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Introduction: Distributions for Modeling Common Random Experiments

In the last topic, we saw distributions for modeling common random experiments.
These distributions serve as a reasonable simplification/model for the experiments.
e Example: Bernoulli distribution to characterize experiments with binary counts.
e Example: Poisson distribution to characterize integer counts.

e Example: Normal distribution to characterize continuous data arised from
taking average or sum (CLT).

These distributions are usually specified by one or more parameters.

e Example: Bernoulli distribution is specified by the success probability p.

e Example: Poisson distribution is specified by the rate .

e Example: Normal distribution is specified by the mean p and variance o2.
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Introduction: Statistical Inference

® Assumes that the population follows a certain family of distributions (e.g.
Bernoulli with some unknown p).

® Focuses on drawing conclusions about the unknown parameters of the distribution.

e An important part of this process is obtaining estimates (a reasonable value) of
the parameters.
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Random Sample

Throughout this course, we shall assume that the data we collected forms a random
sample.

Random sample

If X1, Xs,...,X, are independent random variables having a common distribution F,
then we say that they constitute a random sample from the distribution F. We also
say that X1, Xy, ..., X,, are independent and identically distributed (i.i.d.).

Why random sample? The i.i.d. property allows us to write the joint PMF/PDF as
flxr, e, .. xy) = Hf(a:z)

We will see that such a product form simplifies many calculations.



Introduction Sample Mean Sample Varianc Method of Moments Ma
000@000 o 0000000000 0000 00 . o

Statistic

Statistic
A statistic is a random variable whose value is determined by the sample. In other
words, it maps the collection of observations to some real number.

Statistics are constructed from

® anything computable from the data; and

® anything assumed to be known.
You CANNQOT construct statistics using

® unknown parameters.
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Statistics vs. Parameters

You need to be able to tell the exact value of a statistics, once the data is given.

Example: The sample mean X is a statistic. Once the data is given, you can
calculate the value of X. But (X7 + 1)/2 is not a statistic, because you don't know
the value of .

Value known? Value random? Example

Parameter unknow deterministic Population mean y, variance o

Statistic ~ known random Sample mean X, sample variance S?
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Point Estimator
Point Estimator

A statistic 0 intended to estimate an unknown quantity of interest (a parameter of the
population) @ is called a point estimator of 6.

The hat notation

The point estimator used to estimate a parameter 6 is usually denoted as 0.

Point Estimate

After the sample has been selected, 0 takes on a particular numerical value; this value
is called the point estimate of 6.

In this topic, we shall see techniques to find reasonable point estimators of the
population parameters.
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Example: Common Point Estimators

Parameter Point estimator
Sample mean X
u = E[X] Any observation X;
Use 0 as estimator (Is this reasonable?)
M1 — p2 X - X,
o2 = Var(X) Sample variance S?

5 im (Xi = X)? i
> i (Xi — X)(Yi - V)
> i (Xi—X)(Yi—Y)

Sx Sy

0 = Cov(X,Y)

correlation coefficient p

_1
n—1
_1
n—1
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Sample Mean: Estimating the Mean

Suppose distribution F' has mean p. This is the most common parameter one wishes
to estimate.

A natural estimator: the sample mean of a sample X1, Xo,..., X,

X:%(X1+X2+-~+Xn).

The sample mean is a statistic, hence it is a random variable!

Is this a reasonable estimator? More importantly, what makes a good estimator?
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Visualizing the Distribution of the Sample Mean

We have the intuition that the sample mean should be close to the true population
mean, especially when the sample size is large.

How to visualize?

® We want to understand the distribution of the sample mean.

® From descriptive statistics, we can plot the histogram of the sample mean.

® This requires us to take many i.i.d. observations of the sample mean.

@ For a certain sample size n, we draw n i.i.d. samples from the original distribution F'
and calculate one observation of the sample mean.

@® Repeat the first step for m times, then we obtain m i.i.d. samples of the sample

mean. The total number of samples from the original distribution F' is n X m.
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Table: m = 100 observations of sample mean X, for sample size n = 4

Sample 1 T9 T3 T4 Sample Mean T4
1 0.2146 0.6409 0.5702 1.2420 0.6669
2 -1.1453 -0.7257 0.5799 0.8147 -0.1191
3 2.5040 -0.6341 -0.7738 -1.5476 -0.1128
4 -0.2335 -2.0745 -0.2115 -1.3960 -0.9789
5 0.4958 0.6800 -0.0545 0.1364 0.3144
1000 | -0.1441 1.1047 0.9348 -0.1594 0.4340

® There are m = 1000 observations of the sample mean, i.e., the values in the last
column of each table.

