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Introduction

Last time we saw descriptive statistics.

® Graphical: pie chart, bar chart, stem-and-leaf diagram, box plot, histogram.

® Numerical: sample range, sample mean, sample quartile, IQR, sample standard
deviation, sample correlation.

Descriptive statistics provides an initial look into the dataset you collected.

® Next, we need a more sophisticated analysis of the data.

® |nferential statistics provides mathematical tools to infer the characteristics of, or

make assertions about, the population from the sample.

® |n this topic, we will explore how random variables are essential in building the
framework for these inferential methods.
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Introduction

If the population has no underlying structure, drawing scientifically valid conclusions
becomes impossible. To resolve this, we assume that each observation is a random
variable.

® Question 1: What is a random variable?

® Question 2: For a given experiment, what is a suitable random variable to model
it? = In this lecture, we review random variables commonly seen in statistics.

® Question 3: After we pinpoint a random variable, how do we use it to make
statistical claims? = This will be addressed later in the course.
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Introduction to Random Experiments

Statistics regards experiments as random and focuses on their outcomes.

Random Experiment

A random experiment is an experiment in which the outcome is not known until the
experiment is performed.

Example: Rolling two dice, where an outcome could be (6,6) or (3, 1), etc.

Sample Space
The sample space is the set of all possible outcomes of a random experiment. J

Example: For two dice, this includes all ordered pairs from (1,1),(1,2),...,(6,6).
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Outcomes and Events

Statistics regards experiments as random. Statistician cares about the outcomes that
satisfies a certain description.

Event

An event is a specific subset of the sample space that satisfies a given condition. For
instance, you win $1 if the event “the sum of the two dice is 6" occurs, which
corresponds to the outcomes {(1,5), (2,4),(3,3), (4,2),(5,1)}.

The outcomes of a random experiment and the corresponding events may be difficult
to handle mathematically:

Example: when rolling two dice, the outcome is an ordered pair of numbers, which
does not lend itself directly to arithmetic operations.

Example: In clinical trials, the outcome might be a group of individuals with various
treatment results, complicating direct analysis.
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What is a Random Variable?

To perform statistical analysis, we would like to simplify these outcomes by assigning
numerical values to it, so that mathematical calculation is possible. This process leads
to the concept of a random variable.

Random variable

A random variable is a function that assigns a real number to each outcome of a
random experiment.

® For random experiments, the outcome is not known in advance.

® Hence, the associated value (the variable!) to describe the even of interest is also
unknown.
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What is a Random Variable?
Example: Roll two dice, the outcome could be (3,1).

Let
X = “sum of the numbers shown on the dice.”
We have
X 3,1 = 4
({an%{c'gme}) the valMthe RV7
X 0.0 b= 12

an outcome the value of the RV

e After the experiment, we now observe a deterministic/known number. This is

called a realization of the random variable.

X maps an outcome (not an event) to a number.
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Example: Rolling Two Dice
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Random Variable

Notation convention
® A generic random variable is denoted by an uppercase letter such as X, Y, N.

e After the experiment is conducted, the observed value/realization
(deterministic/known) is denoted by a lowercase letter such as x;, y;, n;.
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Types of Random Variables

Range of a random variable J

The range of a random variable is all the possible values that it can take.

Example: What is the range of: X = “sum of the numbers shown on the dice.”

Discrete Random Variable

When a random variable is a discrete variable, we call it a discrete random variable.
Equivalently, the range is finite (or countably infinite).

Wy
Continuous Random Variable
When a random variable is a continuous variable, we call it a continuous random
variable. Equivalently, the range is an interval of real numbers. )

We will review some of the commonly used probability distributions.
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Probability Distributions: Why should we care?

Many commonly seen experiments can be characterized by simple distributions.

Example: consider the toss of a coin. The coin has two possible outcomes: {H, T},
where H appears with a probability p. The outcome is characterized by a simple
random variable with two possible values.

