B?

but also provides a convenient tool for proving equipotence. In the next part, we focus on the
following cardinalities:

1. finite sets;

2. countable sets;

3. [0, 1];

4. P(X) = 2X > X.

Definition 1.2.7 (Finite Set). Let A be nonempty. Write Mn = {1, 2, · · · , n}. If A ∼ Mn for
some n, then A is called finite and n is its cardinality. If A ≁ Mn for every natural number n,
then A is called infinite.

Definition 1.2.8 (Countable Set). A set equipotent to N is called countable. The cardinality of
a countable set is denoted by ℵ0.

The next two examples are standard countability examples.

Example 1.2.2. Any family of pairwise disjoint open intervals in R1 is at most countable.

Proof. It suffices to build a one-to-one correspondence with a subset of Q.

Remark 1.2.3. This property will be used in describing the structure of open sets in R1.

Example 1.2.3. The set of discontinuities of a monotone function f is at most countable.

Proof. Omitted.

Theorem 1.2.2. Every infinite set A contains a countable subset.

Example 1.2.4 (Characterization of Function Discontinuity Points). Let f be real-valued. De-
fine the left jump at x by

ω−(f, x) = sup
y<x

∣∣f(y − 0) − f(x)
∣∣,

and similarly the right jump by

ω+(f, x) = sup
y>x

∣∣f(y + 0) − f(x)
∣∣.
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Then
f is discontinuous at x ⇔ ω(f, x) = ω−(f, x) + ω+(f, x) > 0.

Now let
Ωk = {x ∈ R1|ω(f, x) ⩾ 1

k
},

then the set of all discontinuity points of f on R1 is

Ω(+) =
∞⋃

k=1
Ωk.

Theorem 1.2.3. For any set A,
P(A) = 2A > A.

Proof. First define φ : A → P(A) by
x 7→ {x},

so clearly P(A) ⩾ A. We prove strict inequality by contradiction. Assume P(A) = A. Then
there is a bijection ψ : A → P(A). Let

B = {x ∈ A|x /∈ ψ(x)}.

Then B ̸= ∅. Since ψ is onto, there exists x∗ ∈ A with

ψ(x∗) = B.

Thus
x∗ ∈ B ⇔ x∗ /∈ B,

a contradiction. Hence P(A) ̸= A, and therefore P(A) > A.

Now let us look at two examples on cardinality.

Example 1.2.5. The cardinality of the set F of all real-valued functions on R1 is 2ℵ.

Proof. For any A ⊂ R1, define
φ(A) = χA(x).

Then φ is a bijection between P(A) and all characteristic functions, so F ⩾ 2ℵ. On the other
hand, for each f ∈ F define

g(f) = Graph(f) =
{(
x, f(x)

)
|x ∈ R1}

∈ P(R2).

Hence F ⩽ P(R2) = 2ℵ. Therefore F = 2ℵ.

Remark 1.2.4. If one regards maps as elements of infinite product spaces, then F ∼ RR. Hence

CardF = 2ℵ.

Example 1.2.6. The cardinality of C(R1), the set of all continuous functions on R1, is ℵ.
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Proof. Write Q = {r1, r2, · · · , rn, · · · }. For each f ∈ C(R1) define

f 7→
(
f(r1), f(r2), · · · , f(rn), · · ·

)
∈

{
{xn}|xn ∈ R1}

.

By continuity, this map is injective. Conversely, if f ̸= g, then ∃x0 ∈ R1 such that f(x0) ̸= g(x0).
By density of Q, there is rkn → x0 with

lim
n→∞

f(rkn) ̸= lim
n→∞

g(rkn),

so
∃kn0 , s.t.f(kn0) ̸= g(kn0).

Hence the map is also onto and therefore bijective. Thus C(R1) ⩽ ℵ.3 Since constant functions
form a subset of C(R1), clearly C(R1) ⩾ ℵ. Therefore C(R1) = ℵ.

Exercises 1.2

1. Let f(x) be continuous on [a, b]. Then for any ε > 0, there exist finitely many pairwise
disjoint intervals {[ai, bi)}n

i=1 and ξi ∈ R, i = 1, 2, · · · , n, such that

∣∣∣f(x) −
n∑

i=1
ξiχ[ai,bi)(x)

∣∣∣ < ε,∀x ∈ [a, b].

2. Prove that the definition of cardinality for finite sets is well-defined.

3. If A is infinite, then A is equipotent to a proper subset of itself. 4

4. Give a bijection between (0, 1) and [0, 1], and prove that no continuous bijection exists
between them.

5. Find the cardinality of C(R1).

6. Find the cardinality of monotone functions on R1.5

7. Find the cardinality of all maps from [0, 1] to N.

8. P18 1,2,3

9. P24 5,6,7,9,10

10. P28 13,14,15,16,17

11. P64 5,7,9,10

12. P69 27
3This uses that the set of all rational sequences has cardinality ℵ; readers may prove this independently.
4This can also be used as a definition of infinite sets.
52011 midterm.
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1.3 Point Sets in Rn

1.3.1 Metrics in Rn

The n-dimensional Euclidean space Rn naturally carries the Euclidean distance. For any

x = (x1, x2, · · · , xn) ∈ Rn, y = (y1, y2, · · · , yn) ∈ Rn,

define
d(x, y) = ∥x− y∥Rn =

( n∑
i=1

|xi − yi|2
) 1

2
.

It is easy to prove that d(x, y) satisfies:
(1) [Positive definiteness] d(x, y) ⩾ 0, with equality iff x = y;
(2) [Symmetry] d(x, y) = d(y, x);
(3) [Triangle inequality] d(x, y) ⩽ d(x, z) + d(z, y).

Definition 1.3.1. Let {xk}∞
k=1 ⊂ Rn, x ∈ Rn. We say x is the limit of {xk} as k → ∞ if

lim
k→∞

d(xk, x) = 0.

Theorem 1.3.1. Let {xk}∞
k=1 ⊂ Rn, x ∈ Rn. Then

xk → x ⇔ xk
i → xi, i = 1, 2, · · · .

Proof. Omitted.

Definition 1.3.2. Let A ⊂ Rn. If there exists M > 0 such that for all x ∈ A,

∥x∥ def.= d(x, 0) ⩽M,

then A is called bounded.

Theorem 1.3.2 (Bolzano–Weierstrass). If {xk} ⊂ Rn is bounded, then it has a convergent
subsequence in Rn.

Theorem 1.3.1 and Theorem 1.3.2 are standard results from analysis, so we omit proofs.

1.3.2 Neighborhoods, Interior Points, Open Sets, Closed Sets

Let x0 ∈ Rn. Define
Bδ(x0) = {x ∈ Rn|d(x, x0) < δ}

as the δ-neighborhood of x0, also denoted by Nδ(x0) or B(x0, δ).

Definition 1.3.3 (Open Set). Let A ⊂ Rn, x0 ∈ A. We call x0 an interior point of A if there
exists δ > 0 such that

Nδ(x0) ⊂ A.

The set of all interior points is called the interior of A, denoted by
◦
A. A is called open in Rn if

A =
◦
A.

Remark 1.3.1. The definition of openness depends on the chosen ambient space.
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Theorem 1.3.3. Open sets in Rn satisfy:
(1) ∅ and Rn are open;
(2) if {Gi}i∈I is a family of open sets, then

⋃
i∈I

Gi is open;

(3) finite intersections of open sets are open.

Proof. For (3), let Gi, i = 1, 2, · · · , n, be open in Rn. Take x0 ∈
n⋂

i=1
Gi. For each 1 ⩽ i ⩽ n,

since x0 ∈ Gi, there exists δi > 0 such that Bδi
(x0) ⊂ Gi. Let δ = min{δ1, δ2, · · · , δn}, then

Bδ(x0) ⊂ Gi, i = 1, 2, · · · , n,

so
Bδ(x0) ⊂

( n⋂
i=1

Gi

)
.

Hence x0 is an interior point of
n⋂

i=1
Gi.

Definition 1.3.4 (Path Connectedness). Let A ⊂ Rn, x, y ∈ A. We say x, y are path connected
in A if there exists a continuous map φ : [0, 1] → A such that

φ(0) = x, φ(1) = y.

A is called path connected if every pair x, y ∈ A is path connected. A subset B ⊂ A is called a
connected component of A if

(1) B is path connected;
(2) B is maximal: for every path-connected B1 ⊂ A, one has B1 ⊂ B.

Theorem 1.3.4 (Structure Theorem of Open Sets in Rn). Let G be open in Rn. Then G can
be written as the union of at most countably many path-connected components, each of which is
open:

G =
⋃
i∈I

Gi,

where I is at most countable. Each component is called a component interval of G.

Proof. See [3], Theorem 4.2.

Remark 1.3.2. For any x, y ∈ G, define x ∼ y if x and y are path connected. This is an
equivalence relation. For each x ∈ G, let

Gx = {y ∈ G|y ∼ x},

then Gx is a path-connected component of G, and is open.

1.3.3 Limit Points and Closure

Definition 1.3.5 (Limit Point). Let A ⊂ Rn, x0 ∈ Rn. We call x0 a limit point (accumulation
point) of A if for every δ-neighborhood Nδ(x0),(

Nδ(x0)\{x0}
)

∩A ̸= ∅.

The set of all limit points is called the derived set, denoted by A′.
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x0 is called an isolated point of A if there exists δ > 0 such that(
Nδ(x0)\{x0}

)
∩A = ∅.

x0 is called a boundary point of A if for every δ-neighborhood Nδ(x0),(
Nδ(x0)\{x0}

)
∩A ̸= ∅,

and (
Nδ(x0)\{x0}

)
∩Ac ̸= ∅.

The set of all boundary points is called the boundary of A, denoted by BdA or ∂A.

Definition 1.3.6 (Closed Set). A ⊂ Rn is called closed if A′ ⊂ A. Its closure is A = A′ ∪A.

Remark 1.3.3. The definition of closedness depends on the ambient space.

We have the following elementary fact.

Theorem 1.3.5. A ⊂ Rn is closed in Rn iff Ac is open in Rn.

Proof. Omitted.

From the definitions of closed set and derived set, one easily obtains:

Example 1.3.1. For E1, E2 ⊂ Rn,

(E1 ∪ E2)′ = E′
1 ∪ E′

2.

Hence
E1 ∪ E2 = E1 ∪ E2.

Corollary 1.3.1. For A ⊂ Rn, the closure A is closed in Rn.

Proof. This follows by contradiction.

The next theorem corresponds exactly to Theorem 1.3.3.

Theorem 1.3.6. Closed sets in Rn satisfy:
(1) ∅ and Rn are closed;
(2) if {Gi}i∈I is a family of closed sets, then

⋂
i∈I

Gi is closed;

(3) finite unions of closed sets are closed.

Proof. Consider complements, and apply De Morgan’s law with Theorem 1.3.3.

We now prove the famous Heine–Borel theorem (finite open cover principle). We first define
refinement covers.

Definition 1.3.7 (Refinement Cover). Let A ⊂ Rn and let {Gi}i∈I be an open cover of A. We
call {Uj}j∈J a refinement of {Gi}i∈I if {Uj}j∈J is also an open cover of A, and for each j ∈ J

there exists ij ∈ I such that
Uj ⊂ Gij .
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Density is another frequent concept.

Definition 1.3.8 (Dense). Let A be nonempty. A set E is dense in A if A ⊂ E. If additionally
E ⊂ A, then E is called a dense subset of A.

With density, we define separability.

Definition 1.3.9 (Separable). A set A is called separable if it has a countable dense subset.

Second countability is also important.

Definition 1.3.10 (Second Countable). A topological space (Ω, τ) is called second countable if
τ has a countable base.

Remark 1.3.4. 1. The proof of the next lemma uses that Rn is second countable.6

2. For Rn, separability, second countability, and the Lindelöff property below are equivalent.
In general topological spaces, they need not be equivalent.

Lemma 1.3.1 (Lindelöff Property). Let A ⊂ Rn and {Gi}i∈I be any open cover of A. Then
{Gi}i∈I has a countable subcover of A.

Proof. For each x ∈ A, since A ⊂
⋃

i∈I
Gi, there exists ix ∈ I such that x ∈ Gix . Since Gix is

open, there exists δx > 0 with
Nδx(x) ⊂ Gix .

Because Qn is dense in Rn, there exists yx ∈ Qn with d(yx, x) < δx/4. Choose εx ∈ Q with
δx/4 ⩽ εx ⩽ δx/2, then x ∈ Nδx(yx) ⊂ Gix . Let X =

{
Nδx(yx)|x ∈ A

}
. Then X is at most

countable and is a refinement of {Gi}. Hence

A ⊂
∞⋃

i=1
Nδxj

(xj) ⊂
∞⋃

i=1
Gij ,

a countable cover of A.

This lemma itself is also very useful.

Theorem 1.3.7 (Heine–Borel). A ⊂ Rn is bounded and closed iff every open cover of A has a
finite subcover.

Proof. Necessity. Let {Gi}i∈I be an open cover of A. By Lemma 1.3.1, assume it is at most
countable. Suppose no finite subcover exists. Then for each k we can pick

xk+1 ∈ A\
( k⋃

i=1
Gi

)
.

By Theorem 1.3.2, there is a subsequence (still denoted xk) with xk → x0 ∈ A. Then x0 ∈ Gk0

for some k0. Since Gk0 is open, there exists δ > 0 such that Nδ(x0) ⊂ Gk0 . From xk → x0, for
sufficiently large k we have d(xk, x0) < δ, i.e.

xk ∈ Nδ(x0) ⊂ Gk0 ,

6The proof does not need explicit topological language; readers unfamiliar with point-set topology may ignore
this remark.
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contradicting the construction of xk.
Sufficiency. First, boundedness is easy. Next prove closedness by contradiction. Assume A

is not closed. Then ∃x0 ∈ A′ with x0 /∈ A. Let

Gn =
{
y ∈ Rn|d(y, x0) > 1

n

}
,

then
A =

∞⋃
n=1

Gn,

but this cover has no finite subcover, contradiction.

Remark 1.3.5. 1. If every open cover of A ⊂ Rn has a finite subcover, then A is called compact
in Rn.7 2. The necessity part fails in infinite-dimensional spaces. In fact, whether necessity
holds can serve as a criterion for finite dimensionality. The sufficiency part always holds.

For compactness, we give a sample problem.

Example 1.3.2. Let E ⊂ Rn be compact and x ∈ Ec. Then x and E can be separated by open
sets, i.e., there exist disjoint open sets U, V such that x ∈ U and E ⊂ V .

Proof. Sketch: first note any two distinct points in Rn can be separated by open sets; this yields
an open cover of E. Then extract a finite subcover by compactness, and finally use closure of
open sets under finite intersections.

1.3.4 Extension Theorem for Continuous Functions on Closed Sets

In this section we discuss some properties of continuous functions and present an important
extension theorem.

Definition 1.3.11 (Continuous Function). Let E ⊂ Rn, f : E → R, x0 ∈ E. If for every ε > 0
there exists δ > 0 such that whenever x ∈ E ∩B(x0, δ),∣∣f(x) − f(x0)

∣∣ < ε,

then f is continuous at x0. If f is continuous at every point of E, then f is continuous on E.
The set of continuous functions on E is denoted by C(E,R) or C(E).

Continuity has the following equivalent formulation.

Theorem 1.3.8. f is continuous at x iff for every neighborhood Vy of y = f(x), there exists a
neighborhood Ux of x such that f(Ux) ⊂ Vy.

Continuous functions on bounded closed sets satisfy:

Proposition 1.3.1. Let F ⊂ Rn be bounded closed and f ∈ C(F,R). Then
(1) f is bounded on F ;
(2) f attains its supremum and infimum on F ;
(3) f is uniformly continuous on F ;
(4) if F is path connected, then f has the intermediate value property.

7More generally, for a topological space (Ω, τ), a subset A ⊂ Ω is compact if every open cover has a finite
subcover.
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Proof. Omitted.

Our goal is to find a method to extend a continuous function on a closed set F to a continuous
function on Rn. First define continuous extension.

Definition 1.3.12 (Continuous Extension). Let f ∈ C(E,R). A function g ∈ C(Rn,R) is called
a continuous extension of f to Rn if

g|E ≡ f.

In general, continuous extension is difficult. To construct extensions on closed sets, we
introduce distance to a set.

Definition 1.3.13. Let x ∈ Rn, E ⊂ Rn, E ̸= ∅. Define

dist(x,E) = inf
y∈E

d(x, y)

as the distance from x to E. If E1, E2 ⊂ Rn are nonempty, define

dist(E1, E2) = inf
x∈E1

dist(x,E2)

as the distance between sets E1 and E2.

The next theorem says distance functions are continuous.

Theorem 1.3.9. Let E be a nonempty subset of Rn. Then

f(x) = dist(x,E)

is uniformly continuous on Rn.

Proof. For every z ∈ E,
d(x, z) ⩽ d(x, y) + d(y, z).

Taking infimum over z on both sides gives

inf
z∈E

d(x, z) ⩽ d(x, y) + inf
z∈E

d(y, z),

i.e.
dist(x,E) ⩽ d(x, y) + dist(y,E).

Similarly,
dist(y,E) ⩽ d(y, x) + dist(x,E).

Since d(x, y) = d(y, x), ∣∣dist(x,E) − dist(y,E)
∣∣ ⩽ d(x, y) = |x− y|.

Done.

Corollary 1.3.2. Let F be a nonempty closed subset of Rn, x0 ∈ Rn. Then there exists y0 ∈ F

such that
dist(x0, F ) = d(x0, y0).
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Proof. Apply (2) of Proposition 1.3.1.

Now we state and prove the extension theorem for continuous functions on closed sets.

Theorem 1.3.10 (Tietze Extension Theorem). Let F ⊂ Rn be closed, f ∈ C(F ), and |f(x)| <
M for all x ∈ F . Then there exists g ∈ C(Rn) such that

(1) g|F ≡ f ;
(2) |g(x)| ⩽M for all x ∈ Rn.

Proof. Let
A = {x ∈ F |M3 ⩽ f(x) ⩽M},

B = {x ∈ F | −M ⩽ f(x) ⩽ M

3 },

C = {x ∈ F | − M

3 < f(x) < M

3 }.

Then A,B are closed and A ∩ B = ∅.8 Hence we can build a continuous function on Rn equal
to 1 on A and −1 on B, e.g.

φ(x) = −dist(x,A) + dist(x,B)
dist(x,A) + dist(x,B) .

For all x ∈ Rn, |φ(x)| ⩽ 1. Let
g1(x) = M

3 φ(x),

then |g1(x)| ⩽M/3 for all x ∈ Rn. Also

|f(x) − g1(x)| ⩽ 2
3M, ∀x ∈ F = A ∪B ∪ C.

Let f1(x) = f(x) − g1(x). Applying the same argument to f1, there exists a continuous function
g2 on Rn (constructed via distance functions) such that

|g2(x)| ⩽ 1
3

(2
3M

)
,

|f1(x) − g2(x)| =
∣∣∣f(x) −

2∑
i=1

gi(x)
∣∣∣ ⩽ (2

3
)2
M,∀x ∈ F.

Continuing inductively, there exist

Gn(x) =
n∑

i=1
gi(x),

with
|gn(x)| ⩽ 1

3
(2
3

)n−1
M,∀x ∈ Rn,

|f(x) −Gn(x)| ⩽
(2
3

)n
M, ∀x ∈ F.