® We use the m = 1000 observations for the sample mean to plot the histogram.
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Table: m = 100 observations of sample mean X5, for sample size n = 50

Group T T9 T50 Sample Mean Z5g
1 -0.6197 0.3715 ... -0.0018 -0.0352
2 -0.0436 -1.1562 ... -0.3941 0.1770
3 -0.9820 -0.2195 --- 1.2833 -0.0760
4 1.6812 -1.1482 ... 0.0877 -0.1705
5 1.0325 0.2447 --- 0.8609 -0.0913
1000 | 0.3022 -1.2556 --- -0.0183 0.0984

® There are m = 1000 observations of the sample mean, i.e., the values in the last
column of each table.
® We use the m = 1000 observations for the sample mean to plot the histogram.
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Histogram Plots for Different Sample Sizes

Consider n = 10, n = 50, n = 100, and n = 200.

Followings are the histogram plots of 1000 observations of the sample means (for a
normal population) for each of the four choices of n.

n=10 n=50 n=100 n=200
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Properties of Sample Mean
Expectation (center)
E[X] = E[%(Xl TE) SN —l—Xn)] = %(E[Xl] oo +E[Xn]> = .

The sample mean is close to the mean of F'.

Variance (dispersion)

i 1 1 1
Var(X) = Var [ﬁ(xl FXo o+ Xn)} - (Var(Xl) T Var(Xn)> = o2,

n

This variance depends on sample size n. It decreases to 0 as n increases.

Key observations: The sample mean is centered around the true mean p and
becomes less and less random as the sample size increases.
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Bias

Suppose 0 is used to estimate 6, then is the bias of 6 is defined as

Biasg(f) = Eg[d — 6].

® Bias measures the distance between the “center” of the (random) estimator to
the true parameter. Intuitively, a small bias implies that if you estimate for
multiple times, on average you will be closed to the true parameter.

Unbiased Estimator

0 is unbiased if the expected value of the estimator is equal to the parameter it
intends to estimate, i.e., if Eg[f] = 6 for all 6 € O.
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Is Unbiased Estimators Always Good?

Bias tells us how “on average” how close the estimator is to the true parameter.
Example: If we use a single observation X7 as an estimator of the population mean.
® |s it unbiased?
® What is the variance of this estimator?

® How does the variance compare to that of the sample mean?

Bias says nothing about the “spread” of the estimator.
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Method of Moments

Example: Paris Olympic Shooting 10m Air Rifle Men

http://dingyue.ws.126.net/2024/0904/9a08b039g00s jaklm0354d000qo00f0Om. gif

Even though achieving a 10.9 is technically a perfect shot, the player isn't entirely
satisfied because this isolated result doesn’t guarantee consistent performance.

® The inherent instability and variability in shooting means that while one shot
might hit the perfect ring, the athlete cannot confidently predict similar
outcomes in future rounds.

e Consistency is crucial in Olympic air rifle shooting, so a sporadic peak
performance can actually undermine overall confidence and hinder the
development of a reliable competitive edge.



http://dingyue.ws.126.net/2024/0904/9a08b039g00sjaklm0354d000qo00f0m.gif
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Low Variance High Variance

® Bias measures the distance between
the center of the estimator and the

Low Bias

true parameter.

® Variance measures the spread of the
estimator.

® A good estimator should have both
small bias and small variance.

High Bias

How do we balance these two goals?
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Mean Square Error

Mean Square Error (MSE)

Suppose 0 is used to estimate 6. Then
MSE; (9) = Eo[(6 — 6)?]

is the mean squared error of 6.

Maximum Likelihood Estimation
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® Mean Squared Error estimates the average squared distance from the estimator to

the parameter.
® MSE is NOT the same as Var(é) Eq[(6 — E[0])2).
® If § is unbiased, then Var(d) = MSE,(6).

® MSE is NOT the same as Var(X) = Eg[(X — 0)2].
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Bias Variance Decomposition
Bias Variance Decomposition

MSEy () = Varg() + Bias2(6)

® Mean Squared Error balances between the two goals: bias and variance.

® |In comparing two estimators, we prefer the one with lower MSE, i.e., overall
smaller bias and smaller variance.

Example: MSE of sample mean.

® Var(X) = %2
® Bias(X) =0
e MSE(X) =2,
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Bias Variance Decomposition

Proof:
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Relative Efficiency

The mean squared error is used to compare the efficiency of estimators. To achieve the
same “accuracy,” a more efficient estimator needs less amount of data.

Relative Efficiency

Let él and ég be two estimators of #. Then the relative efficiency of ég to él is

MSEy (61)
MSEg(fs)

® |f the relative efficiency is less than 1, then we say that él is a more efficient
estimation of 8 than 6.

® The MSE, and hence the relative efficiency, may depend on the sample size n.
Then we can look at the asymptotic relative efficiency as n — oc.
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Asymptotic Properties

Consistency

An estimator 6 is a consistent estimator for 6 if 6 converges to 0 in probability, i.e.,

P(|§—0|>e)—>0 as n — 0.