In understanding random experiments, we need to analyze the behavior of the
randomness of the associated random variables.

® The problem is: we do not know exactly the value of p!

® Statistics can help in estimating this parameter.

® The foundation is that we assume the coin indeed follows such a probability
distribution — the form of the distribution is assumed beforehand, with only the
parameter p being unknown.
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Discrete Random Variables and Probability Mass Function (PMF)

In describing the randomness of an event, we introduced probability.
® The chance of an event E happening is denoted P(F).

To describe the randomness of a discrete random variable X, we consider the
probability of X taking certain values.

e Consider a special event
E,="X=2".
® Here, E, collects all outcomes w such that X (w) = z, so E; is indeed an event.

® With the definition of probability for events, we can say that the probability of X
taking a value of x is
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PMF
Such a function p(z) = P(X = z) is called a probability mass function (PMF) of

the random variable X.

Example: Flip two coins

# of heads 0 1 2 Total
Probability 0.25 0.5 0.25 1
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Uniform Random Variable

Uniform Random Variable
A random variable with equal probability for all outcomes are called a uniform random

variable.

Example: Tossing a fair coin (2 possible outcomes); color of the card picked randomly
from a deck (2 possible outcomes).
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Bernoulli Distribution

In statistical studies, we usually have experiments that gives binary outcomes.

Example: A product passes/fails quality control.
Example: A coin toss gives head/tail.

These experiments are usually called Bernoulli trials or Bernoulli experiments.

Bernoulli experiment /trial
A Bernoulli experiment has
® One trial that can take two mutually exclusive results: “1” as success and “0" as

failure.

® The probability of success is p.




Bernoulli Distribution

Bernoulli
A random variable X is said to be a Bernoulli random variable if

1 if success
X =]
{ 0 if fail.

A random variable X is said to follow a Bernoulli distribution with success
probability p, if

Tz =1,

P{X:x}:{?_p z = 0.
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Expectation

Expectation for discrete random variable
The expectation (expected value, mean) of a random variable X is denoted by E[X].
In the discrete case, the expectation is the average of all possible values, weighted by

the probability. Mathematically, it is defined as

E[X] = in]P’(X = ;).

Example: let X be a Bernoulli(p)! random variable. Then,

E[X]=1xP(X =1)+0xP(X =0) =p.

! Abbreviation for “Bernoulli distribution with success probability p'.
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Linearity of Expectation
® For any constant a and b,

E[aX + b] = aE[X] + b.

® For any constants aq,...,a, and b,

Ela1 X1 + a2 Xo + -+ - 4+ an Xy + 8] = a1 E[X1] + aoE[X3] + - - - + a,E[X,,] + b.

4

Cf. Linearity of sample mean z:

® (ax +b) =az +0.

® (a1z1 +agxe + -+ apxy +b) = a1Z1 + a2Z2 + - - - + anTy + 0.
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Variance

Variance

The variance of a random variable X, denoted by Var(X), is the expected value of the
squared deviation from the mean of X, that is,

Var(X) = E[(X — p)?] = E[X?] — 4%,  where u = E[X].

Property

For any constants a and b,

Var(aX + b) = a*Var(X).

Cf. property of sample variance:

° Ify,=ax;+0b i=1,2,...,n, then siza%%.
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Bernoulli Distribution

Example: Let X be a Bernoulli(p) random variable. Then

Var(X) = E[(X —E[X]))*) = (1 - p)* P(X =1) + (0 —p)* - P(X = 0) = p(1 — p).
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Binomial Trial

Binomial Trial

A binomial experiment has the following characteristics:

® The experiment consists of a fixed number of observations n.

Each trial is a Bernoulli trial with success probability p.

The trials are independent, i.e the outcome of one trial does not impact the
outcome on other trials.

® Suppose we have a Binomial trial with parameters n and p.