8If both A, B are empty, replace M by M/3 and iterate. If the bound can be reduced arbitrarily, then f ≡ 0.
Otherwise after finitely many steps at least one of A, B is nonempty. If one is empty, replace it with any disjoint
closed set.
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Now prove {Gn} converges uniformly on Rn:

|Gn+p(x) −Gn(x)| =
∣∣∣ n+p∑

i=n+1
gi(x)

∣∣∣ ⩽ n+p∑
i=n+1

|gi(x)|

⩽
∞∑

i=n+1

1
3

(2
3

)i−1
M

⩽
1
3

(2
3

)n
M

∞∑
k=0

(2
3

)k
.

Hence {Gn} converges uniformly on Rn. So

G(x) = lim
n→∞

Gn(x) =
∞∑

n=1
gn(x)

is continuous on Rn, and

|G(x)| =
∣∣∣ ∞∑

n=1
gn(x)

∣∣∣ ⩽M.

For x ∈ F , we have f(x) ≡ G(x).

Remark 1.3.6. In the extension theorem above, we essentially used a special case of Urysohn’s
lemma in Rn. Urysohn’s lemma is one of the deeper theorems in topology, not easy to prove in
full generality. But in Rn (more generally, metric spaces), the distance function makes the proof
straightforward.

Theorem 1.3.11 (Urysohn Lemma). Two closed sets in a normal space can be separated by a
continuous function.

Theorem 1.3.12 (Urysohn Lemma in Rn). Let E,F ⊂ Rn be disjoint closed sets. Then there
exists f ∈ C(Rn) such that 0 ⩽ f ⩽ 1, with E ⊂ f−1(

{1}
)

and F ⊂ f−1(
{0}

)
.

Proof. Construct directly:
f(x) = d(x, F )

d(x,E) + d(x, F ) .

Another frequently used form is:

Theorem 1.3.13 (Urysohn’). Let K be compact and V open with K ⊂ V ⊂ Rn. Then there
exists a continuous function f with compact support9 such that 0 ⩽ f ⩽ 1, Supp(f) ⊂ V , and
f |K = 1. Equivalently, χK ⩽ f ⩽ χV .

Think: (Partition of unity) Let K ⊂ Rn be compact and {Vi}k
i=1 an open cover of K. Then

there exists a family of continuous compactly supported functions {hi}k
i=1 such that 0 ⩽ hi ⩽ 1,

Supp(hi) ⊂ Vi, and
k∑

i=1
hi(x) = 1, x ∈ K.

Finally, we briefly introduce semicontinuity.
9The support of f is

E = {x|f(x) ̸= 0},

denoted by Supp(f). By definition the support is closed; if also bounded, it is compact support.
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Definition 1.3.14 (Semicontinuity). A function f is upper semicontinuous if for all ε > 0,
there exists δ > 0 such that for all y ∈ B(x, δ),

f(y) < f(x) + ε.

A function f is lower semicontinuous if for all ε > 0, there exists δ > 0 such that for all
y ∈ B(x, δ),

f(x) − ε < f(y).

Remark 1.3.7. f is upper semicontinuous iff {x|f(x) < λ} is open for every λ ∈ R1. f is
lower semicontinuous iff {x|f(x) > λ} is open for every λ ∈ R1.

Proposition 1.3.2. Semicontinuous functions satisfy:
(1) If {fλ}λ∈Λ is a family of lower semicontinuous functions and(

sup
λ∈Λ

fλ

)
(u) = sup

λ∈Λ

{
fλ(u)

}
,

then sup
λ∈Λ

fλ is lower semicontinuous;

(2) finite sums of lower semicontinuous functions are lower semicontinuous;
(3) lower semicontinuous functions attain their minimum on compact sets;
(4) if F,G are open and closed subsets of R1, then χF is upper semicontinuous and χG is

lower semicontinuous;
(5) if f1 is upper semicontinuous, f2 is lower semicontinuous, and f1 ⩽ f2, then there exists

a continuous f such that f1 ⩽ f ⩽ f2.

Proof. We only prove (3). Let K be compact and f lower semicontinuous. By definition, for
fixed ε > 0 and each x ∈ K, there exists δx > 0 such that for all y ∈ B(x, δx),

f(y) < f(x) + ε.

Therefore
{
B(x, δx)

}
x∈K

is an open cover of K. By Theorem 1.3.7, there is a finite subcover{
B(xi, δxi)

}
, i = 1, 2, · · · , n.

Hence f is bounded below and thus has an infimum. Let

λ = inf
x∈K

f(x).

By definition of infimum, there exists {xn} with f(xn) → λ. Since K ⊂ R1 is bounded and
closed, by Bolzano–Weierstrass there is a subsequence xki

→ x0. Then

λ = inf
i→∞

f(xki
) = lim inf

i→∞
f(xki

) ⩾ f(x0) ⩾ λ.

Hence f(x0) = λ.

Exercises 1.3

1. Let X = {G ⊂ Rn|G open}. Find X.
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2. P36 1,2,3,4,5,7

3. P40 2,5

4. P62 1,2,3,410,5,6

5. P67 40,41

6. P69 28

1.3.5 Cantor Set

We now recursively define the middle-third Cantor set.
At step 1, set I0 = (0, 1), remove the middle closed interval of length 1/3, namely I1,1 =

[1
3 ,

2
3 ], and obtain I1 = I0\I1,1, which has two path-connected components I1,1 = (a1,1, b1,1) and

I1,2 = (a1,2, b1,2). Write I1 = I1,1.
At step 2, for each I1,j , j ∈ {1, 2}, remove the middle closed third,

I2,j =
[
a1,j + 1

3(b1,j − a1,j), a1,j + 2
3(b1,j − a1,j)

]
,

and write I2 =
2⋃

j=1
I2,j . The remaining set is I2 = I1\I2, with four path-connected components

I2,j = (a2,j , b2,j), j ∈ {1, 2, 3, 4}.
Continue inductively. Suppose step n has been completed, yielding In with 2n path-connected

components In,j = (an,j , bn,j), j ∈ {1, 2, · · · , 2n}. At step n+ 1, for each In,j remove the middle
closed third,

In+1,j =
[
an,j + 1

3(bn,j − an,j), an,j + 2
3(bn,j − an,j)

]
,

set In+1 =
2n⋃

j=1
In+1,j , and let In+1 = In\In+1. Then In+1 has 2n+1 path-connected components

In+1,j = (an+1,j , bn+1,j), j ∈ {1, 2, · · · , 2n+1}.
Thus Ik and Ik are defined recursively, and the Cantor middle-third set is

C =
( ∞⋂

k=1
Ik

)
∪ {0, 1} = [0, 1]\

( ∞⋃
k=1

Ik
)
.

The Cantor set C has the following properties.

Proposition 1.3.3. Let C be the Cantor middle-third set. Then
(1) C is closed;

(2)
∞∑

k=1
|Ik| =

∞∑
k=1

2k+1

3k
= 1;

(3) C = ℵ;
(4)

◦
C= ∅;

(5) C ⊂ C′( ⇒ C = C′).

The general notion is the Cantor set, namely a nowhere dense perfect set. We first define
perfect sets.

10This problem seems misstated; F should likely be replaced by a bounded closed subset of G.
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Definition 1.3.15 (Perfect Set). A set E is called perfect if

E = E′.

To aid understanding, we give a characterization in one dimension.

Proposition 1.3.4. E ⊂ R1 is perfect iff Ec is open and

Ec =
N⋃

n=1
(an, bn),

where N may be ∞, and for n ̸= m, (am, bm) and (an, bn) share no endpoints.

Proof. On one hand, since E is perfect, i.e. E = E′, we have E = E ∪ E′ = E, so E is closed
and Ec is open. By Theorem 1.3.4, Ec is a countable union of disjoint connected open sets, and
in R1 connected open sets are open intervals. Also, perfectness implies no isolated points in E,
equivalently component intervals of Ec cannot share endpoints.

On the other hand,
Ec open ⇒ E closed ⇒ E′ ⊂ E,

E has no isolated points ⇒ E ⊂ E′,

thus the claim holds.

Next define nowhere dense sets.

Definition 1.3.16 (Nowhere Dense Set). Let A,B ⊂ Rn. If A ⊇ B, then A is dense in B. If
◦
A= ∅, equivalently for any x0 ∈ Rn and any ε > 0, there exist x ∈ Bε(x0) and δ > 0 such that
Bδ(x) ⊆ Bε(x0) and

Bδ(x) ∩A = ∅,

then A is called nowhere dense (also sparse).

Further, a countable union of nowhere dense sets is called a first category set; sets that are
not first category are second category. These notions depend on the ambient space.

Example 1.3.3. The x-axis is of second category in R1, but of first category in R2.

Now we characterize one-dimensional nowhere dense perfect sets.
Let E ∈ Rn be a bounded nowhere dense perfect set, and define

m = inf{x|x ∈ E},M = sup{x|x ∈ E}.

Since E is closed, m ∈ E and M ∈ E. By Proposition 1.3.4,

Ec = (−∞,m) ∪ (M,∞)
∞⋃

n=1
(an, bn],

and for n ̸= m, intervals (am, bm) and (an, bn) share no endpoints. Assume bn < am. Since E is
nowhere dense, there are points of Ec in bn, am. Hence there exists an open interval (c, d) ⊂ Ec,
which is another component interval lying between (am, bm) and (an, bn).

This shows that between any two component intervals of Ec, there is another one, and the
three have no common endpoints.

The following proposition reveals the structure of complements of one-dimensional nowhere
dense perfect sets and also gives the famous Cantor function.
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Proposition 1.3.5. Let E be as above. Then there exists φ : [m,M ] → [m,M ] with:
(1) φ is monotone, continuous, and surjective;
(2) φ|(an,bn) ≡ const.

Moreover, one can reorder the component intervals of Ec so that their order resembles that
of the complement of the Cantor set.

Proof. Step 1. Reorder component intervals of Ec analogously to the Cantor complement order.
By Proposition 1.3.4,

Ec = (−∞,m) ∪ (M,∞)
∞⋃

n=1
(an, bn],

set (c1,1, d1,1) = (a1, b1). Choose the first interval in original order between (−∞,m) and (a1, b1),
denote it by (c2,1, d2,1), i.e.

n2,1 = inf{n|an > m, bn < a1},

and set (c2,1, d2,1) = (an2,1 , bn2,1). Similarly choose the first interval between (a1, b1) and
(M,+∞), denoted (c2,2, d2,2), i.e.

n2,2 = inf{n|an > b1, bn < M},

and set (c2,2, d2,2) = (an2,2 , bn2,2). Suppose after step k we have chosen

O1 = (c1,1, d1,1),

O2 = (c2,1, d2,1) ∪ (c2,2, d2,2),

· · ·

Ok =
2k−1⋃
j=1

(ck,j , dk,j).

Now reorder component intervals in ⋃k
i=1Oi by position; between each adjacent pair choose one

component interval of Ec with minimal original index. This gives 2k intervals

(ck+1,j , dk+1,j), j = 1, 2, · · · , 2k,

and define

Ok+1 =
2k⋃

j=1
(ck+1,j , dk+1,j), k = 0, 1, 2, · · · .

We claim Ec = (−∞,m)∪(M,+∞) ⋃∞
i=1Oi. Clearly ⋃k

i=1Oi ⊂ Ec. Conversely, every (an, bn) is
eventually chosen: if (a1, b1), · · · , (an, bn) are chosen by step k but (an+1, bn+1) is not, then it lies
between two component intervals of ⋃k

i=1Oi, so it must be chosen at step k+ 1 by construction.
Step 2. Construct φ : [m,M ] → [m,M ]. Let O0 = {m,M} and define on O0:

φ0(x) =
{
m x = m

M x = M
,

so jump size between adjacent components is M−m
20 . On O0 ∪O1, define

φ1(x) =
{

m+M
2 , x ∈ (c1,1, d1,1)

φ0(x) x ∈ O0
,
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then jump size is M−m
21 . On O0 ∪O1 ∪O2, define

φ2(x) =


m+φ1|(c1,1,d1,1)

2 x ∈ (c2,1, d2,1)
M+ m+M

2
2 x ∈ (c2,2, d2,2)

φ1(x) x ∈ O1

,

then jump size is M−m
22 . Continuing this process, define φk+1 from φk. On each (ck+1,j , dk+1,j),

set the value to the average of neighboring component values. Then the jump size between
adjacent components is

M −m

2k
.

Proceeding inductively yields a monotone increasing function ψ on {m,M} ∪
( ⋃∞

i=1Oi

)
,

constant on each (ck,j , dk,j), and with jump size M−m
2k between adjacent components of ⋃k

i=1Oi.
Now define φ|On = ψ|On and

φ(x) = sup
{
ψ(y)|y ⩽ x, y ∈ {m,M} ∪

( ∞⋃
i=1

Oi

)}
,

so φ is monotone increasing.
Step 3. Prove continuity of φ. For any ε > 0 and fixed x ∈ [m,M ], choose k large so

that M−m
2k < ε. If x ∈

⋃k
i=1Oi, continuity at x is clear. If x ∈ [m,M ]\ ⋃k

i=1Oi, then x lies
between two neighboring components of ⋃k

i=1Oi, say left (ci,j , di,j) and right (c′
i,j , d

′
i,j). Let

δ = max{x− ci,j , d
′
i,j − x}. For y ∈ (x− δ, x+ δ),

∣∣φ(y) − φ(x)
∣∣ ⩽ ψ

(c′
i,j + d′

i,j

2
)

− ψ
(ci,j + di,j

2
)
<
M −m

2k
< ε.

Hence φ is continuous.

Remark 1.3.8. This proposition shows that, up to ordering of component intervals, comple-
ments of one-dimensional nowhere dense perfect sets have the same structure as the complement
of the Cantor set.

1.4 Borel Sets and the Category Theorem

We now introduce Borel sets, which are fundamental in real analysis and probability theory.
First we define the σ-ring mentioned in the overview.

Definition 1.4.1 (σ-Ring). Let X be nonempty and Γ ⊂ P(X). We call Γ a σ-ring on X if
(1) for all A,B ∈ Γ, A\B ∈ Γ;
(2) for {Ak}∞

k=1 ⊂ Γ,
∞⋃

k=1
Ak ∈ Γ.

Remark 1.4.1. 1. From the definition,

A ∩B = (A ∪B)\
(
(A\B) ∪ (B\A)

)
∈ Γ.

Also from A1\
( ∞⋂

k=1
Ak

)
=

∞⋃
k=1

(A1\Ak) ∈ Γ, we get

∞⋂
k=1

Ak = A1\
(
A1\

( ∞⋂
k=1

Ak

))
∈ Γ.
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2. The intersection of any family of σ-rings is still a σ-ring.

Definition 1.4.2 (Generated σ-Ring). Let X be nonempty and Σ ⊂ P(X). Define

U = {Γ′ ∈ P(X)|Σ ⊂ Γ′, and Γ′ is a σ-ring}.

Then
Γ(Σ) =

⋂
Γ′∈U

Γ′

is called the σ-ring generated by Σ.

Remark 1.4.2. In fact, Γ(Σ) is the smallest σ-ring containing Σ.

Now we introduce an important generated σ-ring: the Borel ring.

Definition 1.4.3 (Borel Ring). Let B(Rn) be the σ-ring generated by all open and closed subsets
of Rn. This is called the Borel ring on Rn.

Remark 1.4.3. 1. Clearly B(Rn) ⊂ P(Rn), so B(Rn) ⩽ 2ℵ. Is B(Rn) = ℵ? Intuitively yes, but
the proof is nontrivial and requires transfinite induction, which we omit.

2. From the definition, (a, b] = ⋂∞
n=1(a, b+ 1/n) and Q = ⋃∞

n=1 rn are both in B(Rn).
We can further classify elements of B(Rn); the simplest are Gδ and Fσ sets.

Definition 1.4.4 (Gδ, Fσ Sets). A ⊂ Rn is called a Gδ set if there exists a sequence of open
sets {Gk}∞

k=1 such that

A =
∞⋂

k=1
Gk;

A ⊂ Rn is called an Fσ set if there exists a sequence of closed sets {Fk}∞
k=1 such that

A =
∞⋃

k=1
Fk.

Remark 1.4.4. Gδ sets are necessarily uncountable, but there exist Gδ sets of very small
“length”.

Let us look at examples.

Example 1.4.1. Any closed set F ⊂ Rn is a Gδ set. Indeed, define

Gn =
{
x ∈ Rn|dist(x, F ) < 1

n

}
,

then
F =

∞⋂
n=1

Gn.

Example 1.4.2. R\Q is not an Fσ set, and Q is not a Gδ set.

To prove Example 1.4.2, we need the famous Baire category theorem.

Example 1.4.3 (Baire Category Theorem). Rn cannot be expressed as a countable union of
nowhere dense sets11.

11Equivalently, Rn is of second category. More generally: a nonempty complete metric space cannot be written
as a countable union of nowhere dense sets.
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Proof. Assume Rn = ⋃∞
n=1An, where each An is nowhere dense. Choose x0 ∈ Rn, let B1 =

B(x0, 1). Since A1 is nowhere dense, it is not dense in B(x0, 1), so there exist x1 ∈ B(x0, 1)\A1

and δ1(< 1/2) with
B(x1, δ1) ∩A1 = ∅, B(x1, δ1) ⊂ B1.

Let B2 = B(x1, δ1). Since A2 is nowhere dense, there exist x2 ∈ B(x1, δ1)\A2 and δ2(< 1/3)
such that

B(x2, δ2) ∩A2 = ∅, B(x2, δ2) ⊂ B2.

Continue inductively to obtain {xn} ⊂ Rn and δn(< 1/n) such that

B(xk+1, δk+1) ∩
k⋃

i=1
Ai = ∅,

B(xk+1, δk+1) ⊂ B(xk, δk) ⊂ · · · ⊂ B(x0, 1).

Since these are closed balls and δk → 0, {xn} is Cauchy. Let x∗ ∈ Rn be its limit. Then

x∗ ∈
∞⋂

k=1
B(xk, δk). (1.2)

By assumption Rn = ⋃∞
n=1An, so x∗ ∈ Ak0 for some k0. From (1.2),

x∗ ∈ B(xk0+1, δk0+1),

contradicting B(xk0+1, δk0+1) ∩Ak0 = ∅.

Now reconsider Example 1.4.2. Suppose R\Q = ⋃∞
n=1 Fn with each Fn closed. Then

Q ∩ Fn = ∅ ⇒ Fn is nowhere dense

⇒ R =
( ∞⋃

n=1
Fn

)
∪

( ⋃
r∈Q

r
)

⇒ R can be written as a union of countably many nowhere dense closed sets.

This contradicts Theorem 1.4.3.

Exercises 1.4

1. P59 4,5,6,7
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Chapter 2

Lebesgue Measurable Sets

2.1 Measures on Rings

2.1.1 The Ring Rn
0

Definition 2.1.1. Let Rn be a family of subsets of Rn. If whenever A,B ∈ Rn we have
A ∪B,A\B ∈ Rn, then Rn is called a ring on Rn. In particular, if Rn ∈ Rn, then Rn is called
an algebra on Rn.

Remark 2.1.1. Note the difference from the σ-ring defined in Section 1.4.