Example: Sample mean is consistent for the population mean.

n=10 n=50 n=100 n=200

This can be understood by the CLT: X ~ -+ /Y21 7
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Law of Large Numbers (LLN)

Theorem (Weak Law of Large Numbers)

If X1,Xo,...,X,, are independent random variables having a common distribution F’
with mean p, then

1
P(‘—(X1+X2+---+Xn)—u‘>e) —0 as n — oo.
n

Example: By the LLN, the sample mean is consistent for the population mean pu:

P(|X —p|>€) =0 as n— oo
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Asymptotic Properties
Consistency implies that having larger sample size helps.

® This is a desired property we want for most estimators.

® |n general, the condition P(\é -6 > 6) — 0 is not straightforward to check.
MSE allow us to prove consistency without the need of calculating P(|6, — 6| > e).

Theorem (Sufficient condition for consistency) J

If the MSE of én converges to 0 as n — oo, then én is consistent.

Example: Sample mean is consistent for the population mean.

2
MSE()_():U—%O, as n — 00.
n



D00000C 0000000000000 0000e 0OO00OO0000OC DO00000C

Introduction Sample Mean Sample Variance Method of Moments Maximum Likelihood Estimation

A Quick Summary: Evaluating Estimators

The Center: Biasy(0) = E[f] — 0.
The Dispersion: Var(6).
An Overall Measure: MSE(f) = E[(é - 0)? = Var(0) + Bias(6)2.
® When multiple estimators are available, we prefer the one with smaller MSE.
The Convergence: Consistency. MSE converging to 0 implies consistency.

Example: The sample mean is unbiased and consistent.

Example: Consider a Poisson population, we know that E[X]| = A. So sample mean
can be used to estimate A. It is unbiased and consistent.
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Estimating the variance o? when 1 is known

If the mean g is known, then we can use

® |t is a valid statistic only when g is known.

® |t is the sample mean of (X; — )2

Bias

2

Hence, 6° is unbiased.

000000000000 0O0000O0O0OO0O00000000000
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Variance of 62 and Its MSE

Var(62) = Var(% i(XZ - ,u)Q) = % iVar((Xi - p)2> = %Var((Xl - u)2).
i=1 =1
How do we calculate Var((X1 — u)2>?
Var( ) [ u)ﬂ - (E[(Xl - u)2D2 = g — o,
where py = [ } is the 4th central moment (kurtosis).

Hence, Var(62) = %4 — 2 Together with the unbiasedness of 32, we have

4
MSE(6%) = = — 40 0, which implies that 62 is consistent.
non
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Variance of 62 and Its MSE

Reference: the 4th Central Moment for a Normal Distribution

E le: F | Consider a random variable X ~ N(u,o?). Define Z = X;“ so
xample: Or a norma that Z ~ N(0, 1). Then, the 4th central moment of X is
population N (u, 02), the 4th
. 4 4 ApT 4
central moment is na =E[(X - )*] =E[(02)*] = o*E[2"].
[g = 304 Derivation for E[Z%]: For a standard normal variable, the even
moments are given by the formula
2k)!
Thus| E[ZQk] — ( ) )
2k k!
.2 ~2 20" 41 24 _ 24
MSE(J ) = Var(a ) =— For k = 2, we have E[Z*] = 5751 = 2.5 = § = 93 Hence, the 4th
n central moment of X is
;L4:U4~3=304.
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Estimating the Variance when g is Unknown
If the mean p is unknown
® the previous estimator is no longer valid because it contains the unknown quantity

. An estimator must be a statistic.
® we would not be able to determine its realized value even with all observations in

hand.
Alternatively, we can use the sample variance defined by
1 < .
2 w2
S _n—lz(XZ X)2.
i=1
Question: But why use 1+ instead of 17

Sample variance is unbiased

The use of ﬁ is to make S2 an unbiased estimator of o2.




Introduction Sample Mean Sample Variance Method of Moments Maximum Likelihood Estimation
0000000 0000000000000 00000 0000e000000000 00000000 0000000000000 0000O00000000000000000

Sample Variance is Unbiased

Proof:
Recall from Descriptive Statistics (Slide 47) that S? = L7 X2 — X2
Then

(n—1)E[S?]| =E

y X7 - nX2] = nE[X?] — nE[X?
=1

- n(Var(Xl) + E[Xl]Q) - n(Var(X) + E[X]?)
= n<02 + ,u2) - n<02/n + ,u2> = (n—1)c%

Divide both sides by (n — 1), we see that S? is unbiased.
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Variance of the Sample Variance S?