How many successes are there in total?
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Independence of Random Variables

Independence

Two random variables X and Y (not necessarily discrete) are independent if for any
two sets of real numbers A and B

P({X € A}n{Y € B}) = P({X € A})P({Y € B}).

For discrete random variables, X and Y are independent if

P(X = Ty, Y = yj) = P(X = l’l) ]P(Y = yj).

Xi,...,X, are independent if

P(X)=x1,..., X =a,) =P(X1 =21) X - x P(X,, = xp).
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Independence: Expectation and Variance Properties

Product of Independent Random Variables
If X and Y (not necessarily discrete) are independent, then

E[XY] = E[X]E[Y].

Variance of a Sum of Independent Random Variables
For independent random variables X7, Xo,..., X}, the variance of their sum is equal

to the sum of their variances:

Var(X +Y) = Var(X) + Var(Y),

Var (Z Xi) = Z Var(Xj;).
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Proofs for reference

EXY] =) miy P(X =2,V =y)
i
= szz yj px (i) py (y5)
i

= <Z T Px (wz)> (Z Yj pY(ZJj))

— E[X]E[Y].
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Proofs for reference

Var(X +Y) =E[(X +Y)?] — (E[X + Y])?
21 2XY +Y? - (B[X] + E[Y])?

[
[X
(X% 4 2XY +Y?] - ((E[X]) + 2E[X]E[Y] + (IE[Y])2)
(X
[X

%] + 2B[XY] +E[v?] - ((E[X))? + 2E[X]E[Y] + (E[Y])?)

] + 2E[XJE[Y] + E[Y?] - ((E[X])? + 2E[X|E[Y] + (E[Y])?)

- (B[X))?) + (EY?) - (ElY))?)

E
E
E
E
Va; ( ) + Var(Y).
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Binomial Distribution

Binomial distribution
A Binomial random variable X is the total number of success from n independent
Bernoulli trials, each with success probability p.

X ~ Binomial(n, p)

The probability distribution is given by

P{X =i} = (?)ﬁu —p)"%, i=0,1,2,...,n
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Binomial Distribution

Named after binomial expansion

(a+b)" = zn: (7;) alb™ .

=0

Does the probabilities sum to 17 We have that

Sopx =i =3 (1)t =l 0l =1
i=0 1=0
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Connection between Binomial and Bernoulli

Let X ~ Binomial(n,p) and let I; ~ Bernoulli(p) be independent Bernoulli random
variables with success rate p. Then

X:ZL-.
)

® Ecpectation:

e Variance:

Var(X) = Var <Z Ii) = ZVar(Ii) =np(1 —p).

i=1 =1
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Binomial Distribution

Example: Suppose the probability that an item produced by a certain machine will be
defective is 0.1, independent of other items. Find the prbability that a sample of 10
items will contain at most one defective item.

Solution:
Let X be the number of defects, then X ~ Binomial(10,0.1).

So the probability is

P{X =0} +P{X =1} = (100> (0.1)°(0.9)10 + (110) (0.1)1(0.9)° = 0.7361
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Application of Binomial Trial

When n is large and p is small, binomial trial can be use to model

® The number of misprints on a page (or a group of pages) of a book.
® The number of customers entering a post office on a given day.
® The number of patients in an emergency department in a day.

® The number of calls to a call center over a week.

Sounds good! But do we have problems in the calculation?
10 0 10 10 1 9
P{X=0}+P{X =1} = 0 (0.1)7(0.9)"" + 1 (0.1)(0.9)” = 0.7361

Hard to calculate, numerically unstable. Approximations?
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Example: Wire Flaws

Flaws occur at random along the length of a thin copper wire.

® X number of flaws in a unit length wire.
® ) rate at which flaw occur, so A flaws per unit length.

¢ Expectation E[X] = \ x 1.
How to calculate the distribution of X7?

® Partition the wire in to n sections, each with length At = 1/n

Assume that at most one flaw may occur in each section.

Assume that the flaws occur at random in each section, with probability p.