Now let us examine a concrete example. The ring in this example and its higher-dimensional
generalization are crucial in what follows.

Example 2.1.1. Let R1
0 be the family of all finite unions of bounded left-open right-closed

intervals in R1:
R1

0 =
{ m⋃

k=1
(ak, bk] | ak, bk ∈ R1, k = 1, 2, . . . ,m

}
.

Then R1
0 is a ring on R1.

Proof. Let

A =
m⋃

k=1
(ak, bk], B =

l⋃
j=1

(cj , dj ] ∈ R1
0.

Then

A ∪B =
m⋃

k=1

l⋃
j=1

(
(ak, bk] ∪ (cj , dj ]

)
∈ R1

0,

and

A\B =
m⋃

k=1

(
(ak, bk]\

l⋃
j=1

(cj , dj ]
)

=
m⋃

k=1

l⋂
j=1

(
(ak, bk]\(cj , dj ]

)
.

So it suffices to verify (ak, bk]\(cj , dj ] ∈ R1
0 and closure under finite intersections.

We now give a canonical decomposition for elements in R1
0.
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Lemma 2.1.1 (Canonical Decomposition). If A ∈ R1
0, then A can be written as a finite union

of pairwise disjoint left-open right-closed intervals.

Proof. Write

A =
m⋃

k=1
(ak, bk].

Use induction on m. The case m = 1 is clear. Assume true for m = l. For m = l + 1,

A =
l⋃

k=1
(ak, bk] ∪ (al+1, bl+1].

Sort left endpoints and assume al+1 ≥ ak for k = 1, . . . , l.
(1) If al+1 > max1≤k≤l bk, then by induction

Â =
l⋃

k=1
(ak, bk] =

l̂⋃
k=1

(âk, b̂k],

so

A =
l̂⋃

k=1
(âk, b̂k] ∪ (al+1, bl+1]

is the required form.
(2) If there exists k0 with 1 ≤ k0 ≤ l such that bk0 ≥ al+1 ≥ ak0 , let

b′
k0 = max{bk0 , bl+1}.

Then
(ak0 , bk0 ] ∪ (al+1, bl+1] = (ak0 , b

′
k0 ],

and the conclusion follows from induction.

Next we generalize Example 2.1.1 to higher dimensions. We first need a lemma: the Cartesian
product of rings is still a ring.

Lemma 2.1.2. Let Rn and Rm be rings of subsets of Rn and Rm, respectively. Define

Rn × Rm =
{ r⋃

k=1
Ak ×Bk | Ak ∈ Rn, Bk ∈ Rm, k = 1, . . . , r

}
.

Then Rn × Rm is a ring on Rn+m.

Proof. Let

A =
r⋃

k=1
(Ak ×Bk), B =

s⋃
j=1

(Cj ×Dj) ∈ Rn × Rm,

with Ak, Cj ∈ Rn and Bk, Dj ∈ Rm. Then

A ∪B =
r⋃

k=1

s⋃
j=1

(
Ak ×Bk ∪ Cj ×Dj

)
∈ Rn × Rm.

Also,

A ∩B =
r⋃

k=1

s⋃
j=1

(
(Ak ∩ Cj) × (Bk ∩Dj)

)
∈ Rn × Rm.
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And
A\B =

r⋃
k=1

s⋂
j=1

(
(Ak ×Bk)\(Cj ×Dj)

)

=
r⋃

k=1

s⋂
j=1

(
((Ak\Cj) ×Bk) ∪ (Ak × (Bk\Dj))

)
∈ Rn × Rm.

So the family is closed under union and difference, hence it is a ring.

Now define the higher-dimensional analog.

Definition 2.1.2 (The Ring Rn
0 ). Let Rn

0 be the family of all finite unions of bounded left-open
right-closed boxes in Rn:

Rn
0 =

{ l⋃
k=1

Ik | Ik is a bounded left-open right-closed box in Rn
}
,

where
Ik = {(x1, . . . , xn) ∈ Rn | ai < xi ≤ bi, i = 1, . . . , n}.

We will see that Rn
0 is also a ring on Rn.

Theorem 2.1.1. With the definition above, Rn
0 is a ring on Rn, and

Rn
0 = R1

0 × R1
0 × · · · × R1

0.

Proof. By Lemma 2.1.2,
R1

0 × R1
0 × · · · × R1

0

is a ring on Rn, and it contains all bounded left-open right-closed boxes. Hence

Rn
0 ⊂ R1

0 × · · · × R1
0.

It remains to prove the reverse inclusion.
It is enough to show every element of R1

0 × · · · × R1
0 can be written as a finite union of

left-open right-closed boxes. Use induction on dimension. For n = 1, trivial. Assume true in
dimension n− 1. Let

A ∈ R1
0 × · · · × R1

0 ⊂ Rn, A = B × C,

where
B ∈ R1

0 × · · · × R1
0 ⊂ Rn−1, C ∈ R1

0.

By induction,

B =
r⋃

k=1
In−1

k , C =
s⋃

j=1
(cj , dj ].

Hence
B × C =

r⋃
k=1

s⋃
j=1

(
In−1

k × (cj , dj ]
)
,

and each factor is a box in Rn. So

Rn
0 ⊃ R1

0 × · · · × R1
0.
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The next lemma is the higher-dimensional version of Lemma 2.1.1.

Lemma 2.1.3 (Canonical Decomposition). If A ∈ Rn
0 , then A can be written as a finite union

of pairwise disjoint left-open right-closed boxes.

Proof. Induct on n. For n = 1, this is Lemma 2.1.1. Assume true for n = k. For n = k + 1, let

A =
m⋃

r=1
Ik+1

r ∈ Rk+1
0 ,

with
Ik+1

r = Ik
r × (ar, br],

where Ik
r is a box in Rk. Reorder

a1, b1, a2, b2, . . . , am, bm

as
a0 < a1 < · · · < al, 2 ≤ l ≤ 2m.

For each Ik+1
r , there are boxes Ik+1

r,i (possibly empty) such that

Ik+1
r =

l⋃
i=1

(
Ik+1

r,i × (ai−1, ai]
)
.

Apply the induction hypothesis in Rk.

2.1.2 Measure on Rn
0

Now we construct a measure on the ring Rn
0 .

Definition 2.1.3. Let Rn
0 be the ring of finite unions of bounded left-open right-closed boxes in

Rn. A real-valued function µ on Rn
0 is called a measure on Rn

0 if:
(1) µ(∅) = 0;
(2) (nonnegativity) µ(A) ≥ 0 for all A ∈ Rn

0 ;
(3) (countable additivity) for any pairwise disjoint sequence {Ai}∞

i=1 ⊂ Rn
0 , if

∞⋃
i=1

Ai ∈ Rn
0 , (2.1)

then
µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Remark 2.1.2. In (2.1), we require the countable union to lie in Rn
0 because Rn

0 is only closed
under finite unions.

Definition 2.1.4. For A ∈ Rn
0 , suppose a canonical decomposition is

A =
k⋃

i=1
Ii.
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Define

m0(A) =
k∑

i=1
|Ii|,

where
Ii = {(xi

1, . . . , x
i
n) | ai

j < xi
j ≤ bi

j , j = 1, . . . , n},

|Ii| =
n∏

j=1
(bi

j − ai
j) =

∫
Ii

χIi(x) dx.

Clearly, m0(A) ≥ 0 and m0(∅) = 0.

Since a given A ∈ Rn
0 can have multiple canonical decompositions, we must show m0(A) is

independent of the decomposition.

Lemma 2.1.4. The definition of m0(A) does not depend on the chosen canonical decomposition
of A.

Proof. Step 1. If I is a single box, then m0(I) = |I|, independent of decomposition.
Suppose

I =
k⋃

i=1
Ii

is a canonical decomposition of I. Then

|I| =
∫

I
χI(x) dx =

∫⋃k

i=1 Ii

χ∪Ii(x) dx

=
k∑

i=1

∫
Ii

χIi(x) dx =
k∑

i=1
|Ii|.

Step 2. Suppose A ∈ Rn
0 has two canonical decompositions

A =
k⋃

i=1
Ii =

l⋃
j=1

Jj .

Then

A =
k⋃

i=1

l⋃
j=1

(Ii ∩ Jj),

Jj =
k⋃

i=1
(Ii ∩ Jj), Ii =

l⋃
j=1

(Ii ∩ Jj).

By Step 1,

m0(A) =
k∑

i=1
|Ii| =

k∑
i=1

l∑
j=1

|Ii ∩ Jj |

=
l∑

j=1

k∑
i=1

|Ii ∩ Jj | =
l∑

j=1
|Jj |.

So m0(A) is well-defined.
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Lemma 2.1.5. The set function m0 on Rn
0 has:

(1) (finite additivity) if A1, . . . , Ak ∈ Rn
0 are pairwise disjoint, then

m0
( k⋃

i=1
Ai

)
=

k∑
i=1

m0(Ai);

(2) (monotonicity) if A1, . . . , Ak ∈ Rn
0 are pairwise disjoint and

⋃k
i=1Ai ⊂ A ∈ Rn

0 , then

k∑
i=1

m0(Ai) ≤ m0(A);

(3) (finite subadditivity under covers) if A,A1, . . . , Ak ∈ Rn
0 and A ⊂

⋃k
i=1Ai, then

m0(A) ≤
k∑

i=1
m0(Ai).

Proof. (1) Let

Ai =
mi⋃
j=1

Ii
j , i = 1, . . . , k

be canonical decompositions. Then

k⋃
i=1

Ai =
k⋃

i=1

mi⋃
j=1

Ii
j

is a canonical decomposition, so

m0
( k⋃

i=1
Ai

)
=

k∑
i=1

mi∑
j=1

|Ii
j | =

k∑
i=1

m0(Ai).

(2) Let

Ak+1 = A\
k⋃

i=1
Ai.

Then A1, . . . , Ak+1 are pairwise disjoint and

m0(A) =
k+1∑
i=1

m0(Ai) ≥
k∑

i=1
m0(Ai).

(3) By (1) and (2), m0 is monotone on Rn
0 : if A ⊂ B, then m0(A) ≤ m0(B). For A ⊂

⋃k
i=1Ai,

define

B1 = A1, B2 = A2\A1, . . . , Bk = Ak\
( k−1⋃

i=1
Ai

)
.

Then B1, . . . , Bk are pairwise disjoint and ⋃k
i=1Ai = ⋃k

i=1Bi. Hence

m0(A) ≤ m0
( k⋃

i=1
Ai

)
= m0

( k⋃
i=1

Bi

)
=

k∑
i=1

m0(Bi) ≤
k∑

i=1
m0(Ai).

Theorem 2.1.2. m0 is a measure on Rn
0 .
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Proof. By Lemma 2.1.5, it remains to prove countable additivity. Let {Ak} be pairwise disjoint
in Rn

0 and

A =
∞⋃

k=1
Ak ∈ Rn

0 .

By monotonicity,
k∑

i=1
m0(Ai) ≤ m0(A), ∀k ≥ 1.

Let k → ∞: ∞∑
i=1

m0(Ai) ≤ m0(A).

For the reverse inequality, let

A =
l⋃

i=1
Ii

be a canonical decomposition of A, and

Ai =
mi⋃
j=1

Ii
j

one for Ai. Write
Ii = {(x1, . . . , xn) | ar < xr ≤ br, r = 1, . . . , n}.

Given ε > 0, choose inner closed boxes

Iδi
i = {(y1, . . . , yn) | ar + δi ≤ yr ≤ br, r = 1, . . . , n}

so that
|Ii| ≥ |Iδi

i | ≥ |Ii| − ε

2l .

Let

Aδ =
l⋃

i=1
Iδi

i ,

so Aδ is bounded closed.
For each Ii

j , enlarge slightly to open boxes Ii,δi
j

j with

|I
i,δi

j

j | − ε

mi2i+1 ≤ |Ii
j | ≤ |I

i,δi
j

j |.

Then
{I

i,δi
j

j | i = 1, 2, . . . ; j = 1, 2, . . . ,mi}

is an open cover of Aδ. By compactness, there exists k0 such that

Aδ ⊂
k0⋃

i=1

mi⋃
j=1

I
i,δi

j

j .

Hence

m0(A) − ε ≤
l∑

i=1
|Iδi

i | ≤
k0∑

i=1

mi∑
j=1

|I
i,δi

j

j |

≤
k0∑

i=1

mi∑
j=1

(
|Ii

j | + ε

mi2i+1

)

≤
k0∑

i=1

(
m0(Ai) + ε

2i+1

)
≤

∞∑
i=1

m0(Ai) + ε.
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By arbitrariness of ε,

m0(A) ≤
∞∑

i=1
m0(Ai).

Corollary 2.1.1. If A,Ai ∈ Rn
0 and

A ⊂
∞⋃

i=1
Ai,

then
m0(A) ≤

∞∑
i=1

m0(Ai).

Proof. Since

A =
∞⋃

i=1
(Ai ∩A),

let Bi = Ai ∩A and

Ci = Bi\
( i−1⋃

j=1
Bj

)
∈ Rn

0 .

Then Ci ∩ Cj = ∅ for i ̸= j, and

A =
∞⋃

i=1
Ci.

Thus
m0(A) =

∞∑
i=1

m0(Ci) ≤
∞∑

i=1
m0(Ai).

Exercises 2.1

1. Construct a measure µ on a ring Rn
0 such that

(1) for every r ∈ Q, µ∗({r}) = 0;

(2) for every closed set F ⊂ R\Q, µ∗(F ) = 0.

2. Let g be increasing and right-continuous on R. For each box in Rn

I = {(x1, . . . , xn) | ai ≤ xi ≤ bi, i = 1, . . . , n},

define
µ(I) =

n∏
i=1

(g(bi) − g(ai)).

Prove that µ is a measure on Rn
0 .

3. Let µ, ν be measures on Rn
0 and Rm

0 . For A ∈ Rn
0 , B ∈ Rm

0 with µ(A), ν(B) < ∞, define

(µ ∗ ν)(A×B) = µ(A)ν(B).

Is µ ∗ ν a measure on Rn+m
0 ?
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4. Let S,R be σ-rings on X,Y . Define

T =
{ ∞⋃

i=1
Ai ×Bi | Ai ∈ S, Bi ∈ R

}
.

Is T a σ-ring on X × Y ?

2.2 Outer Measure

Definition 2.2.1. For A ⊂ Rn, define

m∗
0(A) = inf

{ ∞∑
i=1

m0(Ai) | Ai ∈ Rn
0 , A ⊂

∞⋃
i=1

Ai

}
.

This is the outer measure induced by m0.

Remark 2.2.1. In abstract form, for a measure space (X,R, µ) with R a ring and µ a measure
on R, define

µ∗(A) = inf
{ ∞∑

i=1
µ(Ai) | Ai ∈ R, A ⊂

∞⋃
i=1

Ai

}
,

called the outer measure induced by µ (see Definition 2.2.2).

Theorem 2.2.1. The outer measure m∗
0 satisfies:

(1) m∗
0(∅) = 0;

(2) if A ⊂ B ⊂ Rn, then m∗
0(A) ≤ m∗

0(B);
(3) if A ∈ Rn

0 , then m∗
0(A) = m0(A);

(4)

m∗
0

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

m∗
0(Ai).

Proof. Proofs of (1) and (2) are omitted.
(3) Set A1 = A, Ai = ∅ for i ≥ 2. Then

A ⊂
∞⋃

i=1
Ai,

so
m∗

0(A) ≤
∞∑

i=1
m0(Ai) = m0(A).

Conversely, for any cover A ⊂
⋃∞

i=1Ai with Ai ∈ Rn
0 ,

m0(A) ≤
∞∑

i=1
m0(Ai).

Taking infimum gives m0(A) ≤ m∗
0(A).

(4) Assume without loss of generality that

∞∑
i=1

m∗
0(Ai) < ∞.
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For any ε > 0, by definition of m∗
0(Ai) there exist Aj

i ∈ Rn
0 such that

Ai ⊂
∞⋃

j=1
Aj

i ,
∞∑

j=1
m0(Aj

i ) ≤ m∗
0(Ai) + ε

2i
.

Hence
A :=

∞⋃
i=1

Ai ⊂
∞⋃

i=1

∞⋃
j=1

Aj
i ,

and
m∗

0(A) ≤
∞∑

i=1

∞∑
j=1

m0(Aj
i ) ≤

∞∑
i=1

(
m∗

0(Ai) + ε

2i

)

=
∞∑

i=1
m∗

0(Ai) + ε.

Let ε ↓ 0.

Example 2.2.1. We have:
(1) If x0 ∈ Rn, then m∗

0({x0}) = 0;
(2) m∗

0(Qn) = 0;
(3) If C is the middle-third Cantor set, then

m∗
0(C) ≤ m∗

0

( 2n⋃
i=1

Ii

)
≤

(2
3

)n
→ 0 (n → ∞);

(4) If I is a bounded box, then
m∗

0(
◦
I) = m∗

0(I).

The measure m0 on Rn
0 is countably additive, but the outer measure m∗

0 is not.

Example 2.2.2 (Outer Measure Is Not Additive). First, if m∗
0 were finitely additive, then it

would be countably additive. Indeed, if {En}N
n=1 are disjoint and

m∗
0

( N⋃
n=1

En

)
=

N∑
n=1

m∗
0(En),

then for any disjoint {En}∞
n=1,

m∗
0

( ∞⋃
n=1

En

)
≥ m∗

0

( N⋃
n=1

En

)
=

N∑
n=1

m∗
0(En) →

∞∑
n=1

m∗
0(En),

while subadditivity gives the reverse inequality.
Now give a counterexample to countable additivity. For each x ∈ (0, 1), let

Lx = {ξ ∈ (0, 1) | ξ − x ∈ Q}.

Then (0, 1) is a disjoint union of such classes. Choose one representative from each class to
form S (using the axiom of choice). Let Sk = S+ rk with rk ∈ (−1, 1)∩Q. Then Sk are disjoint
and

(0, 1) ⊂
∞⋃

k=1
Sk ⊂ (−1, 2).

42



So

1 = m∗
0((0, 1)) ≤ m∗

0

( ∞⋃
k=1

Sk

)
=

∞∑
k=1

m∗
0(Sk) ≤ m∗

0((−1, 2)) = 3.

Since m∗
0(Sk) = m∗

0(S) and the series converges,

m∗
0(S) = 0 ⇒

∞∑
k=1

m∗
0(Sk) = 0,

which yields 1 ≤ 0 ≤ 3, contradiction.

Theorem 2.2.2. For any A ⊂ Rn, define

m∗
0,δ(A) = inf

{ ∞∑
i=1

m0(Ai) | Ai ∈ Rn
0 , diam(Ai) < δ, A ⊂

∞⋃
i=1

Ai

}
.

Then
m∗

0,δ(A) = m∗
0(A).

Proof. Clearly, m∗
0(A) ≤ m∗

0,δ(A).
For the opposite inequality, assume m∗

0(A) < ∞. Given ε > 0, choose Ai ∈ Rn
0 such that

A ⊂
∞⋃

i=1
Ai,

∞∑
i=1

m0(Ai) < m∗
0(A) + ε.

Subdivide each box in each Ai into finitely many boxes of diameter < δ:

Ai =
mi⋃
j=1

Ii
j =

mi⋃
j=1

lij⋃
k=1

Ii,k
j , diam(Ii,k

j ) < δ.