It turns out that the variance of the sample variance can be quite complicated because
the summands are mutually dependent through X: S? = ﬁ (X - X)2

Fortunately, an explicit expression exists:

Var(5?) = % - (i((:__f)),

where 114 = E[(X; — p)*] is the 4th central moment (kurtosis). Since S? is unbiased,
the MSE of S? is given by

MSE of the sample variance

MSE(S?) = Ha M

n  nn-1)"

For a detailed calculation, see Section 2.5 in https://hal.science/hal-02012458.


https://hal.science/hal-02012458
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Consistency of the Sample Variance

Theorem
Assume that the 4th central moment is finite. Since

4 —
MSE(SQ)z%—%—)O, as n — 0.

The sample variance S? is a consistent estimator of the population variance o?.
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Comparing the Cases with and without Knowledge of p
With knowledge of u

Without knowledge of u

1
n—1

n—30*

5=

- %2 2y _ M4
;(Xl X)?, MSE($%) =" - — —.

Notice that MSE(S?) > MSE(5?). Having more information (the knowledge of 1) helps

reduce the variability of our estimator.

® The ratio between the two MSE converges to 1 as n — oo, hence as the sample size
increases, they are asymptotically indistinguishable.
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Example: Assume in addition that X; ~ N(0,1) follows a standard normal
distribution. Then the 4th central moment is py = 30*. (Slide 27)

Hence,

MSE of the sample variance under normal population

308 n—30* 204
MSE(S?) = = — S '
(5%) n n—1n n—1
We have . .
2 2
MSE(S2) = =2 > =7 — MSE(6?).
n — n
However,
MSE(S?)

— - —1 .
MSE(&Q) — as n — o
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In Sample Mean

oduction Samp

Comparing the Estimators for Variance
We have just compared the two estimators for the variance o2:
° 52 =1%" (X; — p)? when y is known.
o §2=_L. %" (X;— X)?when p is unknown.
® We see that knowing more information is beneficial.
® However, this comparison is unfair as they use different information.

Suppose we compare the following two estimators, both assuming no knowledge of u

o 52— _1 ZZLZI(Xl—X)Q

n—1

° SaQIt = ?:1(X7; _X)Q-

n

® Which one is better?
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Alternative Estimator when 1 is Unknown

Now, let's investigate an alternative estimator:

n

1 - n—1
S = - d(Xi-X)= - 52,
i=1
* 52 is biased:
. n—1 0'2
Bias(S3,) = E[S3] — 0 = TE[S2] — 0% = -

e But it is asymptotically unbiased:
Bias(S%,) — 0 asn — oo.
Asymptotically Unbiased Estimator

An estimator is asymptotically unbiased if its bias converges to 0 as the sample size

increases.
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Variance and MSE of the Alternative Estimator S,

Variance of S2.:

Var(s3) = Var("18%) = (" 2) Var(s?) = (1) (m _d'n=3)

n n n  nn-—1)
MSE of Sazlt:
) n—1\2 s o*(n—3) ot
MSE(SEH:) = V&I‘(Sit) + Blas2(S§|t) = ( n ) <7’L — m + ﬁ
Example: For a standard normal population, ps = 36, Then,
2y _ (n—1\2 20*
Var(Saie) = ( n ) <n— 1)’
—1\2 [ 20* ot ot2n—-1)  20*
SE(S3) = (——) <n_1>+n2 " 2T~ is(s?)
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Comparing S2. and S? for Normal Population
o S2 =15 (X;—X)%is biased. S =213 (X; — X)? is unbiased.
¢ In the Gaussian (normal) case,
MSE(S2,) < MSE(S?),
hence S, is considered a better estimator.

Bias-Variance Tradeoff:
Usually, we can considerably decrease the variance of an estimator by introducing a
little bit of bias. Overall, we may reduce the MSE, hence obtaining a better estimator.

® One may check that
MSE(S?)
MSE(SZ,)

So as the sample size grows, the efficiency is almost the same.

—1 asn — co.
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Example: Estimation for Poisson

Recall the Poisson(\) distribution with PMF

We have
E[X] = Var(X) = \.

We can use either the sample mean or the sample variance to estimate \.

Both are unbiased and consistent. Which one is better?

* The MSE of X: Var(X) = 2.
o The MSE of S2: Var(s2) = L (E[Xﬂ - E[X2]22—j’> = 2(142)-2). This one

needs tedious computation so the steps are omitted.

® The asymptotic relative efficiency of X to S2 is 1+ 2\. So X is better.
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Two Systematic Ways to Construct Estimators

We have now studied in detail the properties of the sample mean and sample variance,
as estimators of the population mean and variance, respectively.

Question: How do we construct point estimators for other parameters of interest?

Next, we look at two more ways to construct point estimators

® Method of moments (MoM)

e Maximum likelihood estimators (MLE)

0000000 ®0000000 000000000000 0000000000C0 YOO0000000000
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Sample Moments

Recall that the jth population moment defined as

pj = E[X7].