Look familiar?
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Example: Wire Flaws

The number of flaws can be approximated by a binomial random variable
X ~ Binomial(n, p),

where n is the number of sections and p is chosen to match the expectation:

E[X] = A = np.
Hence p = A/n.
e (G- () (Y o
= n(n"'_z),i,u — A/n)"

7
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Poisson distribution
Poisson distribution
A random variable X is Poisson(A) with A > 0 if the PMF is

)\i
ngzi}zgﬁf& i=0,1,2,...
—o— Poisson(1) —o— Poisson(4)
. 0.3 1 —a— Poisson(10)
i
I
=
B

0 2 4 6 8 10 12 14 16 18 2
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Properties of Poisson RV

® Sum 1: (Taylor expansion of e*)

® Mean:

® Variance

Hence Var(X) = \.
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Poisson approximates Binomial

When n is large and p is small,

Poisson(np) ~ Binomial(n, p).

Example: Recall the defective machine example.
P{X =0} +P{X =1} =0.7361
If we want to use a Poisson random variable to approximate, we match the expectation:
A=np=10x0.1=1.

Try Y ~ Poisson(1) to approximate it

19 1t
P{Y =0} +P{Y =1} =e ' — + et~ =21 =0.7358

0! 1!
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Poisson approximates Binomial

=

Poisson approximating Binomial I
<

® Decent accuracy. g

® Asymptotically the same.

® Much less computation

10 12 14

needed.

Binomial(10,0.5) —e— Binomial(20, 0.25)
—e— Binomial(1000,0.005) * Poisson(5)
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Poisson: Statistical View
Poisson random variable can be use to model the number of patients visiting the
Emergency Department (ED) every day.

e Knowing A can help with the staffing decision.

® |f we observe X1, ..., X,, patients in an ED over a period of n days, how can we
estimate \?

Intuitively (we will see), sample average and standard deviation are close to the
expectation and the square root of variance.

* Because E[X] = ), we can use the average \; = Y1, X, /n.

® Because Var[X] = A\, we may also use Ao = 52, where 52 is the sample variance.

Which is better? = Estimation theory.
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Continuous Random Variables

Continuous Random Variable
When a random variable is a continuous variable, we call it a continuous random
variable. Equivalently, the range is an interval of real numbers.

f(=) f(@)

J2 f(s)ds F(z)= [T f(s)ds

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

f(2) = Flx), Fla)= / " f(s)ds.
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Uniform Distribution on [0,1]: CDF and PDF
Uniform Distribution on [0, 1]

A random variable X is said to follow a Uniform distribution on the interval [0, 1] if it
has an equal chance to take any value in [0, 1].

The probability density function (PDF):

1, 0<z<1,
f(@) = F'(x) = -re @
0, otherwise.
b
The cumulative distribution function (CDF): 0.5 / f(s)ds
0, =<0,
F(z)=P(X<2)=Qx, 0<az<l, !

1, z>1.
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Uniform Distribution on [a,b]: CDF and PDF

Uniform Distribution on [a, b]

A random variable X is said to follow a Uniform distribution on the interval [a, ] if it
has an equal chance to take any value in [a, b].

The probability density function (PDF):

1
f@) = Pla) = {”—“’ e b 1

0, otherwise. o

The cumulative distribution function (CDF):

0, z < a,
Flz)=P(X <z)=q 2, a<z<b,
1, x > b.
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Expectation and Variance (Continuous Case)
Expectation
The expectation of a continuous random variable X is given by:

Variance
The variance is defined similarly as in the discrete case:

o? = Var(X) = E[(X — )] = E[X?] - 2.
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Example: Uniform|a, 0]

Expectation

Second moment

b
]E[Xz]:/x2- ! dr = ——

Variance

Var(X) = E[X?] — 2

_b2+ab+a2_ a+b 2_(l)fa)2
B 3 2 12
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Generating Uniform R.V.