Then

m∗
0,δ(A) ≤

∞∑
i=1

mi∑
j=1

lij∑
k=1

|Ii,k
j | < m∗

0(A) + ε.

Let ε ↓ 0.

Definition 2.2.2 (Abstract Outer Measure). Let X be a set, R ⊂ P(X) a ring, and µ a measure
on R. Define

Σ(R) =
{
A ⊂ X | ∃Ai ∈ R, A ⊂

∞⋃
i=1

Ai

}
.

For A ∈ Σ(R), define

µ∗(A) = inf
{ ∞∑

i=1
µ(Ai) | A ⊂

∞⋃
i=1

Ai, Ai ∈ R
}
.

This is called the outer measure induced by µ.

Remark 2.2.2. We call (X,R, µ) a measure space. If additionally µ(X) = 1, it is a probability
space.
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Theorem 2.2.3. Let (X,R, µ) be a measure space and µ∗ the induced outer measure. Then:
(1) if A ⊂ B, then µ∗(A) ≤ µ∗(B);
(2) if A ∈ R, then µ∗(A) = µ(A);
(3) (subadditivity) for Ai ∈ Σ(R),

µ∗
( ∞⋃

i=1
Ai

)
≤

∞∑
i=1

µ∗(Ai).

Proof. We only prove (2). The inequality µ∗(A) ≤ µ(A) is immediate. For the reverse, assume
µ∗(A) < ∞. By definition, for any ε > 0 there exist Ai ∈ R such that

A ⊂
∞⋃

i=1
Ai,

∞∑
i=1

µ(Ai) ≤ µ∗(A) + ε.

We may assume Ai ∩Aj = ∅ for i ̸= j (by standard disjointization). Then

A = A ∩
( ∞⋃

i=1
Ai

)
=

∞⋃
i=1

(A ∩Ai) ∈ R,

and
µ(A) =

∞∑
i=1

µ(A ∩Ai) ≤
∞∑

i=1
µ(Ai) ≤ µ∗(A) + ε.

Let ε ↓ 0.

Remark 2.2.3. This proof pattern has already appeared several times and is worth noting.

2.3 Lebesgue Measure

In this section we define Lebesgue measure. We begin with Lebesgue measurable sets.

Definition 2.3.1 (Lebesgue Measurable Set). Let Rn
0 ,m0,m

∗
0 be as above. A set A ⊂ Rn is

called Lebesgue measurable if for every E ⊂ Rn,

m∗
0(E) = m∗

0(E ∩A) +m∗
0(E ∩Ac). (2.2)

Remark 2.3.1. 1. The family of all n-dimensional Lebesgue measurable sets is denoted by Ln.
For A ∈ Ln, set m(A) = m∗

0(A) and call it the Lebesgue measure of A.

2. Equation (2.2) is called the Carathéodory condition.
3. If E ∈ Ln, then

m(E) = m(E ∩ (A ∪Ac))
= m((E ∩A) ∪ (E ∩Ac))
= m(E ∩A) +m(E ∩Ac).

So the Carathéodory identity always holds inside measurable sets; this is the original motivation
for introducing it.

Now show every set in Rn
0 is Lebesgue measurable.

Theorem 2.3.1. If A ∈ Rn
0 , then A ∈ Ln.
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Proof. One side is immediate from subadditivity:

m∗
0(E) ≤ m∗

0(E ∩A) +m∗
0(E ∩Ac).

For the reverse, assume m∗
0(E) < ∞. For any ε > 0, choose Ai ∈ Rn

0 with

E ⊂
∞⋃

i=1
Ai,

∞∑
i=1

m0(Ai) ≤ m∗
0(E) + ε.

Then
E ∩A ⊂

∞⋃
i=1

(Ai ∩A), E ∩Ac ⊂
∞⋃

i=1
(Ai ∩Ac),

and each intersection lies in Rn
0 . Hence

m∗
0(E ∩A) +m∗

0(E ∩Ac) ≤
∞∑

i=1
m0(Ai ∩A) +

∞∑
i=1

m0(Ai ∩Ac)

=
∞∑

i=1
m0(Ai) ≤ m∗

0(E) + ε.

Let ε ↓ 0.

Remark 2.3.2. In later proofs of measurability, by subadditivity it is enough to prove

m∗
0(E) ≥ m∗

0(E ∩A) +m∗
0(E ∩Ac).

The following theorem implies that Ln is a ring.

Theorem 2.3.2. We have:
(1) if m∗

0(A) = 0, then A ∈ Ln;
(2) the Cantor middle-third set C is Lebesgue measurable;
(3) if A ∈ Ln, then Ac ∈ Ln;
(4) if A,B ∈ Ln, then A ∪B,A ∩B ∈ Ln, and when A ∩B = ∅,

m(A ∪B) = m(A) +m(B).

Proof. We prove only (4). For any E ⊂ Rn,

m∗
0(E) = m∗

0(E ∩A) +m∗
0(E ∩Ac)

= m∗
0(E ∩A ∩B) +m∗

0(E ∩A ∩Bc) +m∗
0(E ∩Ac).

Since (A ∩Bc) ∪Ac = (A ∩B)c, we get

m∗
0(E) ≥ m∗

0(E ∩ (A ∩B)) +m∗
0(E ∩ (A ∩B)c).

The opposite inequality is obvious, so A ∩B ∈ Ln. Then

A ∪B = (Ac ∩Bc)c,

and by (3), A ∪B ∈ Ln. If A ∩B = ∅,

m∗
0(A ∪B) = m∗

0((A ∪B) ∩A) +m∗
0((A ∪B) ∩Ac)

= m∗
0(A) +m∗

0(B).

Hence Ln is a ring.
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In fact, Ln is a σ-ring.

Theorem 2.3.3. Let Ln,m∗
0,m be as above. If Ai ∈ Ln, i = 1, 2, . . . , then

∞⋃
i=1

Ai ∈ Ln.

Moreover, if Ai ∩Aj = ∅ for i ̸= j, then

m
( ∞⋃

i=1
Ai

)
=

∞∑
i=1

m(Ai).

Proof. By disjointization, let

B1 = A1, B2 = A2\A1, . . . , Bk = Ak\
( k−1⋃

i=1
Ai

)
, . . .

Then each Bk ∈ Ln (Theorem 2.3.2),

k⋃
i=1

Bi =
k⋃

i=1
Ai (k = 1, 2, . . . ,∞),

and Bi ∩Bj = ∅ for i ̸= j. So it suffices to treat disjoint {Bi}.
For any E ⊂ Rn and any k ∈ N,

m∗
0(E) = m∗

0

(
E ∩

( k⋃
i=1

Bi
))

+m∗
0

(
E ∩

( k⋃
i=1

Bi
)c

)

=
k∑

i=1
m∗

0(E ∩Bi) +m∗
0

(
E ∩

( k⋃
i=1

Bi
)c

)

≥
k∑

i=1
m∗

0(E ∩Bi) +m∗
0

(
E ∩

( ∞⋃
i=1

Bi
)c

)
.

Let k → ∞:
m∗

0(E) ≥
∞∑

i=1
m∗

0(E ∩Bi) +m∗
0

(
E ∩

( ∞⋃
i=1

Bi
)c

)
≥ m∗

0

(
E ∩

( ∞⋃
i=1

Bi
))

+m∗
0

(
E ∩

( ∞⋃
i=1

Bi
)c

)
.

Hence ⋃∞
i=1Bi ∈ Ln. Taking E = ⋃∞

i=1Bi yields

m
( ∞⋃

i=1
Bi

)
=

∞∑
i=1

m(Bi).

The next two theorems are used frequently.

Theorem 2.3.4 (Measure Limit for Increasing Measurable Sets). Let {Ei}∞
i=1 be measurable

with
E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · .

Then
m

(
lim

k→∞
Ek

)
= lim

k→∞
m(Ek).
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Proof. Assume m(Ek) < ∞ for all k; otherwise trivial. Define

B1 = E1, B2 = E2\E1, . . . , Bk = Ek\Ek−1, . . .

Then Bk ∈ Ln, pairwise disjoint, and

∞⋃
k=1

Bk = lim
k→∞

Ek.

Hence

m
(

lim
k→∞

Ek

)
= m

( ∞⋃
k=1

Bk

)
=

∞∑
k=1

(m(Ek) −m(Ek−1))

= lim
k→∞

k∑
i=1

(m(Ei) −m(Ei−1)) = lim
k→∞

m(Ek),

with E0 = ∅.

With a finiteness condition, we get the decreasing version.

Theorem 2.3.5 (Measure Limit for Decreasing Measurable Sets). Let {Ei}∞
i=1 be measurable

with
E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · · ,

and
m(E1) < ∞.

Then
m

(
lim

k→∞
Ek

)
= lim

k→∞
m(Ek).

Proof. Since
E1\Ek ⊂ E1\Ek+1, k = 1, 2, . . . ,

{E1\Ek} is increasing. By Theorem 2.3.4,

m
(
E1\ lim

k→∞
Ek

)
= m

(
lim

k→∞
(E1\Ek)

)
= lim

k→∞
m(E1\Ek).

Using m(E1) < ∞,
m(E1) −m

(
lim

k→∞
Ek

)
= m(E1) − lim

k→∞
m(Ek),

so
m

(
lim

k→∞
Ek

)
= lim

k→∞
m(Ek).

Exercises 2.3

1. P92 1,2,3,4,5,6,7
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2.4 Relation Between Lebesgue Measurable Sets and Borel Sets

(Real variable theory) does not require as broad a background as is sometimes imag-
ined. Roughly speaking, three principles suffice: every measurable set is close to a
finite union of intervals; every measurable function is close to a continuous function;
every convergent function sequence is close to a uniformly convergent one. Most re-
sults are rather direct applications of these ideas. When students face a real-variable
problem, these are the three principles they most need to master. If one principle
appears to solve a genuine problem, one naturally asks whether this “closeness” is
sufficient; in practice, the answer is generally yes.

This section concerns Littlewood’s first principle.

Theorem 2.4.1. Every closed set F ⊂ Rn is Lebesgue measurable, i.e. F ∈ Ln.

Proof. Step 1. If F is bounded and closed, then F ∈ Ln. For any open box
◦
I, it is measurable

because it is I minus ∂I, and ∂I has measure zero. For each x ∈ F , define

Ik(x) = {y = (y1, . . . , yn) | |yi − xi| < 1/k}.

Then {Ik(x) | x ∈ F} is an open cover of F , so there exists a finite subcover

Ik(x1), . . . , Ik(xlk).

Let

Ak =
lk⋃

j=1
Ik(xj).

Since Ln is a σ-ring, Ak ∈ Ln. We claim

F =
∞⋂

k=1
Ak.

Clearly F ⊂ Ak for every k, so F ⊂
⋂

k Ak. Conversely, if y ∈
⋂

k Ak, then for each k there exists
xk ∈ F with

|yi − xk
i | < 1/k, i = 1, . . . , n,

thus
∥y − xk∥ <

√
n

k
.

Hence xk → y, and since F is closed, y ∈ F .
Step 2. If F is an arbitrary closed subset of Rn, define

Fk = F ∩B(0, k).

By Step 1, Fk ∈ Ln. Also

F =
∞⋃

k=1
Fk.

By σ-ring closure, F ∈ Ln.

By definitions of open and Borel sets, we immediately get:
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Corollary 2.4.1. Every open set and every Borel set in Rn is Lebesgue measurable.

Theorem 2.4.2. If A ∈ Ln, then for every ε > 0 there exist open G and closed F in Rn such
that

F ⊂ A ⊂ G, m(G\A) < ε, m(A\F ) < ε.

Proof. Step 1. If A is bounded, there exists open G ⊃ A with m(G\A) < ε. By m(A) = m∗(A),
for any ε > 0 there exist Ak ∈ Rn

0 such that

A ⊂
∞⋃

k=1
Ak, m(A) + ε

2 ≥
∞∑

k=1
m(Ak).

Write canonical decompositions Ak = ⋃lk
j=1 Ik,j . Enlarge each box to an open box Iε

k,j with

Ik,j ⊂ Iε
k,j , m(Iε

k,j) −m(Ik,j) < ε

2klk
.

Then
∞∑

k=1

lk∑
j=1

m(Iε
k,j) < m(A) + ε.

Let

G =
∞⋃

k=1

lk⋃
j=1

Iε
k,j .

Then G is open, A ⊂ G, and

m(G\A) = m(G) −m(A) < ε.

Step 2. For general measurable A, there exists open G ⊃ A with m(G\A) < ε. Define

Ak = {x ∈ A | k < ∥x∥ ≤ k + 1}.

By Step 1, for each k there is open Gk ⊃ Ak such that

m(Gk\Ak) < ε

2k
.

Let
G =

∞⋃
k=1

Gk.

Then G is open, A ⊂ G, and

m(G\A) ≤ m
( ∞⋃

k=1
(Gk\A)

)
≤

∞∑
k=1

m(Gk\A)

< ε.

Step 3. Existence of closed F ⊂ A with m(A\F ) < ε. Apply Step 2 to Ac: there is open
G ⊃ Ac with

m(G\Ac) < ε.

Let F = Gc. Then F is closed, F ⊂ A, and

m(A\F ) = m(G\Ac) < ε.
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The next theorem is a direct consequence of Theorem 2.4.2.

Theorem 2.4.3. If A ∈ Ln, then
(1) there exists a Gδ set G∗ with A ⊂ G∗ and m(G∗\A) = 0;
(2) there exists an Fσ set F ∗ with F ∗ ⊂ A and m(A\F ∗) = 0.

Remark 2.4.1. Since both Gδ and Fσ sets are Borel, Lebesgue measurable sets differ from Borel
sets only by null sets from both outside and inside.

Theorem 2.4.4. Let A be a Borel set in Rn, and let B ⊂ Rn with m∗(B) = 0. Then A ∪ B

and A\B are in Ln, and

m(A ∪B) = m(A), m(A\B) = m(A).

Proof. Since B ∈ Ln, both A ∪B and A\B are measurable. Also,

m(A) ≤ m(A ∪B) ≤ m(A) +m(B) = m(A),

m(A\B) ≤ m(A) ≤ m(A\B) +m(B) = m(A\B).

So equalities hold.

Theorem 2.4.5 (Translation Invariance). If A ∈ Ln, then A+ {x0} ∈ Ln and

m(A+ {x0}) = m(A).

Proof. Because A ∈ Ln, there exists Gδ set G∗ ⊃ A with

m(G∗\A) = 0.

Then
A+ {x0} ⊂ G∗ + {x0},

and
m∗

(
(G∗ + {x0})\(A+ {x0})

)
= m∗(G∗\A) = 0.

So (G∗ +{x0})\(A+{x0}) is measurable. Since G∗ +{x0} is Borel (hence measurable), A+{x0}
is measurable. The measure identity follows from standard translation invariance on boxes and
approximation.

Remark 2.4.2. Let µ be a measure on Bn, finite on compact sets. If µ is translation invariant,
then there exists constant λ such that

µ(B) = λm(B), ∀B ∈ Bn.

We omit the proof.

Exercises 2.4

1. P98 1,2,3

2. P102 1,2,3 (replace the conclusion by m(E) ≥ δ)
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2.5 Completeness of Lebesgue Measure

2.5.1 Existence of Non-Lebesgue-Measurable Sets

Example 2.5.1 (Nonmeasurable Set). Let I = [0, 1]n be the unit cube in Rn, and let Qn be the
set of rational points. We aim to construct sets {Ak} such that:

(1) Ak ∩Aj = ∅ for k ̸= j;
(2) {Ak} is uniformly bounded;
(3) I ⊂

∞⋃
k=1

Ak;

(4) m∗(Ak) = m∗(Aj);
(5) Ak ∈ Ln ⇔ Aj ∈ Ln.
These imply A1 is not Lebesgue measurable.
Construction: for each x ∈ (0, 1), define

Ax = {ξ ∈ (0, 1) | ξ − x ∈ Q}.

Then (0, 1) is a disjoint union of the classes Ax. Choose one representative from each class to
form A (axiom of choice). Let

Ak = A+ rk, rk ∈ (−1, 1) ∩ Q.

Then {Ak} has the required properties.

Remark 2.5.1. 1. For any translation-invariant measure on Rn assigning positive measure to
cubes, the set A1 above is nonmeasurable.

2. This example also shows m∗ is neither countably additive nor finitely additive.

2.5.2 Extension of Measures

For any A ⊂ Rn, define

m∗∗(A) = inf
{ ∞∑

i=1
m(Ai) | A ⊂

∞⋃
i=1

Ai, Ai ∈ Ln
}
.

If for all E ⊂ Rn,
m∗∗(E) = m∗∗(E ∩A) +m∗∗(E ∩Ac),

then A is called second-order Lebesgue measurable.
Clearly every Lebesgue measurable set is second-order measurable. It might appear this

extends the measurable class, but the next theorem shows otherwise.

Theorem 2.5.1. For all A ⊂ Rn,

m∗∗(A) = m∗(A).

Proof. Since Rn
0 ⊂ Ln,

m∗∗(A) ≤ m∗(A).
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For the reverse inequality, assume m∗∗(A) < ∞. By definition, for any ε > 0 there exist Ak ∈ Ln

such that
A ⊂

∞⋃
k=1

Ak,
∞∑

k=1
m(Ak) ≤ m∗∗(A) + ε.

For each k, by definition of m∗(Ak) there exist Bk
j ∈ Rn

0 with

Ak ⊂
∞⋃

j=1
Bk

j ,
∞∑

j=1
m0(Bk

j ) ≤ m∗(Ak) + ε

2k
.

Hence
A ⊂

∞⋃
k=1

∞⋃
j=1

Bk
j ,

so
m∗(A) ≤

∞∑
k=1

∞∑
j=1

m0(Bk
j ) ≤

∞∑
k=1

(
m∗(Ak) + ε

2k

)
≤ m∗∗(A) + 2ε.

Let ε ↓ 0 to get m∗(A) ≤ m∗∗(A).

Theorem 2.5.2 (Uniqueness of Measure Extension). Let R be a σ-ring of subsets of Rn with
Rn

0 ⊂ R. Let µ be a measure on R satisfying

µ|Rn
0

= m|Rn
0
,

i.e. µ(A) = m(A) for all A ∈ Rn
0 . Then

µ|Bn = m|Bn ,

where Bn is the smallest σ-ring containing Rn
0 .

Proof. Step 1. For every open set G ⊂ Rn, µ(G) = m(G).
For each x ∈ G, there is a left-open right-closed box I(yx, rx) with rational center yx and

rational side length rx > 0 such that

I(yx, rx) ⊂ G.

Hence
G =

⋃
x∈G

I(yx, rx).

This family is at most countable, so

G =
∞⋃

k=1
I(yxk

, rxk
).

Disjointize into boxes {Bk}. By countable additivity of µ and m,

µ(G) =
∞∑

k=1
µ(Bk) =

∞∑
k=1

m(Bk) = m(G).

Step 2. For every bounded closed set F ⊂ Rn, µ(F ) = m(F ).
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Take open G ⊃ F . Then
G = (G\F ) ∪ F,

so
µ(G) = m(G) = m(G\F ) +m(F ) = µ(G\F ) +m(F ),

hence
µ(F ) = µ(G) − µ(G\F ) = m(F ).