Sample moments

Maximum Likelihood Estimation
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Let X1,..., X, be a random sample, the jth sample moment is defined as

1S,
A=~ X].
=1

® Sample moments have the desired properties of unbiasedness and consistency

(under very mild technical conditions).
e Why?
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Example: Estimating 1 and o2 using Sample Moments

Sample moments can be used to estimate parameters other than the population
moments. To demonstrate the main idea, consider the following example.

0 Example: Find estimators of 4 and o2 for a general population using sample
moments.

® Recall that = pq and 02 = g — p?, where i1 and po are the first and second
population moments, respectively. Equivalently, p1; = p and g = o + 2.
® We have natural estimators fi1 and fio for ©1 and 2, namely,

fu~p=p and  fip & pp = 0 + pi’.

® These give us a set of two equations in the two unknowns p and o2, which yield
the estimators:
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Derivation of jis — o2 = 1 3" (X; — X)?

o=ty xz g2l
1 n & 7 n 4

=1
1 n
=EZ[(X X)2 4 2X(X; — X)+X2} X2
1=1
1 & _ 2X & _ _ _
= =3 (K- X+ =Y (X X) + X2 - X
n n
=1 =1
1 & .
- EZ(Xl_X) )
=1
since .
(X;—X)=0
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The Method of Moments generalizes this idea of constructing estimators based on sample
moments.

Method of Moments

Suppose we have p numbers of unknown parameters 8 = (61, ...,6,). Suppose we also have a
random sample X1, ..., X, of size n. To estimate the parameters 6:

@ Step 1: Calculate the first p population moments as functions of 6.
m:ul(al,...,ep):]E[XlL 000y ,up:up(ﬁh...,ep):]E[X”}.

® Step 2: Equate the p population moments to the p corresponding sample
moments, we get a set of p equations to solve for p unknown variables:

1 — 1 —
m(ol,...,e,,)ZQZXg, Mp(el,...,ep):£z:xg’.
i=1 1=1

©® Step 3: The solutions él, ..., 0, are called the MoM estimators for 6;,...,6,.
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MoM for Mean and Variance

To estimate the mean p, the sample mean is the MoM estimator for .

Example:
To estimate the mean p and variance o2 at the same time, so 6 = (u,0?)

1 n
p= ﬁZXi
i=1

1 n
2 2 2
+u°= E X;
o P ;

Example:

Thus, the MoM estimators are ji = X and
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Method of Moments

Example: (Normal) N(u,0?%). The

unknown parameters are 8 = (1, ?).
1 n
E[X] :,u:nZ;Xi:X
1=

1 n
EX*)=p+0%=—3 X}
=1

So the estimators are
=X

ZX2 X2 = Z(X — X)?

1:1

Method of Moments

Maximum Likelihood Estimation
0O00000e0
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Example: Binomial (k,p). The unknown

parameters are 6 = (k, p).

1< .
]E[X]:kp:EZXi:X

E[X?] = kp(1 — p) + k?p* =

ZX2

So the estimators are
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Remarks

Advantages

® Simple to use and easy to construct.

® Usually gives consistent estimators, though often biased.
However,

® |t sometimes give estimates outside the domain, like k in the last slide.

® |t is quite arbitrary depending on which moments to use. By default, we use the
first p moments, if p parameters are to be estimated.
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Maximum Likelihood Estimator

In estimating parameters of a Normal
distribution and general distributions, Gauss
and R.A. Fisher (widely regarded as the father
of modern statistics) summarized the following
magnificent intuition:

A proper estimator of the true parameter is the
one that makes the given observation

xr1,T9,...,T, most likely to occur. Figure: Carl Friedrich Gauss (left) and
R.A. Fisher (right)
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Maximum Likelihood Estimator

Example: 10 coin tosses gives you 9 heads and 1 tail. Can you confidently estimate
that the probability of getting a head is p = 0.57 No!

Because the probability of getting “9 heads and 1 tail” under p = 0.5 is

10 10
P,—0.5(9 heads out of 10) = ( 1) x 0.5 x 0.5* = Top1 ~ 00L

How about p = 0.97
The probability of getting “9 heads and 1 tail” under p = 0.9 is

10
Pp—0.9(9 heads out of 10) = ( ) ) x 0.97 x 0.1' ~ 0.39 > 0.01.

p = 0.9 is the scenario where the data "9 heads and 1 tail” has much more chance of
being observed.
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Intuition for Maximum Likelihood Estimation

Intuition:

® To find the estimator, we search among all possible values of the parameter for
the one that makes the data we have the most likely to occur.

Implementation:

® Find a reasonable function to represent the “likelihood” of observing a data set.

® Maximize the “likelihood function.”