We assume that a Uniform|0, 1] random variable can always be generated. J

® Python:

import numpy as np
np.random() # generate one Uniform[0,1]

np.random((3,2)) # a matrix of 3-by-2 Uniform[O0,1]

® R: runif (1)
e Matlab: rand()
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Why is Uniform R.V. Important?
The inverse of a distribution function Fii'(y) = inf{z : Fx(z) > y}.

Inverse of CDF

® For any random variable X with continuous CDF Fx(-), Y = Fx(X) is
Uniform|0, 1].
® If Y is Uniform|[0, 1], then for any CDF Fx(-), X = F'(Y)) has CDF Fx(-).

Proof: for continuous CDF,
P(X < Fy'(2)) = Fx(Fx'(z) ==

P(Fx(X) <)
! z) =P(Y < Fx(z)) = F(z).

P(FX (V) <x)

To generate R.V. from any distribution, all you need is the inverse of the CDF and
Uniform|0, 1]. J
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The Galton Board

The Galton board is a vertical board with interleaved rows of pegs. Beads are
dropped from the top and, when the board is level, each bead bounces either left or
right as it hits a peg. Eventually, the beads are collected into bins at the bottom, and
the height of the bead columns in the bins represents the frequency of outcomes.

® |t serves as a physical demonstration of random processes, where each left/right

bounce mimics an independent Bernoulli trial.

® As the number of rows increases, the distribution of beads in the bins tends to
approximate a normal distribution, illustrating the Central Limit Theorem.

® The Galton board visually demonstrates how randomness at the micro-level
can lead to predictable, statistical behavior at the macro-level.

https://www.lexaloffle.com/bbs/?pid=114907


https://www.lexaloffle.com/bbs/?pid=114907
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Galton Board: Modeling a Bead's Path

Consider a bead on its way down the Galton board. After each row of pegs, the bead
takes a step:

® |t goes left one step, or

® |t goes right one step.

Let X be the random variable representing the bead’s move at a given row:

v —1, if the bead goes left,
1, if the bead goes right,

with P(X = —1) =05 and P(X =1)=0.5.
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Galton Board: Modeling a Bead's Path

Denote by Y; the position of the bead in the i-th row. The initial position is defined as
Yy = 0. Then the position in the first row is Y] = Yy + X7 = X1, where X is an
independent and identically distributed (i.i.d.) copy of X.

As we continue, the position at row k is given by

k
Y=Y, 1+ Xy = ZXi-
i—1

By mathematical induction, the position at any row n is:

The Galton board suggests that as the number of rows increases, the distribution of
the bead’s position Y,, tends to form a bell curve due to the Central Limit Theorem.
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Central Tendency and Dispersion of Y,

Recall that the bead'’s position after n rows is given by ¥, = > | X;.
Expectation

E[Yn]:E[iXi] 3 E[X,] =nE[X]=nx 0=0.

i=1

Variance

n

Var(Y,,) = Var (Z X,) = Zn:Var(Xi) =nVar(X)=nx1=n.
i=1

i=1
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Galton Board (12 Rows): Central Tendency and Dispersion

There are 25 rows in this Galton board. &: NENL
* 1 =E[Yys]=0.
o =/Var(Yy5) = V25 = 5.
The Galton board suggests that:
® Roughly 68% of the beads end up in
the bins in positions u + o.
® Roughly 95% of the beads end up in
the bins in positions p £ 20.

® Almost all beads end up in the bins in
positions u + 30.




Random Variable Discrete R.V. Continuous R.V.
0000000000 000000000000 00000000000000 000000000000 e000000000000000000000000

Increasing the rows in the Galton board

0.12
- Galton board with 12 rows
Galton board with 50 rows

i Galton board with 100 rows

0.10 s Gaussian with mean = 0.0 and std = 3.5
Gaussian with mean = 0.0 and std = 7.1

ww Gaussian with mean = 0.0 and std = 10.0

® As the number of rows n increases, the distribution of location of the beads

spreads wider and wider: o = /Var(Y,,) = /n.