Step 3. For every closed set F ⊂ Rn, µ(F ) = m(F ).
Let

Fk = F ∩B(0, k).

By Step 2, µ(Fk) = m(Fk). Since Fk ↑ F , by continuity from below,

µ(F ) = lim
k→∞

µ(Fk) = lim
k→∞

m(Fk) = m(F ).

Step 4. For every Borel set E ∈ Bn, µ(E) = m(E).
Given ε > 0, choose open Gε and closed Fε with

Fε ⊂ E ⊂ Gε,

m(E\Fε) < ε, m(Gε\E) < ε.

Then
m(Gε) −m(Fε) < 2ε.

Also
m(Fε) ≤ m(E) ≤ m(Gε),

µ(Fε) ≤ µ(E) ≤ µ(Gε),

and by previous steps µ(Fε) = m(Fε), µ(Gε) = m(Gε). Let ε ↓ 0 to conclude µ(E) = m(E).

Remark 2.5.2. For measures on R1 induced by monotone right-continuous functions, all sets
may be measurable; this does not contradict the theorem above.

Finally, we give an example of a Lebesgue measurable set that is not Borel.

Example 2.5.2 (Lebesgue Measurable but Non-Borel Set). Let C be the middle-third Cantor
set, and let {(ak, bk)} be component intervals of its complement. Let φ : [0, 1] → [0, 1] be the
Cantor function constructed as in Proposition 1.3.5, so

φ|(ak,bk) ≡ ck.

Define
f(x) = 1

2(x+ φ(x)), x ∈ [0, 1].

Then f(0) = 0, f(1) = 1, and f is strictly increasing; hence bijective. For every k,

m
(
f((ak, bk))

)
= 1

2(bk − ak).
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So
m

(
f

( ∞⋃
k=1

(ak, bk)
))

= 1
2 .

Since
m

(
f(C) ∪ f

( ∞⋃
k=1

(ak, bk)
))

= 1,

we obtain
m(f(C)) = 1

2 .

By the construction in Example 2.5.1, choose a Lebesgue nonmeasurable set A ⊂ f(C). Let

B = f−1(A) ⊂ C.

Then
0 ≤ m∗(B) ≤ m(C) = 0,

so B ∈ L1. But B is not Borel; otherwise f(B) = A would be Borel (see exercise), contradicting
nonmeasurability of A.

Exercises 2.5

1. If f(x) is strictly increasing, show that both f−1 : Bn → Bn and f : Bn → Bn are bijections.
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Chapter 3

Lebesgue Measurable Functions

3.1 Definition and Basic Properties

First, for convenience in later arguments, we adopt the convention

0 · ∞ = 0.

Definition 3.1.1 (Almost Everywhere). Let E ⊂ Rn be Lebesgue measurable, and let P (x) be a
statement about x ∈ E. If there exists a null set E0 ⊂ E such that P (x) holds for all x ∈ E\E0,
then we say P (x) holds almost everywhere on E, written as

P (x) holds for a.e. x ∈ E.

Example 3.1.1. By Definition 3.1.1, we can define the notions “finite almost everywhere” and
“bounded almost everywhere.” These are different concepts.

Definition 3.1.2 (Lebesgue Measurable Function). Let E ⊂ Rn be Lebesgue measurable, and
let

f : E → R ∪ {±∞}.

We call f a Lebesgue measurable function if for every c ∈ R ∪ {±∞},

E(x|f(x) > c) = {x ∈ E|f(x) > c}

is Lebesgue measurable.1

Remark 3.1.1. 1. Sometimes one does not assume E is measurable, but then one assumes f
is finite-valued2 and

E =
∞⋃

n=1
E(x|f(x) > −n)

is measurable.
2. For extended real-valued f , one may equivalently require E(x|f(x) ≥ c) to be measurable

for all c ∈ R ∪ {±∞}. In particular, taking c = −∞ implies E is measurable.
1Unless otherwise stated, we abbreviate {x ∈ E|f(x) > c} by E(x|f(x) > c).
2Finite-valued means the range of f does not contain ±∞.
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3. (Borel measurable function) Let E ∈ Bn and f : E → R ∪ {±∞}. If for every c ∈
R ∪ {±∞},

E(x|f(x) > c) ∈ Bn,

then f is called Borel measurable. Every Borel measurable function is Lebesgue measurable.

Definition 3.1.3 (Measurable Function on an Abstract Measure Space). Let (X,R, µ) be a
measure space, E ∈ R, and f : E → R ∪ {±∞}. If for every c ∈ R ∪ {±∞},

E(x|f(x) > c) ∈ R,

then f is called µ-measurable.

Theorem 3.1.1. Let E ∈ Ln, f : E → R ∪ {±∞}, and let D ⊂ R be a dense subset. If for
every r ∈ D,

E(x|f(x) > r) ∈ Ln,

then f is Lebesgue measurable on E.

Proof. Left as an exercise.

Theorem 3.1.2. Let E ∈ Ln and f : E → R ∪ {±∞}. The following are equivalent:
(1) f is Lebesgue measurable on E;
(2) for every c ∈ R ∪ {±∞},

E(x|f(x) ≤ c) ∈ Ln;

(3) for every c ∈ R ∪ {±∞},
E(x|f(x) < c) ∈ Ln;

(4) for every c ∈ R ∪ {±∞},
E(x|f(x) ≥ c) ∈ Ln;

(5) for every c, d ∈ R ∪ {±∞},

E(x|c < f(x) ≤ d) ∈ Ln.

Proof. Left as an exercise.

Corollary 3.1.1. Let E ∈ Ln and f : E → R ∪ {±∞}. If f is Lebesgue measurable, then for
every c ∈ R ∪ {±∞},

E(x|f(x) = c) ∈ Ln.

Proof. This follows directly from Theorem 3.1.2.

Example 3.1.2. Let E ∈ Ln. The indicator function χE is Lebesgue measurable. In particular,
the Dirichlet function is both Lebesgue measurable and Borel measurable.

Theorem 3.1.3. Let E ∈ Ln, and let f, g be Lebesgue measurable on E. Then:
(1) for every α ∈ R, αf is Lebesgue measurable;
(2) f + g is Lebesgue measurable;
(3) fg is Lebesgue measurable;
(4) if g(x) ̸= 0 for x ∈ E, then f/g is Lebesgue measurable;
(5) max{f, g} and min{f, g} are Lebesgue measurable;
(6) sup{fk}, inf{fk}, lim

k→∞
fk, and lim

k→∞
fk are Lebesgue measurable.
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Proof. For (4), it is enough to show 1/g is measurable.
For (5),

E
(
x

∣∣ max{f(x), g(x)} ≥ c
)

= E
(
x

∣∣f(x) ≥ c
)

∪ E
(
x

∣∣g(x) ≥ c
)
.

For (6),
lim

k→∞
fk(x) = inf

m

{
sup
k≥m

fk(x)
}
.

The remaining parts are standard.

Example 3.1.3. Let Ei ∈ Ln, i = 1, 2, . . . , k. Then

χ(x) =
k∑

i=1
αiχEi(x) (3.1)

is Lebesgue measurable.

Remark 3.1.2. A function of the form (3.1) is called a simple function (or step function).

Example 3.1.4. If f is Lebesgue measurable on E, and A ⊂ E with A ∈ Ln, then the restriction
f |A is Lebesgue measurable.3

Example 3.1.5. Let E ∈ Ln. If f is continuous on E, then f is Lebesgue measurable.

Exercises 3.1

1. P127 1,2,3,4,5,6,7

2. P129 8,9

3.2 Structure of Lebesgue Measurable Functions

Theorem 3.2.1. Let E ⊂ Rn be Lebesgue measurable.
(1) If f is a nonnegative Lebesgue measurable function on E and finite a.e., then there exists

an increasing4 sequence of simple functions {φk}∞
k=1 such that

φk → f a.e. on E.

If in addition f is bounded, then
φk ⇒ f.

(2) If f is Lebesgue measurable on E and finite a.e., then there exists a sequence of simple
functions {φk}∞

k=1 such that
|φk| ≤ |f | a.e. on E,

and
φk → f a.e. on E.

If f is bounded, then
φk ⇒ f.

3That is, f |A is the restriction of f to A.
4Namely, φk ≤ φk+1.

57



Proof. Step 1. For each natural number k, define

Ek,i = E
(
x

∣∣∣ i− 1
2k

≤ f(x) ≤ i

2k

)
, i = 1, 2, . . . , k2k.

Set

φk(x) =


i−1
2k , x ∈ Ek,i,

k, x ∈ E\
k2k⋃
i=1

Ek,i.

Then φk ≤ φk+1, and if x ∈ Ek,i,

0 ≤ f(x) − φk(x) ≤ 1
2k
.

Since f is finite a.e. on E, the set E∞ = {x ∈ E|f(x) = +∞} has measure zero. For x ∈ E\E∞

and any ε > 0, choose k0 so that f(x) < k0 and 2−k0 < ε. Then x ∈ Ek0,i0 for some i0, hence

0 ≤ f(x) − φk0(x) ≤ 1
2k0

< ε.

Thus φk → f a.e. If f(x) ≤ M on E, then for k > M the same estimate holds for all x ∈ E, so
φk ⇒ f .

Step 2. Let
f+ = max{f, 0}, f− = max{−f, 0}, f = f+ − f−.

Apply Step 1 to f+ and f− to obtain simple functions φk ↗ f+ and ψk ↗ f− a.e., with φk ≤ f+

and ψk ≤ f−. Then
φk − ψk → f+ − f− = f,

and
|φk − ψk| ≤ φk + ψk ≤ f+ + f− = |f |.

So part (2) follows.

Following this theorem, a standard strategy for statements about measurable functions is:

1. prove it for indicator functions;

2. prove it for simple functions;

3. prove it for nonnegative measurable functions;

4. decompose into positive and negative parts, then prove it for general measurable functions.

Lemma 3.2.1. Let F1, F2, . . . , Fk ⊂ Rn be pairwise disjoint closed sets, and define

φ(x) =
k∑

i=1
αiχFi(x).

Then φ|∪k
i=1Fi

is continuous.
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Proof. Fix x0 ∈
⋃k

i=1 Fi. Then x0 ∈ Fi0 for some i0. Since the Fi are pairwise disjoint and
closed, for each i ̸= i0,

δi = dist(x0, Fi) > 0.

Set δ0 = mini̸=i0 δi. If

x ∈
( k⋃

i=1
Fi

)
∩B(x0, δ0),

then x ∈ Fi0 , hence
|φ(x) − φ(x0)| = 0 < ε ∀ε > 0.

So φ|∪k
i=1Fi

is continuous.

The next theorem is Lusin’s theorem, corresponding to Littlewood’s second principle: every
measurable function is close to a continuous one.

Theorem 3.2.2 (Lusin’s Theorem). Let E ⊂ Rn be Lebesgue measurable, and let f be Lebesgue
measurable on E and finite a.e. Then for every δ > 0, there exists a closed set F ⊂ E such that
f |F is continuous and

m(E\F ) < δ.

Proof. Step 1: Assume m(E) < ∞. For each k ∈ N, define

Ek,i = E
(
x

∣∣∣ i− 1
k

≤ f(x) < i

k

)
, i = 0,±1,±2, . . .

Then Ek,i ∩ Ek,j = ∅ for i ̸= j, and

E =
( ∞⋃

i=−∞
Ek,i

)
∪ E−∞ ∪ E+∞,

where E±∞ = E(x|f(x) = ±∞) and m(E±∞) = 0. Since

m(E) =
∞∑

i=−∞
m(Ek,i) +m(E±∞),

for given δ > 0 we can choose ik such that

( −ik−1∑
i=−∞

+
∞∑

i=ik+1

)
m(Ek,i) <

δ

2k+1 .

Define

φk(x) =
ik∑

i=−ik

i− 1
k

χEk,i
(x).

For each i, choose closed Fk,i ⊂ Ek,i with

m(Ek,i\Fk,i) <
δ

2k+2ik
.

Let

Fk =
ik⋃

i=−ik

Fk,i, ψk = φk|Fk
.
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By Lemma 3.2.1, ψk is continuous on Fk, and for x ∈ Fk,

|f(x) − ψk(x)| = |f(x) − φk(x)| ≤ 1
k
.

Also,
m(E\Fk) ≤ δ

2k
.

Set
F =

∞⋂
k=1

Fk.

Then F is closed and

m(E\F ) = m
( ∞⋃

k=1
(E\Fk)

)
≤

∞∑
k=1

m(E\Fk) ≤ δ.

Moreover, each ψk|F is continuous and

|ψk(x) − f(x)| ≤ 1
k

∀x ∈ F,

so ψk ⇒ f on F . Hence f |F is continuous.
Step 2: If m(E) = ∞, apply Step 1 on truncated pieces and combine them to obtain the

same conclusion.

Corollary 3.2.1. Let E ⊂ Rn be Lebesgue measurable, and let f be Lebesgue measurable on E

and finite a.e. For every δ > 0, there exists a continuous function φ on Rn such that

m
(
E(x|f(x) ̸= φ(x))

)
< δ.

Proof. This follows immediately from Theorem 3.2.2 and Theorem 1.3.10.

Corollary 3.2.2. Let E ⊂ Rn be Lebesgue measurable, and let f be Lebesgue measurable on E

and finite a.e. Then there exists a sequence of continuous functions {φk} such that

φk → f a.e. on E.

Proof. Apply Theorem 3.2.2 recursively. Choose closed sets Fk ⊂ E such that

m
(
E\

k⋃
i=1

Fi

)
<

1
k
,

and f is continuous on ⋃k
i=1 Fi. Let φk be a continuous extension to Rn of f |∪k

i=1Fi
. Then φk = f

on ∪k
i=1Fi, and therefore

m
(
E\

∞⋃
k=1

Fk

)
= 0.

Hence φk → f a.e. on E.

Theorem 3.2.3. Let f : [0, 1] → [0, 1] be strictly increasing and continuous, with f([0, 1]) =
[0, 1]. Then

B = f−1(B).
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Proof. Let
A = {f−1(B) | B ∈ B, B ⊂ [0, 1]}.

We prove in two steps.
Step 1: Prove B ⊂ A.
(1) If A1, A2 ∈ A, then A1 = f−1(B1) and A2 = f−1(B2) for some B1, B2 ∈ B. Thus

A1\A2 = f−1(B1\B2) ∈ A.

(2) If Ai ∈ A with Ai = f−1(Bi), then
∞⋃

i=1
Ai = f−1

( ∞⋃
i=1

Bi

)
∈ A.

So A is a σ-ring.
(3) Since f is continuous, preimages of open or closed subsets of [0, 1] are open or closed in

[0, 1], hence belong to A. Therefore B ⊂ A.
Step 2: Let g = f−1. Then g is also strictly increasing and continuous. By Step 1, B ⊂

g−1(B) = f(B), so
f−1(B) ⊂ f−1(f(B)) = B.

Combining with Step 1 gives B = f−1(B).

Remark 3.2.1. This proof method is typical and is often called the “good-set principle”: first
collect all sets with the desired property, then show that this family forms an appropriate class.

3.3 Almost Everywhere Convergence and Convergence in Mea-
sure

In this section we introduce two important notions of convergence and their relationship.

3.3.1 Almost Everywhere Convergence

Definition 3.3.1 (Almost Everywhere Convergence). Let E ⊂ Rn be Lebesgue measurable, and

f, fk : E → R ∪ {±∞}, k = 1, 2, . . . ,

be Lebesgue measurable. If
fk(x) → f(x)

for a.e. x ∈ E, then we say {fk} converges to f almost everywhere on E, written

fk → f a.e. on E,

or
fk

a.e.→ f x ∈ E.

In Theorem 3.4.1 we will see that measurable functions generalize continuous functions. In
real analysis, even pointwise limits of continuous functions need not be continuous. In measure
theory, however, a.e. limits preserve Lebesgue measurability.
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Theorem 3.3.1. Let E ⊂ Rn be Lebesgue measurable, and let fk : E → R ∪ {±∞} be Lebesgue
measurable for k = 1, 2, . . . . If

fk
a.e.→ f x ∈ E,

then f is measurable on E.

Proof. Left as an exercise.

Next we present the classical Egorov theorem. We first need a lemma.

Lemma 3.3.1. Let E ⊂ Rn be Lebesgue measurable with

m(E) < ∞.

Let f, fk be measurable extended real-valued functions on E, finite a.e., and suppose

fk
a.e.→ f x ∈ E.

For every ε > 0, define
Ek(ε) = E

(
x

∣∣|fk(x) − f(x)| > ε
)
.

Then
lim

j→∞
m

( ∞⋃
k=j

Ek(ε)
)

= 0.

Proof. Let

E(ε) = lim
k→∞

Ek(ε) =
∞⋂

j=1

∞⋃
k=j

Ek(ε).

The set E(ε) contains points where the deviation |fk − f | > ε happens infinitely often. Since
fk → f a.e., m(E(ε)) = 0. Then the conclusion follows from continuity of measure from above
(using m(E) < ∞).

The Egorov theorem below corresponds to Littlewood’s third principle: a.e. convergence is
nearly uniform convergence on large subsets.

Theorem 3.3.2 (Egorov). Let E ⊂ Rn be Lebesgue measurable with

m(E) < ∞.

Let f, fk be measurable on E, finite a.e., and assume

fk
a.e.→ f x ∈ E.

Then for every δ > 0, there exists a measurable subset Eδ ⊂ E such that m(Eδ) < δ and

fk ⇒ f on E\Eδ.

Proof. Let
E0 = E

(
x

∣∣∃k : |fk(x)| = ∞ or |f(x)| = ∞
)
,

so m(E0) = 0.
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In Lemma 3.3.1, take ε = 1/m for m = 1, 2, . . . . Then for each m, there exists jm such that

m
( ∞⋃

k=jm

Ek

( 1
m

))
<

δ

2m
.

Define
Eδ = E0 ∪

( ∞⋃
m=1

∞⋃
k=jm

Ek

( 1
m

))
.

Then
m(Eδ) ≤

∞∑
m=1

δ

2m
= δ.

Now fix ε > 0, choose m0 with 1/m0 < ε. If x ∈ E\Eδ, then for all k ≥ jm0 ,

|fk(x) − f(x)| ≤ 1
m0

< ε.

Hence fk ⇒ f on E\Eδ.

Remark 3.3.1. The finite measure assumption in Egorov’s theorem cannot be removed.

Example 3.3.1. Let fk(x) = χ(0,k)(x). Then

fk
a.e.→ χ(0,∞) x ∈ R.

But for any set Eδ with m(Eδ) < ∞, uniform convergence on R\Eδ fails.

3.3.2 Convergence in Measure

Definition 3.3.2 (Convergence in Measure). Let E ⊂ Rn be Lebesgue measurable with m(E) <
∞, and let f, fk be measurable and finite a.e. on E. If for every ε > 0,

lim
k→∞

m
(
E(x||fk(x) − f(x)| > ε)

)
= 0,

then {fk} is said to converge to f in measure on E, written

fk
m→ f x ∈ E,

or
fk ⇒ f x ∈ E.

Convergence in measure is fundamental in probability theory. It is weaker than uniform
convergence and typically weaker than almost everywhere convergence.