The goal of maximum likelihood estimation is to determine the parameters for which
the observed data have the highest joint probability.

DO00000C 0000000000000 000O0O0OO0O00000000000

J




Maximum Likelihood Estimation
0000000000000 00000000000000000000

Likelihood Function

To measure the change of occurance, we introduce the likelihood function.

Let € = {z1,...,2,} be an observed sample from a pdf f(z|0) with parameter 6.

Likelihood function
The likelihood function of the sample © = {z1,...,x,} is the joint probability density
function of X, evaluated at X =z, i.e.,

n

L(Olz) = [ ] f(il0)-

=1

® The likelihood function is a function of 6.
® |t measures how likely an experiment produces the observed x as a sample,

if the parameter takes the value of 6.
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Comparing Joint Density with Likelihood

® Joint Density: f(x|0) =[], f(x:6).
® This is viewed as a function of @ = {x1,...,z,} with the parameter 0 fixed.
® Probability Theory Perspective: How likely is it to observe X = x under a true,
fixed (but unknown) parameter 67

e Likelihood: L(0|x) = H?:l f(x;)0).
® |nterpreted as a function of § with the observed data @ held fixed.

® Statistical Perspective: Now that we have observed x, what is the chance of
observing x if the unknown parameter takes on a particular value of 87

This view provides a tool to assess the plausibility of different guesses for 6, under the
observed x, leading to the principle of choosing the most plausible value as our
estimate.
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Likelihood Inferences

® We saw that the likelihood function L(#|x) is just the probability of obtaining the
data & when the true value of the parameter is 6.

® This imposes a belief ordering on possible values of the parameter 6: we believe
f, is more plausible than 65 if

L(Hllw) > L(QQ‘CC)

® Maximum likelihood estimation is based on this ordering.

® |t is possible that the value of L(6|x) is very small for every value of 6.

® |t is not the actual value of the likelihood that tells us how much support to give a
particular 6, but rather its value relative to the likelihoods of other possible
parameter values.
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Maximum Likelihood Estimator

Maximum Likelihood Estimators

The Maximum Likelihood Estimators (MLE), denoted as OmLE, is the value of the
parameter 6 that maximizes the likelihood function for the given sample X, i.e.

éMLE = argmax L(9|X)
0

e Equivalently, OyLe = arg max, log L(A| X)) maximizes the log-likelihood function.

® This is because the log function is strictly monotone.

® We will see why this can help in many of our cases.
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Calculating the Maximum Likelihood Estimator

To calculate the MLE, we need to solve the maximization problem.

OMmLE = argmax L(60|X)
6

From calculus, you know that

® |t can be solved by
® If 6 is 1-dimensional, set the derivative 4 L(6]X) = 0 or <L log L(|X) =0 .
® [f § is k-dimensional, set the partial derivatives a%q-,L(mX) =0or
a7~ log L(6]X) = 0

® Check the second-order derivative to make sure it is not local minimum.

Maximizing log L(0|X) is usually much easier. As we see next in the Normal example.
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Example: MLE for Bernoulli Population |

Example: Suppose we randomly choose 30 chips from a production line and find that
26 of them are of acceptable quality. We wish to estimate the probability p that a chip
passes quality control (QC).

® Modeling: Assume that each chip passes QC with probability p, independent of
others.

® Likelihood Function:
L(plX) = Hlep H B e N R

¢ How to maximize L(p|X) over p € [0, 1]?
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Example: MLE for Bernoulli Population Il

%10-6 Likelihood Function Log-Likelihood Function
8 T

— L(plx) /\ log L(p|x) | —
7 / \ —25
6 \ —50 /
> \ g -T5
=] Q
Q =
S =
=4 E /
g / \ = —100
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[
2
T .
1
0 —175
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p (Probability of a chip passing QC) p (Probability of a chip passing QC)

58/82
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Example: MLE for Bernoulli Population Il

The likelihood function is given by
L(p|X) = Hf Xilp) = H (1= p)t= X = pXim Xi(1 — pyn X X,

Taking logarithms, we have

{(p|X) = log L(p| X))
= log pXi=1 X1 4 log(1 — p)"~ =1 X

= (Zn: XZ) logp + (n — Zn:Xz> log(1 — p).
i1 i=1
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Example: MLE for Bernoulli Population IV
To maximize the log-likelihood, we differentiate with respect to p:
d 1/ 1 =
L pp|x) = 7( XZ-> - —(n— X)
=5 (X)X
Setting the derivative equal to zero,

R

i=1

(r-3-x) =0

1
1-p
we solve for p and obtain the MLE:

) 1
PyLe = — Zle
1=
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Example: MLE for Bernoulli Population V

To verify that this is a maximum, we check the second derivative:
d? 1/ 1 =
= i(plx :_7( Xi)—i( - Xi> 0.
dp? (vl X) P ; 1-p2\" ; -

Evaluating at p = pyLE, we see that the second derivative is negative, confirming a
maximum.