® The shape of the distribution becomes more and more like a bell curve. o
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Increasing the rows in the Galton board

Galton board, 10 rows Galton board, 40 rows Galton baard, 1000 rows

0.014
012 \ 0.06

0.012 / \‘
010 oos

/ . f
0.08 \ 0.04 ’ ' \‘
000 “

0.06 003 |
/ 0.006 ‘ |
Y
|- 2 A
002 / \ oo 0,002 ! “\
v
£

- h?
0.00 — 000 0.000 e -

-100 -75 -50 -25 00 25 50 75 100 -20 ~10 0 10 20 ~100 -50 [ 50 100

Observation: When plotting a histogram (e.g., using Python libraries such as Matplotlib), the plotter
automatically scales the canvas so that the histogram fills most of the available space. But why is this done?

® Maximizing Visual Information: Scaling ensures that the details of the data distribution (such as peaks,
valleys, and spread) are clearly visible.

Question: What is the “natural scale” for the plot as function of n?
3 %4110 =~ 10, 3 * /40 = 20, 3 * +/1000 ~ 100.
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Standardizing the Beads' Positions

To implement the scaling logic of the plotter,
we can standardize the positions of the beads:

Y. - EY, Y, —
5 _Ya—E] _Y,—0

Y WNVar(Y,) Vi

The standardized positions Z,, will be centered
around 0 and have a ‘“standard” standard
deviation of 1.

It turns out that regardless of the number of
rows, the standardized positions follow the
same bell curve.
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Central Limit Theorem and the Galton Board
The math behind the Galton board can be rigorously justified, yielding the famous
Central Limit Theorem (CLT) for summation

Recall that Y, = > | X;, we have:

Y, —EY,
= Yo — E[Yn] ~ Z, asn becomes large.
Var(Y,,)

Here, Z is a continuous random variable following the “bell curve” distribution, called
the standard normal distribution, denoted by A/ (0, 1).

® The CLT explains why the distribution of bead positions tends to become
bell-shaped as the number of rows increases.

® More generally, the CLT states that sums of many independent and identically
distributed (i.i.d.) random variables, when standardized, converge to NV (0, 1).
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Sample Mean and Standardized Position
Starting with

Yo — E[Y] where Y, =YX,

/ Var(Yy,) —

we note that E[Y,,] = nE[X}] and Var(Y,,) = n Var(X}). Hence,

Z, =

"X, —nE[X X — — &
_ 2 i1 Xi — nE[X4] _ X EX] where X = lZ:Xz
n

n Var(X1) \/\W7 i=1

CLT for sample mean

Zn

Var(X) Zn ~ E[X]4+ Var(X7)

X = E[Xl] -+
n n

Z,  for large n.

® The sample mean X is centered around the population mean E[X].
® The scale of its fluctuations is about \/Var(X;)/n — decreases as n increases.
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Central Limit Theorem (CLT) Works for Any Distribution

Central Limit Theorem (CLT)

Let X1, Xo,..., X, be independent and identically distributed (i.i.d.) random variables
with finite variance. Then

X — E[X4] 1=
~ [~ 0,1 h X =— X;.
N(0,1), where nz

VVar(X1)/n g

This result implies that

Var(X) Z,
n

n

> X & nE[X1] + /nVar(Xy) Z.

=1
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Normal Approximation for a Binomial Random Variable

Suppose Y,, is a binomial random variable with parameters n and p, then Y,, can be
approximated by a normal distribution when n is large (works well when np > 5 and
n(l—p) >5).

Solution:
n

Y, = ZI" where each I; ~ Bernoulli(p).
i=1
Note that
E[;]=p and Var(l;) =p(1l —p).