Definition 3.3.3 (True in Measure). Let Pn(x) be a sequence of statements about x ∈ E. If

lim
n→∞

m
(
E(x|Pn(x) is false)

)
= 0,

then we say this sequence of statements is true in measure.

The next theorem gives a basic implication between the two convergences.
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Theorem 3.3.3. Let E ⊂ Rn be Lebesgue measurable with m(E) < ∞. Suppose f, fk are
measurable and finite a.e. on E, and

fk
a.e.→ f x ∈ E.

Then
fk

m→ f x ∈ E.

Proof. Fix ε > 0 and δ > 0. By Theorem 3.3.2, there exists Eδ ⊂ E with m(Eδ) < δ such that
fk ⇒ f on E\Eδ. Hence there is k0 such that for k > k0,

|fk(x) − f(x)| < ε ∀x ∈ E\Eδ.

Therefore
E

(
x

∣∣|fk(x) − f(x)| ≥ ε
)

⊂ Eδ,

so
m

(
E(x||fk(x) − f(x)| ≥ ε)

)
< δ (k > k0).

This is exactly fk
m→ f .

Remark 3.3.2. The condition m(E) < ∞ in Theorem 3.3.3 is essential. For example,

fk(x) =
{

1, |x| ≥ k,

0, |x| < k,

satisfies fk
a.e.→ 0 on R, but fk ⇏ 0 on R.

Theorem 3.3.3 shows that a.e. convergence implies convergence in measure on finite-measure
sets. The converse generally fails.

Example 3.3.2. Construct a sequence on [0, 1] by blocks:

f1,1(x) = 1, x ∈ [0, 1],

f2,1(x) =
{

1, x ∈ [0, 1
2),

0, x ∈ [1
2 , 1],

f2,2(x) =
{

0, x ∈ [0, 1
2),

1, x ∈ [1
2 , 1],

,

and in general,

fk,i(x) =
{

1, x ∈ [ i
2k−1 ,

i+1
2k−1 ),

0, otherwise,
k = 1, 2, . . . , i = 1, 2, . . . , 2k−1.

Then this sequence converges to 0 in measure but not almost everywhere.

Hence convergence in measure is strictly weaker than almost everywhere convergence.

Theorem 3.3.4 (Riesz). Let E ⊂ Rn be Lebesgue measurable. Let f, fk be measurable and finite
a.e. on E. If

fk
m→ f x ∈ E,

then there exists a subsequence {fkj
} such that

fkj

a.e.→ f x ∈ E.
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Before proving Theorem 3.3.4, we record a corollary.

Corollary 3.3.1. Let E ⊂ Rn be Lebesgue measurable with m(E) < ∞, and let f, fk be mea-
surable and finite a.e. on E. Then fk

m→ f on E if and only if every subsequence {fki
} has a

further subsequence {fkij
} such that

fkij

a.e.→ f x ∈ E.

Proof. Necessity follows from Theorem 3.3.4.
For sufficiency, argue by contradiction. If fk ⇏ f , then there exist ε0, δ0 > 0 and a subse-

quence {fki
} such that

m
(
E(x||fki

(x) − f(x)| > ε0)
)

≥ δ0 ∀i.

By the assumption on subsequences, {fki
} has a further subsequence {fkij

} with fkij

a.e.→ f . By
Theorem 3.3.3, this implies fkij

m→ f , contradiction.

Proof of Theorem 3.3.4. Since fk
m→ f , for each j ∈ N we can choose kj (strictly increasing)

such that
m

(
E

(
x

∣∣∣|fkj
(x) − f(x)| ≥ 1

2j

))
<

1
2j
.

Define
Ej = E

(
x

∣∣∣|fkj
(x) − f(x)| ≥ 1

2j

)
.

Then ∞∑
j=1

m(Ej) < ∞,

so
m

(
lim

j→∞
Ej

)
= 0.

For x /∈ limEj , there exists j0(x) such that for all j ≥ j0(x),

|fkj
(x) − f(x)| < 1

2j
,

which implies fkj
(x) → f(x). Hence fkj

a.e.→ f on E.

When introducing a new convergence notion, one naturally asks about uniqueness of limits.
To address this, we introduce Cauchy sequences in measure.

Definition 3.3.4 (Cauchy in Measure). Let E ⊂ Rn be Lebesgue measurable with m(E) < ∞.
A sequence of measurable functions {fk} on E is called Cauchy in measure if for every ε > 0
and δ > 0, there exists K such that whenever i, j > K,

m
(
E(x||fi(x) − fj(x)| > ε)

)
< δ.

Remark 3.3.3. A Cauchy sequence in measure is sometimes also called a measure-Cauchy
sequence.

Theorem 3.3.5. Let E ⊂ Rn be Lebesgue measurable with m(E) < ∞. Then {fk} is Cauchy
in measure if and only if there exists a Lebesgue measurable function f on E such that

fk
m→ f x ∈ E.
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Proof. Sufficiency is immediate from the definition of convergence in measure.
For necessity, choose inductively a subsequence {fkj

} such that

m
(
E

(
x

∣∣∣|fkj+1(x) − fkj
(x)| ≥ 1

2j

))
<

1
2j
.

Set
Aj = E

(
x

∣∣∣|fkj+1(x) − fkj
(x)| ≥ 1

2j

)
.

Then ∑
j m(Aj) < ∞, so m(limAj) = 0. For x /∈ limAj , the series of successive differences is

summable, hence {fkj
(x)} is Cauchy in R and converges pointwise. Define

f(x) = lim
j→∞

fkj
(x)

on this full-measure set and extend on the null set arbitrarily; then f is measurable and

fkj

a.e.→ f on E.

Therefore fkj

m→ f by Theorem 3.3.3.
Finally, use the Cauchy-in-measure property of the full sequence: for given ε, δ > 0, choose

J so that for all k > kJ ,
m

(
E(x||fk − fkJ

| > ε/2)
)
< δ/2,

and choose j ≥ J large enough so that

m
(
E(x||fkj

− f | > ε/2)
)
< δ/2.

Then for all k > kJ ,

m
(
E(x||fk − f | > ε)

)
≤ m

(
E(x||fk − fkj

| > ε/2)
)

+m
(
E(x||fkj

− f | > ε/2)
)
< δ.

Hence fk
m→ f .

Exercises 3.3

1. P140 1,3,4,5,6

2. P144 1,2

3. P149 10,11,13,15

3.4 Characterizations of Measurability and Composition Mea-
surability

We now present a necessary and sufficient condition for function measurability.

Theorem 3.4.1 (Characterization of Measurable Functions). Let E ⊂ Rn be Lebesgue measur-
able. Then f : E → R is Lebesgue measurable if and only if for every Borel set B ⊂ R,

E(x|f(x) ∈ B)

is Lebesgue measurable.
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Proof. Sufficiency is immediate: for each t ∈ R, (t,∞) ∈ B, so E(x|f(x) > t) is measurable.
For necessity, use the good-set principle again. Define

S = {B ⊂ R | f−1(B) is Lebesgue measurable in E}.

(1) If Bk ∈ S, then f−1(Bk) is measurable, so

f−1
( ∞⋃

k=1
Bk

)
=

∞⋃
k=1

f−1(Bk)

is measurable. Hence S is closed under countable unions.
(2) If B1, B2 ∈ S, then

f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2)

is measurable. So S is closed under finite intersections.
(3) If B ∈ S, then

E = f−1(R) = f−1(B ∪Bc) = f−1(B) ∪ f−1(Bc),

so f−1(Bc) is measurable. Thus S is closed under complements in R, hence under differences.
So S is a σ-ring. Also, for every interval (c, d) ⊂ R,

f−1((c, d)) = E(x|f(x) > c) ∩ E(x|f(x) < d) ∈ S.

Therefore all Borel sets belong to S, and necessity follows.

Remark 3.4.1. Recall: a real-valued function on R is continuous iff the preimage of every open
set is open. In this sense, measurable functions extend continuity.

Now consider
E

f−→ R g−→ R,

where both f and g are Lebesgue measurable. Is g ◦ f : E → R always measurable? We have

E
(
x

∣∣g ◦ f(x) > t
)

= E
(
x|g ◦ f(x) ∈ (t,∞)

)
= E

(
x|f(x) ∈ g−1((t,∞))

)
.

The set g−1((t,∞)) is Lebesgue measurable, but not necessarily Borel. So Theorem 3.4.1 does
not directly imply measurability of g ◦ f . In fact, g ◦ f need not be measurable.

Exercises 3.4

1. Give a direct example showing that the composition of two Lebesgue measurable functions
need not be measurable.
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Chapter 4

Lebesgue Integral

In this chapter we build Lebesgue integration step by step. We begin with nonnegative measur-
able functions on finite-measure sets, then extend to general measurable functions on general
measurable sets.

4.1 Integrals of Nonnegative Measurable Functions on Finite-
Measure Sets

With the foundations of previous chapters, we now formalize the Lebesgue integral beyond the
introductory definition.

Definition 4.1.1 (Lebesgue Integral). Let E ⊂ Rn be Lebesgue measurable with m(E) < ∞.
Let f : E → R be nonnegative, bounded, and measurable, so there exist 0 ≤ m0 < M0 < ∞ such
that

m0 ≤ f(x) < M0, x ∈ E.

Take a partition D of [m0,M0):

m0 = y0 < y1 < · · · < yk = M0.

Set
δ(D) = max

0≤i≤k−1
(yi+1 − yi),

and for arbitrary ξi ∈ [yi, yi+1] define

S(f,D) =
k−1∑
i=0

ξim(Ei),

where
Ei = {x ∈ E | yi ≤ f(x) < yi+1}.

If there exists a constant S such that for every ε > 0 there is δ > 0 with

δ(D) < δ =⇒ |S(f,D) − S| < ε,

then f is called Lebesgue integrable on E, and S is called the Lebesgue integral of f on E, denoted
by

(L)
∫

E
f(x) dx.
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When no confusion occurs, (L) is omitted.

Example 4.1.1. If E ⊂ Rn is Lebesgue measurable and m(E) = 0, then every bounded mea-
surable function on E is Lebesgue integrable and∫

E
f(x) dx = 0.

Example 4.1.2 (Dirichlet Function). The Dirichlet function (see 5) is Lebesgue integrable on
[0, 1], and ∫

[0,1]
D(x) dx = 0.

Theorem 4.1.1. Let E ⊂ Rn be Lebesgue measurable with m(E) < ∞. If f is bounded and
Lebesgue measurable on E, then f is Lebesgue integrable on E.

Proof. Define

S(f,D) =
k−1∑
i=0

yim(Ei), S(f,D) =
k−1∑
i=0

yi+1m(Ei).

Standard estimates give

S(f,D) ≤ S(f,D), S(f,D) − S(f,D) ≤ δ(D)m(E).

For nested refinements D1 ⊂ D2 ⊂ · · · with δ(Dj) → 0, the lower sums are increasing and upper
sums are decreasing, with the same limit. This common limit is the desired integral value, and
every sufficiently fine partition gives a Riemann-type sum close to it.

Theorem 4.1.2. Let {Ei}m
i=1 ⊂ P(Rn) be Lebesgue measurable, pairwise disjoint, and let E =⋃m

i=1Ei. If m(E) < ∞, then ∫
E
f(x) dx =

m∑
i=1

∫
Ei

f(x) dx.

Proof. Write the defining sums for E and split each level set by Ei. Then pass to the limit in
the partition mesh.

Theorem 4.1.3 (Linearity). Let E ⊂ Rn be Lebesgue measurable with m(E) < ∞. If f, g are
nonnegative bounded measurable functions on E, and α, β ≥ 0, then αf + βg is integrable and∫

E
(αf(x) + βg(x)) dx = α

∫
E
f(x) dx+ β

∫
E
g(x) dx.

Proof. Scalar multiplication follows directly from the definition. For addition, partition both
ranges and use a common refinement in the (f, g)-plane. Upper and lower estimates squeeze the
integral of f + g between sums converging to

∫
E f +

∫
E g.

Theorem 4.1.4 (Monotonicity). Let E ⊂ Rn be Lebesgue measurable with m(E) < ∞. If f, g
are integrable on E and f ≤ g a.e. on E, then∫

E
f(x) dx ≤

∫
E
g(x) dx.

Proof. Set h = g − f ≥ 0 a.e. Then∫
E
g −

∫
E
f =

∫
E
h ≥ 0.
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Theorem 4.1.5. Let E ⊂ Rn with m(E) < ∞, and let f be nonnegative, bounded, and measur-
able on E. If ∫

E
f(x) dx = 0,

then f = 0 a.e. on E.

Proof. Left as an exercise.

Theorem 4.1.6. If f is nonnegative and Riemann integrable on [a, b], then f is Lebesgue inte-
grable on [a, b] and

(L)
∫

[a,b]
f(x) dx = (R)

∫ b

a
f(x) dx.

Proof. Since f is Riemann integrable, it is bounded. Let {Dk} be nested partitions with mesh
going to 0, and let φk, ψk be the step functions built from infima and suprema on partition
subintervals. Then

φk ≤ f ≤ ψk,

∫
φk →

∫ b

a
f,

∫
ψk →

∫ b

a
f.

Passing to limits gives equality of the two integrals.

Exercises 4.1

1. Let f be bounded and measurable on Rn. Prove that

I(x) =
∫

B(0,∥x∥)
f(y) dy

is continuous.

2. Prove that f is Riemann integrable on [a, b] if and only if f is continuous a.e. on [a, b].

3. P220 1,2,3,4,5,6

4.2 Integrals of General Measurable Functions on General Mea-
surable Sets

We now remove boundedness of f and finite-measure assumption on E, while first keeping f ≥ 0.

Definition 4.2.1. Let E ⊂ Rn be Lebesgue measurable and f ≥ 0 measurable on E. Let {Ek}
be an increasing measurable exhaustion of E with

Ek ⊂ Ek+1, m(Ek) < ∞, E =
∞⋃

k=1
Ek.

Define truncations
[f ]m(x) = min{f(x),m}.

If
lim

k→∞

∫
Ek

[f ]k(x) dx < ∞,

then f is Lebesgue integrable on E, and we define∫
E
f(x) dx = lim

k→∞

∫
Ek

[f ]k(x) dx.
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The definition must be independent of the chosen exhaustion and truncation indices.

Lemma 4.2.1. Let E ⊂ Rn be Lebesgue measurable and f ≥ 0 measurable on E. Let {E(j)
k },

j = 1, 2, be two increasing finite-measure exhaustions of E, and let {m(i)
k }, i = 1, 2, be increasing

sequences with m(i)
k → ∞. If

lim
k→∞

∫
E

(1)
k

[f ]
m

(1)
k

dx < ∞,

then
lim

k→∞

∫
E

(2)
k

[f ]
m

(2)
k

dx = lim
k→∞

∫
E

(1)
k

[f ]
m

(1)
k

dx.

Proof. Let
S(1) = lim

k→∞

∫
E

(1)
k

[f ]
m

(1)
k

dx.

It suffices to prove for every finite-measure measurable A ⊂ E and M > 0,∫
A

[f ]M dx ≤ S(1). (4.1)

Choose k large enough that M ≤ m
(1)
k . Then∫

A
[f ]M dx ≤

∫
E

(1)
k

[f ]
m

(1)
k

dx+Mm(A\E(1)
k ).

Let k → ∞. Since A\E(1)
k ↓ ∅, the second term goes to 0, proving (4.1). Taking A = E

(2)
k and

M = m
(2)
k yields

lim
k→∞

∫
E

(2)
k

[f ]
m

(2)
k

dx ≤ S(1).

By symmetry we get the reverse inequality.

Definition 4.2.2. For measurable f : E → R ∪ {±∞}, define

f+ = max{f, 0}, f− = max{−f, 0}.

These are called the positive and negative parts of f .

By definition,
|f | = f+ + f−.

Definition 4.2.3. Let E ⊂ Rn be Lebesgue measurable and f : E → R ∪ {±∞} measurable. If
both f+ and f− are Lebesgue integrable, then f is called Lebesgue integrable on E, and∫

E
f(x) dx =

∫
E
f+(x) dx−

∫
E
f−(x) dx.

Theorem 4.2.1. Let E ⊂ Rn be Lebesgue measurable and f measurable on E. Define

E∞ = E(x|f(x) = ±∞).

If f is Lebesgue integrable, then
m(E∞) = 0.

72



Proof. Since |f | is integrable, for any k,

km(Ek ∩ E∞) ≤
∫

Ek

[|f |]k dx ≤
∫

E
|f | dx.

Let k → ∞.

Theorem 4.2.2 (Finite Additivity in the Region). Let E1, E2 ⊂ Rn be disjoint measurable sets
and E = E1 ∪ E2. If f is Lebesgue integrable on E, then f is integrable on E1 and E2, and∫

E
f(x) dx =

∫
E1
f(x) dx+

∫
E2
f(x) dx.

Proof. Apply the definition to f+ and f− with the induced exhaustions Ei ∩Fk from an exhaus-
tion {Fk} of E, then subtract.

Theorem 4.2.3. Let E ⊂ Rn be measurable. If |f | ≤ F a.e. on E and F is Lebesgue integrable
on E, then f is Lebesgue integrable on E.

Proof. From
0 ≤ f+ ≤ F, 0 ≤ f− ≤ F a.e.,

we get ∫
E
f+ ≤

∫
E
F < ∞,

∫
E
f− ≤

∫
E
F < ∞.

Hence f is integrable.

Theorem 4.2.4 (Linearity). Let E ⊂ Rn be measurable, f, g ∈ L1(E), and α, β ∈ R. Then
αf + βg ∈ L1(E) and ∫

E
(αf + βg) dx = α

∫
E
f dx+ β

∫
E
g dx.

Proof. The scaling rule follows from truncations and sign decomposition for α > 0, then for
α < 0 by αf = −(|α|f). For addition, first prove for nonnegative functions using

[f + g]M ≤ [f ]M + [g]M ≤ [f + g]2M ,

then pass to general functions via positive and negative parts.

Theorem 4.2.5 (Monotonicity). Let E ⊂ Rn be measurable and f, g ∈ L1(E). If f ≤ g a.e. on
E, then ∫

E
f dx ≤

∫
E
g dx.

Proof. Apply linearity to h = g − f ≥ 0 a.e.

Corollary 4.2.1. If f ∈ L1(E), then∣∣∣∣∫
E
f(x) dx

∣∣∣∣ ≤
∫

E
|f(x)| dx.

Theorem 4.2.6. Let E ⊂ Rn be measurable and f ∈ L1(E) with f ≥ 0 a.e. If∫
E
f(x) dx = 0,

then f = 0 a.e. on E.
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Proof. It is enough to prove m(E(x|f(x) ≥ α)) = 0 for every α > 0.

Example 4.2.1. The improper Riemann integral may exist while the Lebesgue integral fails due
to lack of absolute integrability. For example, sin x/x on [1,∞) is conditionally convergent in
the improper Riemann sense but not Lebesgue integrable on [1,∞).

Theorem 4.2.7 (Absolute Continuity of the Integral). Let E ⊂ Rn be measurable and f ∈
L1(E). For every ε > 0, there exists δ > 0 such that for every measurable e ⊂ E,

m(e) < δ =⇒
∣∣∣∣∫

e
f(x) dx

∣∣∣∣ < ε.