In our example, with n = 30 chips and 2;7’21 x; = 26 acceptable chips, the MLE is

26
D = — =~ (0.8667.
PMLE 30
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Maximum Likelihood Estimator — Bernoulli

n n

dilogL (p|X) = Z (n—ZXi>

MLE for Bernoulli Sample
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Example 2 — Bernoulli Population |

Suppose | asked Tony and Paul to proofread “T4.pdf". The findings are:

® Tony found 10 typos.
® Paul found 12 typos.
® 6 typos were found by both.
Assume they work independently (without collusion).
Goal: Estimate the total number of typos, V.
Modeling: Assume each typo is detected by Tony with probability p; and by Paul with

probability ps (Bernoulli random variables). Suppose there are N typos in total.

Estimation:
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Example 2 — Bernoulli Population Il

® Tony's detection: Tony finds 10 out of N typos. Thus, by the MLE for Bernoulli,

. 10
P = N
® Qverlap: Among the 12 typos found by Paul, Tony identified 6. Thus, by the
MLE,
.6 1
=172
Equate the two estimates:
10 1
— = N = 20.
N 2

Therefore, the estimated total number of typos in “T4.pdf" is 20.
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Example: MLE for Normal Population

Example: Normal sample. Likelihood function

202

L(po|X) = f(X|n,0) = (ﬂimy exp {‘ D (Xi = p)*

Take logarithm (because derivatives of multiplications are usually harder to calculate)

n Y-
log L(p1, 0| X) = —nlog(v2ro) — M

202
Take partial derivatives
9 Doy (Xi — ) 0 no Y (X —p)?
—log L X)= ==t 7 — log L X) = —— 4 &=t P
g 8 Lk, o1 X) 2 g losllmolX)=—2 3

MLE for Normal Sample, 6 = (i, 0)

n
i=1 Xi

AvLE = and oMLE = {
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Normal MLE

For Normal random sample, the MLEs are puyre = X and 63 = ”7_152.
We have seen that

® the MLE gives smaller MSE, trading off bias for smaller variance.

® Both S? and &I%/ILE are asymptotically unbiased and consistent.
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MLE for Normal Distribution Parameters (1, 0?)
Example: What is the MLE for (i, 0%) in a Normal sample?
The log-likelihood function
log L(1, 071 X) = — Mlog(2m0?) — —— S (X, — p)2.
2 202 pt
It has the same form, but understood as a function of o2.

Differentiate with respect to o”:
Olog L n 1 -
gosLr _ " .+ X
0o? 202 + 2(0?)? ;( ‘

alOgL = 0 and substituting u = X yields:

Setting

1 _
Ul%/[LE = *Z(Xz’ - X)2-

n -
=1
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MLE for Normal Distribution Parameters (1, 0?)

MLE for normal parameter (u, 0?)
The MLE for (u,0?) is

A . ) 1 _
ine =X and ope =— > (Xi - X)%
=1

Notice that &l%dLE is exactly the square of the MLE for o.
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Invariance Property of MLEs
For a distribution, we may use different parameters to describe it. Or, we may be
interested in a new parameter that is a function of the default parameters.

Example: For Normal distribution, we can may use either standard devation or
variance.

Do we need to recalculate the MLE every time we change the parameter? No!
Theorem (Invariance of MLE)

Let él, e ,ék are the MLEs of the parameters 01, ...,0. Then the MLE of any
function h(6,...,0y) is h(él, ... ,ék)

Example: If X is the MLE for 6, then X2 is the MLE for 62.

Example: |If & is the MLE for the standard deviation, then &2 is the MLE for the
variance, and vice versa.
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Example: MLE for Poisson Population

Assume that X7, X5, ... X, ~ Poisson(}).
Likelihood

Maximum Likelihood Estimation
0000000000000000000008000000000000

n .
e AKX e AKXz e MNXn emmANEIL Xs

L\X) = X, XX =

Take logarithm

log LIA|X) = —nA+ Z X log(A\) — log(X4!

i=1

Differentiate d 1
—log LA\ X) = — — X;
3 OELOX) = n+ 53

MLE for Poisson Sample

X1 +Xo+---+ X,
n

AMLE =

oo X!

LX)
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Example: MLE for Exponential Distribution
Assume that X3, X5, ..., X,, ~ Exponential(\). Likelihood
LX) = [ e = A exp(—/\ZXi).
=1 1=1

Take logarithm

log L(A|X) = nlog(A) =AY X;.
=1
Differentiate
d LX) = —ZX
8 -

MLE for Exponential Sample
n

AMLE = =
MLE Z;L:l Xz
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Example: Apply the Invariance Property

Example: Suppose 10 rats are used in a biomedical study where they are injected with
cancer cells and given a drug to increase their survival rate. The survival times
(months) are 14, 17, 27, 18, 12, 8, 22, 13, 19 and 12. We usually use exponential
distribution to model survivals. What is the MLE of the mean survival time?