By the Central Limit Theorem,

Y, ~nE[]++/nVar(l1) Z =np++/np(1 —p) Z, where Z ~ N (0,1).
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Quality of the Normal Approximation

Probability mass function B
0.175 m sample size = 2
[} [] [} ® [ [ 0.16 7 sample size = 5
o sample size = 10
0.150 0.14 e sample size = 20
e Gaussian with mean = 7.0 and std = 2.4
Gaussian with mean = 17.5 and std = 3.8
01257 0124 s Gaussian with mean = 35.0 and std = 5.4
== Gaussian with mean = 70.0 and std = 7.6
0.100
z
o
F]
S 0.075 -
&
0.050 -
0.025 4
0.000
T T T T T T
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Probability mass function

040 ¢

0.35 7

o o o o
= Y N w
7 <) G S
L ! L L

0.10 4

0.05 4

0.00
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0.35 7

0.30

0.25 4

0.20

0.15 4

0.10 4

0.05 §

0.00 -

7\

20

40

sample size = 2
sample size = 5
sample size = 10
sample size = 20
Gaussian with mean
Gaussian with mean
Gaussian with mean
Gaussian with mean

60

7.0 and std = 3.3
17.5 and std = 5.2
35.0 and std = 7.3

70.0 and std = 10.4

80

100
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Probability mass function

0404 @

0.35 7

0.30 §

0.25 4

o o o
= = Y
o 7 <)

! L !

0.05 4

0.00
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0.040 A

0.035 4

0.030

0.025

sample size = 20

sample size = 50

sample size = 100

sample size = 200

Gaussian with mean = 70.0 and std = 10.4
Gaussian with mean = 175.0 and std =
Gaussian with mean = 350.0 and std = 23.
Gaussian with mean = 700.0 and std = 32.8
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Quality of the Normal Approximation

The quality of the normal approximation via the Central Limit Theorem (CLT) varies:

If the underlying distribution is normal, the approximation is exact.

If the underlying distribution is skewed or have large variance, the approximation
may be poor for small sample sizes.

The quality of the approximation improves as the sample size increases.

As a rule of thumb, if the distribution is not too skewed and the variance is
moderate, a sample size of n > 30 should provide a reasonably accurate

approximation.
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Further Reading: 3BluelBrown Videos

For a deeper understanding of the Central Limit Theorem and related topics, consider
watching these insightful videos by @3Bluel1Brown:

e “But what is the Central Limit Theorem?"

® “A pretty reason why Gaussian + Gaussian = Gaussian”


https://www.3blue1brown.com/
https://www.3blue1brown.com/lessons/clt
https://www.3blue1brown.com/lessons/gaussian-convolution

Rmdun \/ ari lb‘L D\su LL R V Contlnuous R.V.
""""" 000000000000000000000000e000000000000

Normal

Having seen the universality of the standard normal distribution, ensured by the central
limit theorem, we can now focus more on “The Bell Curve” itself.

Normal Distribution
A random variable is said to be normally distributed with parameters 1 and o2, and
we write X ~ N (p,0?), if the PDF is

1 _(==w?
flx) = e 20%, —00 < <00

EX]=p, E[X?=0%+p? Var(X)=o2
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Density of Normal Distribution

0.8
® The normal distribution is symmetric
. 0.6
around its mean p.
® The density function is unimodal, 2 04

with the peak at p.
® The spread of the distribution is 02

/Y
controlled by the standard deviation o // \\
T 0 2 i

— most density (99.7%) lies within
u =t 3o.

—N(0,12)  — N(0,0.5%)
N(0,22) N(-2,12)
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Scalability of the Normal Distribution
Scaling Property

If X ~N(u,0?) and Y =aX +b, then

Y ~ N(ap+ b, a*c?).

Now, if we set

a=— and b= —E,
o o
we obtain
X —
Y ==—E N0, ).

This transformation is known as the standardization of a normal distribution.

We can always write X = 0Z + pu, where Z ~ N(0,1).
We call Z the standard normal distribution.
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Standard Normal Distribution

The standard normal distribution, denoted by Z ~ N (0, 1), satisfies

Probability Density Function (PDF) of standard normal

flz) = 1 e_%, x € (—00,00).