Proof. Choose k0 so that ∫
E

|f | dx−
∫

E
[|f |]k0 dx <

ε

2 ,

and set δ = ε/(2k0). Then for m(e) < δ,∫
e

|f | ≤
∫

E

(
|f | − [|f |]k0

)
dx+ k0m(e) < ε.

Hence |
∫

e f | ≤
∫

e |f | < ε.

Theorem 4.2.8 (Countable Additivity in the Region). Let E ⊂ Rn be measurable, and let {Ek}
be pairwise disjoint measurable subsets with

E =
∞⋃

k=1
Ek.

Then f ∈ L1(E) if and only if:
(1) f ∈ L1(Ek) for all k;
(2)

∞∑
k=1

∫
Ek

|f(x)| dx < ∞.

Moreover, when f ∈ L1(E), ∫
E
f(x) dx =

∞∑
k=1

∫
Ek

f(x) dx.

Proof. Necessity: from finite additivity on partial unions and monotonicity for |f |.
Sufficiency: choose an exhaustion Fm of E and define

Gm = Fm ∩
( m⋃

k=1
Ek

)
.

Then ∫
Gm

|f | ≤
m∑

k=1

∫
Ek

|f | < ∞,

so f ∈ L1(E). The series formula follows by controlling the tail with ∑
k>m

∫
Ek

|f |.

Corollary 4.2.2. Let f ≥ 0 on Rn with f ∈ L1(Rn). Define

φ(E) =
∫

E
f(x) dx

for measurable E. Then φ is a measure on (Rn,Ln).
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Proof. This follows from φ(∅) = 0, monotonicity, and countable additivity in the region.

Theorem 4.2.9. If f ∈ L1(E) on measurable E ⊂ Rn, then

lim
k→∞

km(E(x||f(x)| ≥ k)) = 0.

Proof. For each k,
km(E(x||f | ≥ k)) ≤

∫
E(x||f |≥k)

|f | dx.

Since m(E(x||f | ≥ k)) → 0 and the integral is absolutely continuous in the region (Theorem
4.2.7), the right side tends to 0.

For Ek = E(x|k ≤ f(x) < k + 1), one gets

∞∑
k=1

km(Ek) < ∞

for f ∈ L1(E); conversely, on finite-measure E, this condition implies integrability.

Theorem 4.2.10. Let E ⊂ Rn be measurable and f ≥ 0 measurable on E. Then f ∈ L1(E) if
and only if

S(f) def= sup
{ ∫

E
h(x) dx | h ≤ f a.e., and h is simple

}
< ∞.

Moreover, if f ∈ L1(E), then ∫
E
f(x) dx = S(f).

Proof. If f ∈ L1(E), monotonicity gives S(f) ≤
∫

E f . For the reverse inequality, approximate f
by level simple functions on Ek and use truncations. Taking limits yields

∫
E f ≤ S(f).

Exercises 4.2

1. P221 7,8,9

4.3 Limit Theorems for the Lebesgue Integral

This section presents core limit-exchange results in Lebesgue integration.

Theorem 4.3.1 (Lebesgue Dominated Convergence Theorem). Let E ⊂ Rn be measurable. Let
fn, f ∈ L1(E) with either

fn
a.e.→ f or fn

m→ f.

Assume there exists F ∈ L1(E) such that

|fn| ≤ F a.e. on E for all n.

Then
lim

n→∞

∫
E
fn(x) dx =

∫
E
f(x) dx.
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Proof. First |f | ≤ F a.e., so f ∈ L1(E). Fix ε > 0. Choose measurable Em ⊂ E with
m(Em) < ∞ and ∫

E\Em

F <
ε

6 .

On Em, convergence in measure and absolute continuity of the integral imply∫
Em

|fn − f | < 2ε
3

for n large. On E\Em, ∫
E\Em

|fn − f | ≤ 2
∫

E\Em

F <
ε

3 .

Hence
∫

E |fn − f | < ε, giving the conclusion.

Example 4.3.1. Without integrable domination, the conclusion can fail even under uniform
convergence. Let

fk(x) =
{

1/k, x ∈ [0, k),
0, x ∈ [k,∞),

x ∈ [0,∞).

Then fk ⇒ 0, but ∫
[0,∞)

fk(x) dx = 1 ̸→ 0.

Example 4.3.2. Pointwise a.e. convergence alone is not enough. Let

fk(x) =
{
k, x ∈ [0, 1/k),
0, x ∈ [1/k, 1],

on [0, 1]. Then fk
a.e.→ 0 but ∫

[0,1]
fk(x) dx = 1 ̸→ 0.

Theorem 4.3.2 (Levi’s Lemma). Let E ⊂ Rn be measurable, and let {fn} be a monotone
increasing sequence of integrable functions on E (or monotone decreasing, with the analogous
sign condition). If

lim
n→∞

∫
E
fn(x) dx < ∞,

then there exists f ∈ L1(E) such that
fn

a.e.→ f,

and
lim

n→∞

∫
E
fn(x) dx =

∫
E
f(x) dx.

Proof. Assume fn ↑. Define f(x) = limn fn(x), measurable. Apply dominated convergence to
truncations on finite-measure exhaustions to show f ∈ L1(E) and identify limits of integrals.

Theorem 4.3.3 (Fatou’s Lemma). Let E ⊂ Rn be measurable and fn ∈ L1(E).
If there exists h ∈ L1(E) with h ≤ fn a.e. for all n, then limn→∞ fn is integrable and∫

E
lim

n→∞
fn(x) dx ≤ lim

n→∞

∫
E
fn(x) dx.

If there exists H ∈ L1(E) with fn ≤ H a.e. for all n, then limn→∞ fn is integrable and

lim
n→∞

∫
E
fn(x) dx ≤

∫
E

lim
n→∞

fn(x) dx.
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Proof. For the first statement, define

φk(x) = inf{fk(x), fk+1(x), . . . }.

Then φk ↑ lim fn and each φk ∈ L1(E), with∫
E
φk ≤ lim

n→∞

∫
E
fn.

Apply Levi (Theorem 4.3.2) and pass to the limit. The second statement follows by applying
the first to −fn.

Remark 4.3.1. The dominated convergence theorem, Levi’s lemma, and Fatou’s lemma are
equivalent in strength.

Example 4.3.3. Without one-sided integrable control, Fatou-type conclusions can fail. A mov-
ing spike sequence on [0, 1] with value −k on one 1/k-subinterval and 0 elsewhere has constant
integral −1, but liminf can be −∞.

Theorem 4.3.4 (Vitali-Type Limit Theorem). Let E ⊂ Rn be measurable, and let {fk} ⊂ L1(E)
satisfy:

(1) (uniform absolute continuity of integrals) for every ε > 0, there exists δ > 0 independent
of k such that

m(e) < δ =⇒
∫

e
|fk| < ε;

(2) (uniform decay on the unbounded part) for every ε > 0, there exists measurable F ⊂ E

independent of k such that ∫
E\F

|fk| < ε;

(3) fk
a.e.→ f or fk

m→ f on E.
Then

lim
k→∞

∫
E
fk(x) dx =

∫
E
f(x) dx.

Proof. Choose bounded measurable F ⊂ E so the tails on E\F are uniformly small. On F , use
convergence in measure plus uniform absolute continuity to bound∫

F
|fk − f |.

Together with the tail bound and Fatou for f , this gives∫
E

|fk − f | → 0,

hence convergence of integrals.

Theorem 4.3.5 (Term-by-Term Integration). Let E ⊂ Rn be measurable and fn ∈ L1(E) with
∞∑

n=1

∫
E

|fn(x)| dx < ∞.

Then
∑∞

n=1 fn(x) converges a.e. on E. If

f(x) =
∞∑

n=1
fn(x),
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then f ∈ L1(E) and ∫
E
f(x) dx =

∞∑
n=1

∫
E
fn(x) dx.

Proof. Set

Fm =
m∑

n=1
|fn|.

Then Fm ↑ F and by Levi, ∫
E
F =

∞∑
n=1

∫
E

|fn| < ∞.

So the series converges absolutely a.e. Let Sm = ∑m
n=1 fn. Then Sm

a.e.→ f and |Sm| ≤ F . Apply
dominated convergence.

Theorem 4.3.6 (Continuity of Parameter-Dependent Integrals). Let E ⊂ Rn be measurable,
B(y0, δ) ⊂ Rm, and

f : E ×B(y0, δ) → R

with:
(1) for each y, f(·, y) is measurable on E;
(2) for a.e. x, f(x, ·) is continuous on B(y0, δ);
(3) there exists F ∈ L1(E) such that |f(x, y)| ≤ F (x) a.e. for all y.
Then

I(y) =
∫

E
f(x, y) dx

is continuous on B(y0, δ).

Proof. Take yk → y, set gk(x) = f(x, yk) and g(x) = f(x, y). Then gk
a.e.→ g and |gk| ≤ F . Apply

dominated convergence:
I(yk) =

∫
E
gk →

∫
E
g = I(y).

Theorem 4.3.7 (Differentiability of Parameter-Dependent Integrals). Let E ⊂ Rn be measur-
able and

f : E × (a, b) → R

with:
(1) for each y ∈ (a, b), f(·, y) is measurable;
(2) for a.e. x, f(x, ·) is differentiable on (a, b);
(3) there exists F ∈ L1(E) such that∣∣∣∣ ∂∂yf(x, y)

∣∣∣∣ ≤ F (x)

a.e. for all y ∈ (a, b).
Then

I(y) =
∫

E
f(x, y) dx

is differentiable on (a, b) and
I ′(y) =

∫
E

∂

∂y
f(x, y) dx.
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Proof. Use difference quotients

gh(x) = f(x, y + h) − f(x, y)
h

.

Then gh
a.e.→ ∂yf(·, y) and |gh| ≤ F a.e. Dominated convergence yields differentiation under the

integral sign.

Exercises 4.3

1. P185 1,5,6,7

2. P191 11

3. P222 12,18,19,20,21,23

4.4 Relation Between Lebesgue Integrable Functions and Con-
tinuous Functions

Lebesgue integrable functions are closely connected to continuous functions.

Theorem 4.4.1. If f ∈ L1(Rn), then for every ε > 0 there exists a continuous compactly
supported function g on Rn such that∫

Rn
|f(x) − g(x)| dx < ε.

Proof. Choose k large and M large so that the tail and truncation errors satisfy∫
Rn\B(0,k)

|f | < ε

3 ,
∫

B(0,k)

(
|f | − [|f |]M

)
<
ε

3 .

By Lusin’s theorem, there exists closed F ⊂ B(0, k) with small complement where [f ]M is
continuous. Extend continuously to Rn by a compactly supported g with support in B(0, k).
Then split the integral over Rn\B(0, k), B(0, k)\F , and F .

Remark 4.4.1. This means every L1 function can be decomposed into a compactly supported
continuous part plus an arbitrarily small L1 remainder.

Corollary 4.4.1. If f ∈ L1(Rn), then

lim
h→0

∫
Rn

|f(x+ h) − f(x)| dx = 0.

Proof. Left as an exercise.
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4.5 Fubini Theorem

In this section we study the relation between multiple and iterated integrals, and when integra-
tion order can be exchanged.

Theorem 4.5.1 (Tonelli Theorem). Let f(x, y) ≥ 0 be Lebesgue measurable on Rn = Rp × Rq.
Then:

(A) for a.e. x ∈ Rp, f(x, ·) is measurable on Rq;
(B)

F (x) =
∫
Rq
f(x, y) dy

is measurable on Rp;
(C) ∫

Rn
f(x, y) dx dy =

∫
Rp
F (x) dx.

Define
F = {f ≥ 0 measurable on Rn | f satisfies (A), (B), (C)}.

Lemma 4.5.1. For F above:
(1) if f ∈ F and α ≥ 0, then αf ∈ F ;
(2) if f, g ∈ F , then f + g ∈ F ;
(3) if f, g ∈ F , g ∈ L1(Rn), and f − g ≥ 0 a.e., then f − g ∈ F ;
(4) if fk ∈ F and fk ↑ f a.e., then f ∈ F .

Proof. (1) and (2) are immediate. For (3), use finiteness of the section integral of g a.e. and
linearity of section integration. For (4), apply Levi in Rn and then in Rp to pass limits through
both integrals.

Proof of Theorem 4.5.1. Start with indicator functions of rectangles I1 × I2, for which all state-
ments are explicit. Then extend to open sets, closed sets, null sets, and general measurable sets
by the good-set principle and monotone approximation. Next extend from indicators to simple
functions, and then from simple functions to arbitrary nonnegative measurable functions using
Lemma 4.5.1.

Remark 4.5.1. 1. The roles of p and q are symmetric, so integration order can be exchanged
under Tonelli assumptions.

2. The theorem also holds on any measurable subset E ⊂ Rn by replacing f with fχE.

Theorem 4.5.2 (Fubini). Let f ∈ L1(Rn) on Rn = Rp × Rq. Then:
(A) for a.e. x ∈ Rp, f(x, ·) is measurable on Rq;
(B)

F (x) =
∫
Rq
f(x, y) dy

is measurable on Rp;
(C) ∫

Rn
f(x, y) dx dy =

∫
Rq

∫
Rp
f(x, y) dx dy =

∫
Rp

∫
Rq
f(x, y) dy dx.

Proof. Apply Tonelli theorem to f+ and f− separately and subtract.
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Definition 4.5.1 (Section). Let E ⊂ Rn = Rp × Rq. For each x ∈ Rp, define

E(x) = {y ∈ Rq | (x, y) ∈ E}.

This is the section of E at x. If E is Lebesgue measurable, Tonelli implies: for a.e. x, E(x) is
measurable, m(E(x)) is measurable in x (defined a.e.), and

m(E) =
∫
Rp
m(E(x)) dx.

Remark 4.5.2. Similarly one defines E(y); these are sometimes denoted by Ex and Ey.

Corollary 4.5.1. Let f ≥ 0 be measurable on measurable E ⊂ Rn, and define

Ey = E(x|f(x) > y).

Then ∫
E
f(x) dx =

∫ ∞

0
m(Ey) dy.

Proof. Consider
D = {(x, y) | x ∈ E, 0 ≤ y ≤ f(x)}.

By Fubini/Tonelli, compute m(D) first by integrating in y, then in x, to obtain the layer-cake
formula.

Corollary 4.5.2. If A ⊂ Rp and B ⊂ Rq are Lebesgue measurable, then A × B ⊂ Rn is
measurable and

m(A×B) = m(A)m(B).

Proof. Apply Tonelli to χA×B(x, y) = χA(x)χB(y).
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Chapter 5

Measure Derivatives and the
Newton-Leibniz Formula

At the beginning of this chapter we introduce an abstract measure class and then develop
differentiation of measures and applications.

Definition 5.0.1 (Radon Measure). A measure µ on a topological space containing all Borel
sets is called a Radon measure if it is inner regular and locally finite. Inner regular means: for
every measurable set E,

µ(E) = sup{µ(F ) | F ⊂ E, F closed}.

Locally finite means: for every x, there is an open neighborhood U of x with µ(U) < ∞.

Our discussion in this chapter is centered around Radon measures.

5.1 Vitali Covering Theorem

Definition 5.1.1 (Vitali Covering). Let E ⊂ Rn, and let F be a family of closed balls in Rn.
We call F a Vitali (fine) cover of E if for every x ∈ E and every ε > 0, there exists Bε

x ∈ F
such that

x ∈ Bε
x, diam(Bε

x) < ε.

If F is a fine cover of E, then

Fδ = {B ∈ F | diam(B) < δ}

is also a fine cover of E.
If additionally µ∗(E) < ∞ and there exists open G ⊃ E with µ(G) < ∞, then

FG
δ = {B ∈ F | B ⊂ G, diam(B) < δ}

is still a fine cover of E.

Theorem 5.1.1 (Vitali). Let F be a family of nondegenerate closed balls in Rn with

d∗ = sup{diam(B) | B ∈ F} < ∞.
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Then there exists an at most countable disjoint subfamily G ⊂ F such that⋃
B∈F

B ⊂
⋃

B∈G
B̂,

where B̂ is the concentric ball with radius 5 times that of B.

Proof. Partition F by dyadic diameter levels and choose maximal disjoint subfamilies induc-
tively. Any remaining ball at level k+ 1 must intersect a previously chosen ball of level at most
k + 1. The diameter comparison yields containment inside a 5-dilate of the chosen intersecting
ball.

Corollary 5.1.1. Let E ⊂ Rn and let F be a fine cover of E by closed balls, with bounded
diameters. Then there exists a countable disjoint subfamily G ⊂ F such that for every finite
subset

{B1, . . . , Bk} ⊂ G,

one has

E\
k⋃

j=1
Bj ⊂

⋃
B∈G\{B1,...,Bk}

B̂.

Proof. Apply Theorem 5.1.1 to the remaining part after removing finitely many selected balls.

Corollary 5.1.2. Let µ be a nonnegative Radon measure on Rn, let E ⊂ Rn with µ∗(E) < ∞,
and let F be a fine cover of E. Then for every ε > 0, there are finitely many pairwise disjoint
balls B1, . . . , Bk ∈ F such that

µ∗
(
E\

k⋃
j=1

Bj

)
< ε.

Proof. Restrict to balls contained in an open G ⊃ E with finite measure, use Corollary 5.1.1,
and then use countable additivity and tail control of measure.

Corollary 5.1.3. Let µ be a nonnegative Radon measure on Rn, let E ⊂ Rn, and let F be a
fine cover of E. Then there is a countable disjoint family {Bj} ⊂ F such that

µ∗
(
E\

∞⋃
j=1

Bj

)
= 0.

Proof. Localize on bounded annuli, apply Corollary 5.1.2 on each localization with geometric
errors, then add a final fine-cover selection on the remainder.

Remark 5.1.1. 1. These results play the same role as finite covering arguments in classical
analysis: local estimates on balls are upgraded to global statements by almost full disjoint-ball
coverings.

2. Compare the strength of the four statements carefully. Theorem 5.1.1 assumes only a
bounded-diameter ball family and gives coverage after dilation. Corollary 5.1.3 requires fine
covering and yields measure-theoretic almost-full coverage by disjoint original balls.

Exercises 5.1

1. P248 1,2
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5.2 Hahn Decomposition Theorem

Definition 5.2.1 (Positive Set, Negative Set). Let µ be a Radon measure on Rn. A set A ⊂ Rn

is called positive for µ if for every µ-measurable E,

µ(A ∩ E) ≥ 0.

A set B ⊂ Rn is called negative for µ if for every µ-measurable E,

µ(B ∩ E) ≤ 0.

Remark 5.2.1. If A is positive, then A is measurable and µ(A) ≥ 0. But µ(A) ≥ 0 alone does
not imply A is positive.

The goal is to decompose Rn into one positive and one negative part.

Lemma 5.2.1. Let µ be a Radon measure on Rn.
(1) If A1, A2 are positive sets, then A1 ∪A2, A1 ∩A2, and A1\A2 are positive.
(2) If B1, B2 are negative sets, then B1 ∪B2, B1 ∩B2, and B1\B2 are negative.
(3) If A is positive and B is negative, then for every measurable E,

µ(E ∩A ∩B) = 0.

Proof. For (1), use set decompositions of intersections and sign constraints term by term. Part
(2) follows from (1) by replacing µ with −µ. Part (3) is immediate from both inequalities.