® For exponential f(z|\) = Aexp(—Az), the MLE is 1/X.

® So the mean survival time is 1/A = X = 16.2.
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Properties of a MLE

Properties of a MLE
Under very general and not restrictive conditions when the sample size n is large, the
MLE OyE enjoys the following properties

® OMLE is approximately unbiased estimator for 6.

® The variance of éMLE is nearly as small as the variance that could be obtained
with any other estimator.

e Oyip has an approximate normal distribution.

This explains why the maximum likelihood estimation technique is widely used.
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An Important Remark

In many cases, there will be restrictions on the value a parameter can take, e.g. in a
set of possible values O.

Example: The rate of the exponential distribution is always larger than zero. So

© = (0,00) in this case.

Example: The binomial distribution with unknown number of trials k£ and unknown
success probability p. Then k € Z, and p € [0, 1].

Example: We may only be interested in several potential values of a paremeter.
(Perhaps only these values are feasible in your experiments, say due to the restriction

of your equiptment.)
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An Important Remark

In the case where the parameters are restricted, MLE only maximize over the set of

possible values ©. For this reason, MLE will not produce invalid parameter values, e.g.

non-integer k for binomial distribution as in MoM estimator.

MLE is calculated by

éMLE = argmax L(9|X).
0cO

® In all previous examples, we did not explicitly consider the restriction on the
range, e.g. for the variance of Normal. But the solutions turn out to fall in the

range. Example: Variance of Normal. Recall that
n (X — 0)?
Ul%/[LE — szl( nl :U’) > 0.
® Usually, we first maximize regardless of the range, then check if the MLE falls in

the range.
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MLE for Continuous Uniform Distribution

Assume that X1, ..., X, are a random sample from Uniform(0, #), where § > 0. We
want to estimate the parameter 6.

® Suppose you observed a piece of data 1 = 1.77.
® What can you say about 67
0>1.77
® Suppose you observed another piece of data xo = 0.46.
® What can you say about 67
0>1.77
® Suppose you observed yet another piece of data 3 = 1.82.

® What can you say about 67
0>1.82

Question: Suppose you have z1,...,x,, can you guess an estimator for 67
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A Different Example: MLE for Uniform Population

Example: Assume that

. Likelihood Function for Uniform(0, §) Distribution
X17 X27 s 7Xn ~ Un'form([()? 9]) —— Likelihood Function i
Likelihood 0067 77" MLE =17
1 1 0.05 1
F(X10) = 5 x -+ x glo<xi<o - Lo<xa<o
0.04 4
: :f 0.03
MLE for Uniform Sample =
R 0.02
0 = max(X1,...,X,)
0.01 4
MoM uses § = 2X. The two estimators are
A 0.00
very different. ; ; ; — . |
0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Alternative Estimators for Uniform
Suppose X1,..., X, are sampled from Uniform(]0, 6]).
¢ Estimator 1 (MoM)

¢ Estimator 2 (MLE)

Compare: For the MoM estimator:

BiaSgdl(X) =0
MSEyd; (X) = Var(d; (X, 6)) + 0
40% 62

4
=2 (Var(Xy) + ...+ Var(X,)) = — =3
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*Alternative Estimators for Uniform

What is the distribution of da(X) = max; X;?
Note that

Pmax X; <z)=P(X; <z, Xo<uz,..., X, <2)=P(X; <2)P(Xy <z) - -P(X, <z),
(]

where P(X; < z) = §lo<z<g is the CDF of Uniform([0, 0]).
Taking derivative with respect to x, we have the pdf

n

far(x) = Hjxn_llogxge-
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*Alternative Estimators for Uniform

So
n n6?

ROV =7 VereX) = Gy

Hence )
Biaspda(X) = o1
n6? 1
MSEyds(X) = 2
0 X) = o mre T e
2 2
= 26 < o _ MSEgd; (X)

C(n+D(n+2)  3n
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*Comparison of d; and d»

dy is unbiased; has MSE %; is consistent (WLLN).

2 . . .
WM; is consistent and asymptotically

do is negatively biased; has MSE
unbiased.

The asymptotic relative efficiency of ds to dj is infinite.

Those MSE decreases on the order of n=2 is called super efficient. Recall that the
MSE of sample mean (which is a decent estimator) only decreases at n~.
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Extended Readings

® Sections 7.3, 7.4 of Douglas C. Montgomery and George C. Runger, Applied
Statistics and Probability for Engineers, 7th Ed.
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