Cumulative Distribution Function (CDF) of standard normal
y2

O(x) = \/% /_x e 2dy, x€ (—00,00).

Note: Although ®(z) has no closed-form expression, numerical values are widely
available.
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Properties of the Standard Normal Distribution

Complement Rule

P(Z>z)=1-P(Z<z)=1—d(x).

Symmetry Property
P(Z < —z) = ®(—x).
Since P(Z > z) = P(Z < —x), it follows that:

O(—z) =1— ().
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Example: Evaluating Probabilities for a Normal Distribution

For any X ~ N(u,0?), the standardization

X —p
ag

7 =

~N(0,1)

implies

and
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Evaluating Probabilities for a Normal Distribution
Example: Suppose X ~ N (3,16)
(a) Find P{X < 11}:

P(X < 11) = @(114_ 3) — 3(2).

Using standard normal tables, ®(2) ~ 0.9772.
(b) Find P{X > —1}:

1
P(X>—1):1—P(X§—1):1—<I>( . 3) —1—®(-1).
Since ®(—1) =1 — ®(1) and ®(1) =~ 0.8413, it follows that

P(X > —1) = ®(1) ~ 0.8413.

(c) Show that P{2 < X < 7} =~ 0.44.
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Approximating Probability for the Sample Mean
By the scalability of the normal distribution,
X =pu++/o?/nxZ, forZ~N(0,1).

For general distributions of the population, the CLT suggests that

X~pu++o2/nxZ, forZ~N(0,1).

We may use the probability density function of the standard normal to approximate
probabilities regarding the sample mean.
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Approximating Probability for the Sample Mean

Example: The weights of a population of workers have mean 167 and standard
deviation 27. Suppose we want to approximate the probability that the sample mean
of their weights lies between 163 and 171.

Case A: Sample Size n, = 36

Note that

Vo2 /ng =/272/36 = 4.5.

Hence,

163~ 167 _ X — 167 _ 171 - 167)
45 45 45
— P(—0.89 < Z < 0.89)

= 2P(Z < 0.89) — 1 ~ 0.626.

P(163 < X < 171) = P(
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Approximating Probability for the Sample Mean

Case B: Sample Size ny = 144

Note that

Vo2 ng = \/272/144 = 2.25.
Thus,

163 —167 _ X 167 _ 171~ 167)
2.25 2.25 2.25
= P(—1.78 < Z < 1.78)

= 2P(Z < 1.78) — 1 ~ 0.925.

P(163 < X < 171) = P(
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Sum of Independent Normal is Normal

Sum of Independent Normal Random Variables

Let X1, Xo,..., X, be independent randon variables distributed as X; ~ N(ui,ag).
Let S, = Z?:l X, be the sum of these random variables. Then,

Sn 7 N(iui, iaf)
=1 =1

Key Points:

® The sum of independent normal random variables is also normal.
® The mean of the sum is the sum of the individual means.

® The variance of the sum is the sum of the individual variances.
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Sum of i.i.d. Normal is Normal

Sum of i.i.d. Normal Random Variables

Let X1, Xo,..., X, be independent and identically distributed as X; ~ N(u,0?). Let
8y = Z?:l X,; be the sum of these random variables. Then,

Sy ~ N(n,u, n02>.
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Extended Reading and Exercises

® Sections 3.1-3.5, 3.8, 4.1-4.6, 7.2 of Douglas C. Montgomery and George C.
Runger, Applied Statistics and Probability for Engineers, 7th Ed.
® Videos by @3BluelBrown:

® “But what is the Central Limit Theorem?”
® “A pretty reason why Gaussian + Gaussian = Gaussian”


https://www.3blue1brown.com/
https://www.3blue1brown.com/lessons/clt
https://www.3blue1brown.com/lessons/gaussian-convolution
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