Theorem 5.2.1 (Hahn Decomposition Theorem). For any Radon measure µ on Rn, there exist
a positive set A and a negative set B such that

A ∩B = ∅, Rn = A ∪B.

Proof. Work first on each annulus

Mk = {x ∈ Rn | k ≤ ∥x∥ < k + 1}.

Take the infimum of µ over negative subsets of Mk, build an increasing sequence of negative sets
approaching this infimum, and pass to the union. The complement is then shown to be positive
by contradiction using maximality of the infimum and Lemma 5.2.1. Combine annuli.

Remark 5.2.2. Define

µ+(E) = µ(E ∩A), µ−(E) = −µ(E ∩B).

Then
µ = µ+ − µ−.

This is the Jordan decomposition of a signed Radon measure.
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5.3 Derivatives of Radon Measures

We now extend the derivative concept from analysis to Radon measures.

Definition 5.3.1 (Derivative). Let ν, µ be nonnegative Radon measures on Rn. For each x ∈ Rn,
define

Dµν(x) =

 lim
r→0+

ν(B(x, r))
µ(B(x, r)) , µ(B(x, r)) > 0 ∀r > 0,

∞, ∃r > 0 with µ(B(x, r)) = 0,

Dµν(x) =

 lim
r→0+

ν(B(x, r))
µ(B(x, r)) , µ(B(x, r)) > 0 ∀r > 0,

∞, ∃r > 0 with µ(B(x, r)) = 0.
If upper and lower derivatives coincide, we denote the common value by

Dµν(x).

Example 5.3.1 (Average Value for Continuous Density). Let f ≥ 0 be continuous and locally
integrable on Rn. Let µ = m (Lebesgue measure) and

ν(E) =
∫

E
f(x) dx.

Then
Dµν(x) = lim

r→0

∫
B(x,r) f(y) dy
m(B(x, r)) = f(x).

Lemma 5.3.1. Let ν, µ be nonnegative Radon measures on Rn.
(1) If

E ⊂ {x ∈ Rn | Dµν(x) ≤ a},

then
ν∗(E) ≤ aµ∗(E).

(2) If
E ⊂ {x ∈ Rn | Dµν(x) ≥ b},

then
ν∗(E) ≥ b µ∗(E).

Proof. Use Vitali covering selections built from balls where the local ratio is near the liminf or
limsup threshold, then apply Corollary 5.1.3 and countable additivity.

Theorem 5.3.1. Let ν, µ be nonnegative Radon measures on Rn.
(1) Dµν exists and is finite µ-a.e. on Rn.
(2) Dµν is µ-measurable.

Proof. For existence and finiteness, apply Lemma 5.3.1 to sets where Dµν = ∞ and where
Dµν < Dµν. Both have zero µ-measure. For measurability, approximate derivatives through
measurable ball-measure maps

x 7→ ν(B(x, r)), x 7→ µ(B(x, r)).

Then pass to limsup/liminf operations.
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For a measurable set E with µ(E) > 0, write

−
∫

E
f dµ = 1

µ(E)

∫
E
f dµ.

Theorem 5.3.2 (Average Value Theorem). If f ∈ L1
loc(Rn), then

lim
r→0

−
∫

B(x,r)
f(y) dy = f(x)

for a.e. x ∈ Rn.

Proof. This is the Lebesgue differentiation theorem. Approximate f in L1
loc by continuous

functions and apply Lemma 5.3.1 to the error measure.

Remark 5.3.1. A stronger form is

lim
r→0

−
∫

B(x,r)
|f(y) − f(x)| dy = 0

a.e. Such points are called Lebesgue points.

Corollary 5.3.1. Let E ⊂ Rn be Lebesgue measurable. Then for a.e. x ∈ E,

lim
r→0

m(E ∩B(x, r))
m(B(x, r)) = 1.

Proof. Apply Theorem 5.3.2 to f = χE .

Remark 5.3.2. For positive-measure nowhere-dense perfect sets, the pointwise ratio is always
< 1 for each fixed r > 0, yet the limit above is still 1 a.e.

Exercises 5.3

1. Let {xk}, {yk} ⊂ Rn be discrete sequences and define

µ(E) =
∞∑

k=1

1
2k
δxk

(E) +m(E), ν(E) =
∞∑

k=1

1
2k
δyk

(E).

Find Dµν(x).

5.4 Radon-Nikodym Theorem

For Radon measures we have the analog of the Newton-Leibniz principle.

Definition 5.4.1 (Absolute Continuity). Let ν, µ be Radon measures on Rn. We say ν is
absolutely continuous with respect to µ (written ν ≪ µ) if for every measurable E,

|µ|(E) = 0 =⇒ |ν|(E) = 0,

where |µ| = µ+ + µ−. When µ ≥ 0, this is equivalent to µ(E) = 0 ⇒ ν(E) = 0.
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Theorem 5.4.1 (Radon-Nikodym). Let µ be a nonnegative Radon measure on Rn, and let ν
be a Radon measure with ν ≪ µ. Then there exists a locally µ-integrable function f such that
for every measurable E ⊂ Rn,

ν(E) =
∫

E
f dµ =

∫
E
Dµν dµ. (5.1)

Proof. Step 1: every µ-measurable set is ν-measurable under ν ≪ µ.
Step 2: for

E∞ = {Dµν = ∞}, E0 = {Dµν = 0},

prove
ν(E∞) =

∫
E∞

Dµν dµ, ν(E0) =
∫

E0
Dµν dµ.

Step 3: decompose any measurable E into derivative level sets

Ek = {x ∈ E | Dµν(x) ∈ [tk, tk+1)}, t > 1,

and sandwich ν(E) between t
∫

E Dµν dµ and t−1 ∫
E Dµν dµ. Let t → 1.

Corollary 5.4.1. Let µ be a nonnegative Radon measure on Rn and let f ∈ L1
loc(µ). Then

lim
r→0

−
∫

B(x,r)
f(y) dµ = f(x)

for µ-a.e. x.

Proof. Apply Theorem 5.4.1 to the signed measure

ν(E) =
∫

E
f dµ.

Then f = Dµν a.e.

Remark 5.4.1. Formally,
Dµ

(∫
f dµ

)
= f a.e.

so measure differentiation is the inverse of integration.

Definition 5.4.2 (Mutual Singularity). Let ν, µ be nonnegative Radon measures on Rn. We
write ν ⊥ µ if there exists measurable B ⊂ Rn such that

µ(Rn\B) = 0, ν(B) = 0.

Remark 5.4.2. In general, singularity does not imply absolute continuity.

Theorem 5.4.2 (Lebesgue Decomposition Theorem). Let µ ≥ 0 be a Radon measure on Rn,
and let ν be a Radon measure. Then

ν = νAC + νs,

where νAC ≪ µ and νs ⊥ µ.
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Proof. Define
E = {A ⊂ Rn | µ(Rn\A) = 0},

choose B ∈ E minimizing ν(A) over E (via infimizing sequence and intersection), and set

νAC = ν|B, νs = ν|Rn\B.

Minimality gives νAC ≪ µ, while νs ⊥ µ follows from definition of E .

Remark 5.4.3. For nonnegative µ,

Dµν = DµνAC µ-a.e., Dµνs = 0 µ-a.e.

under the theorem assumptions.

Example 5.4.1. With µ = m on R,

ν(E) =
∫

E
f(x) dµ+

∞∑
i=1

αiδxi(E)

is the sum of an absolutely continuous part and a singular atomic part.

Exercises 5.4

1. Does there exist a non-atomic Radon measure singular to Lebesgue measure?

5.5 Monotone Functions and Functions of Bounded Variation

5.5.1 Monotone Functions

This section parallels the previous one because a monotone function induces a measure.

Theorem 5.5.1. Let f be monotone increasing on [a, b]. Then f is differentiable a.e. on [a, b].

Example 5.5.1 (Monotone Function Discontinuous on a Dense Set). Let
∑(αn +βn) < ∞ with

αn, βn > 0, let {xn} = Q, and define

f(x) =
∞∑

n=1
αnH0(x− xn) +

∞∑
n=1

βnH1(x− xn),

where

H0(x) =
{

1, x > 0,
0, x ≤ 0,

H1(x) =
{

1, x ≥ 0,
0, x < 0.

Then f has dense discontinuities but is still differentiable a.e. by Theorem 5.5.1.

Remark 5.5.1. For background on the Heaviside function, see [4].
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Lemma 5.5.1. Let f be monotone increasing on [a, b]. If

E ⊂ {x ∈ [a, b] | Df(x) ≤ α},

then
f∗(E) ≤ αm∗(E).

If
E ⊂ {x ∈ [a, b] | Df(x) ≥ β},

then
f∗(E) ≥ β m∗(E),

where
Df(x) = lim

h→0

f(x+ h) − f(x)
h

, Df(x) = lim
h→0

f(x+ h) − f(x)
h

,

and f∗(E) = m∗(f(E)).

Proof. Construct fine covers by intervals on which difference quotients satisfy the desired bound,
apply Vitali covering, and estimate image measure by interval lengths.

Proof of Theorem 5.5.1. Define
E∞ = {Df = ∞}.

By Lemma 5.5.1, m(E∞) = 0. For

Eβ
α = {Df ≤ α < β ≤ Df},

Lemma 5.5.1 gives
βm∗(Eβ

α) ≤ f∗(Eβ
α) ≤ αm∗(Eβ

α),

so m(Eβ
α) = 0. Take countable rational pairs α < β.

Theorem 5.5.2. If f is monotone increasing on [a, b], then∫ b

a
f ′(x) dx ≤ f(b) − f(a).

Proof. Use difference quotients

gk(x) = f(x+ 1/k) − f(x)
1/k ≥ 0,

then apply Fatou/Levi type passage and monotonicity bounds.

Theorem 5.5.3 (Fubini Term-by-Term Differentiation). Let fk be monotone increasing on [a, b],
and suppose

∑∞
k=1 fk(x) converges a.e. on [a, b]. Then

d

dx

( ∞∑
k=1

fk(x)
)

=
∞∑

k=1
f ′

k(x)

a.e. on [a, b].

Proof. Set S = ∑
fk, so S is monotone and differentiable a.e. Then write

S′(x) =
n∑

k=1
f ′

k(x) + r′
n(x),

with rn = ∑∞
k=n+1 fk. Show r′

n ↓ 0 a.e. via Theorem 5.5.2 and convergence of the tail at
endpoints. Let n → ∞.
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5.5.2 Functions of Bounded Variation

Definition 5.5.1 (Function of Bounded Variation). Let f be finite-valued on [a, b]. For a
partition

a = x0 ≤ x1 ≤ · · · ≤ xn = b,

define ∨
f

(∆) =
n∑

i=1
|f(xi) − f(xi−1)|.

If
b∨
a

(f) = sup{
∨
f

(∆) | ∆ partition of [a, b]} < ∞,

then f ∈ BV [a, b] and
∨b

a(f) is called total variation.

Example 5.5.2. Every bounded monotone function on [a, b] is in BV [a, b], and

b∨
a

(f) = |f(b) − f(a)|.

Example 5.5.3. If f is Lipschitz on [a, b] with constant L, then f ∈ BV [a, b] and

b∨
a

(f) ≤ L|b− a|.

Example 5.5.4 (Continuous but Not of Bounded Variation).

f(x) =

 x sin
( 1
x2

)
, x ∈ (0, 1],

0, x = 0.

Theorem 5.5.4. Functions in BV [a, b] satisfy:
(1) boundedness;
(2) linear closure and

b∨
a

(αf + βg) ≤ |α|
b∨
a

(f) + |β|
b∨
a

(g);

(3) product closure with standard estimate;
(4) ∨b

a(f) = 0 ⇐⇒ f constant;
(5) restriction monotonicity on subintervals;
(6) additivity of total variation at a split point c:

b∨
a

(f) =
c∨
a

(f) +
b∨
c

(f);

(7) if fn ∈ BV [a, b], supn

∨b
a(fn) ≤ M , and fn → f pointwise, then f ∈ BV [a, b] and

b∨
a

(f) ≤ M.
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Proof. Only (6) and (7) are nontrivial here. For (6), refine partitions by inserting c and pass to
suprema in both directions. For (7), for each fixed partition pass limit inside finite sums:∨

f

(∆) = lim
n→∞

∨
fn

(∆) ≤ M,

then take supremum over ∆.

Remark 5.5.2. Property (6) implies

x 7→
x∨
a

(f)

is monotone increasing.

Theorem 5.5.5 (Jordan Decomposition Theorem). If f ∈ BV [a, b] and

g(x) = 1
2

( x∨
a

(f) + f(x)
)
, h(x) = 1

2
( x∨

a

(f) − f(x)
)
,

then g, h are increasing on [a, b] and
f = g − h.

Proof. For x ≤ y,

|f(y) − f(x)| ≤
y∨
x

(f) =
y∨
a

(f) −
x∨
a

(f),

which gives monotonicity of both ∨x
a(f) ± f(x).

Corollary 5.5.1. If f ∈ BV [a, b], then its discontinuity set is at most countable, f is differen-
tiable a.e., and f ′ ∈ L1[a, b].

Theorem 5.5.6. If f ∈ BV [a, b], then f and
∨x

a(f) have the same continuity/discontinuity
points, and at each discontinuity x0 the one-sided oscillations satisfy

ω+
f (x0) = lim

x→x+
0

|f(x) − f(x0)| = lim
x→x+

0

x∨
x0

(f),

ω−
f (x0) = lim

x→x−
0

|f(x) − f(x0)| = lim
x→x−

0

x∨
x0

(f).

Proof. One inequality is immediate from

|f(x) − f(x0)| ≤
x∨
x0

(f).

The reverse inequality follows by choosing near-optimal partitions and isolating the first subin-
terval.

Theorem 5.5.7. If f ∈ BV [a, b], then

d

dx

( x∨
a

(f)
)

= |f ′(x)|

a.e. on [a, b].
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Proof. Approximate variation by piecewise monotone envelopes and use the term-by-term dif-
ferentiation theorem (Theorem 5.5.3) on a suitable positive series of monotone error terms.

Remark 5.5.3. Consequently, ∫ b

a
|f ′(x)| dx ≤

b∨
a

(f).

Theorem 5.5.8 (Hally). Let F ⊂ BV [a, b] with

sup
f∈F

(
|f(a)| +

b∨
a

(f)
)
< M.

Then every sequence in F has a subsequence converging pointwise to a function in BV [a, b].

Proof. First handle monotone families via diagonal extraction on rational points. Extend limits
by monotonicity and adjust values at countably many discontinuities. Then reduce general BV
case through Jordan decomposition.

Exercises 5.5

1. P255 10,11,12

2. P281 11

3. P283 7,8

5.6 Absolutely Continuous Functions

This section gives necessary and sufficient conditions for the Newton-Leibniz formula.

Theorem 5.6.1. If f ∈ L1[a, b] and

F (x) =
∫ x

a
f(t) dt,

then F is differentiable a.e. and
F ′(x) = f(x) a.e.

Proof. Write
F (x) =

∫ x

a
f+(t) dt−

∫ x

a
f−(t) dt.

Then F ∈ BV [a, b], hence differentiable a.e. Use approximation of f by continuous functions in
L1 together with variation estimates to conclude F ′ = f a.e.

Definition 5.6.1 (Absolute Continuity). A real-valued function f on [a, b] is absolutely contin-
uous if for every ε > 0 there exists δ > 0 such that for every finite family of pairwise disjoint
intervals

[x1, y1], . . . , [xn, yn] ⊂ [a, b],
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if
n∑

i=1
(yi − xi) < δ,

then
n∑

i=1
|f(yi) − f(xi)| < ε.

The class is denoted by AC[a, b].

Lemma 5.6.1 (Singular Function). Suppose f is nonconstant on [a, b], differentiable a.e., and

f ′(x) = 0 a.e.

Then f /∈ AC[a, b].

Proof. If f were absolutely continuous, then by definition and Vitali-type interval selection
one obtains arbitrarily short disjoint interval families with arbitrarily small total increment,
contradicting nonconstancy under f ′ = 0 a.e.

Theorem 5.6.2. (1) If f ∈ AC[a, b], then f ∈ C[a, b].
(2) If f, g ∈ AC[a, b] and α, β ∈ R, then αf + βg ∈ AC[a, b].
(3) If f ∈ AC[a, b], then f ∈ BV [a, b].
(4) If f ∈ L1[a, b] and

F (x) =
∫ x

a
f(t) dt,

then F ∈ AC[a, b].

Proof. Standard and omitted.

Now let f ∈ AC[a, b] and define

g(x) =
∫ x

a
f ′(t) dt.

By part (4) of Theorem 5.6.2, g ∈ AC[a, b]. Hence h = g − f ∈ AC[a, b]. By Theorem 5.6.1,

h′(x) = g′(x) − f ′(x) = 0 a.e.

and by Lemma 5.6.1, h must be constant. Therefore

f(x) =
∫ x

a
f ′(t) dt+ const.

Evaluating at x = b yields:

Theorem 5.6.3 (Newton-Leibniz). If f ∈ AC[a, b], then

f(b) − f(a) =
∫ b

a
f ′(t) dt.

For a.e. differentiable f with f ′ ∈ L1[a, b], define

fs(x) = f(x) −
∫ x

a
f ′(t) dt.

Then f ′
s(x) = 0 a.e., so

f(x) =
∫ x

a
f ′(t) dt+ fs(x) = fAC(x) + fs(x),

which is the decomposition into absolutely continuous and singular parts.
This parallels the Radon-Nikodym section. Compare the two frameworks.
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Appendix

A Another Construction of Lebesgue Measure

Below we reconstruct Lebesgue measure from the viewpoint of abstract measure theory.

Measurable Sets and Measures

Definition A.1 (Measurable Space). Let X be a nonempty set, and let M be a σ-algebra on
X. Then the pair (X,M) is called a measurable space.

Definition A.2 (Measure). Let (X,M) be a measurable space. A function µ : M → [0,+∞]
is called a measure on this measurable space if it is countably additive.

Remark A.1. Naturally, we assume that µ is not identically +∞.

Proposition A.1. Let (X,M) be a measurable space, and let µ be a measure on it. Then µ

has the following properties:
(1) µ(∅) = 0;
(2) finite additivity;
(3) monotonicity;
(4) continuity from below: if A1 ⊂ A2 ⊂ · · · , then

lim
n→∞

µ(An) = µ
( ∞⋃

n=1
An

)
;

(5) continuity from above: if A1 ⊃ A2 ⊃ · · · and µ(A1) < +∞, then

lim
n→∞

µ(An) = µ
( ∞⋂

n=1
An

)
.

Now let us look at some examples of abstract measures.

Example A.1 (Counting Measure). Take the measurable space (X,P(X)). Define µ : P(X) →
N ∪ {∞} by mapping each set A to its cardinality.

Remark A.2. In fact, all series theory can be viewed as integration theory for counting measure.

Example A.2 (Dirac Measure). If x ∈ E, then δx(E) = 1. If x /∈ E, then δx(E) = 0.
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parameter-dependent integral continuity, 78
path connectedness, 19
perfect set, 28
positive set, 85

Radon measure, 83
Radon-Nikodym theorem, 88
rectifiable curve, 2
refinement cover, 20
Riemann integral, 2
Riesz theorem, 64
ring, 33
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singular function, 94
singularity, 88
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