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Introduction: Distributions for Modeling Common Random Experiments

In the last topic, we saw distributions for modeling common random experiments.

These distributions serve as a reasonable simplification/model for the experiments.

• Example: Bernoulli distribution to characterize experiments with binary counts.

• Example: Poisson distribution to characterize integer counts.

• Example: Normal distribution to characterize continuous data arised from

taking average or sum (CLT).

These distributions are usually specified by one or more parameters.

• Example: Bernoulli distribution is specified by the success probability p.

• Example: Poisson distribution is specified by the rate λ.

• Example: Normal distribution is specified by the mean µ and variance σ2.
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Introduction: Statistical Inference

• Assumes that the population follows a certain family of distributions (e.g.

Bernoulli with some unknown p).

• Focuses on drawing conclusions about the unknown parameters of the distribution.

• An important part of this process is obtaining estimates (a reasonable value) of

the parameters.
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Random Sample

Throughout this course, we shall assume that the data we collected forms a random

sample.

Random sample

If X1, X2, . . . , Xn are independent random variables having a common distribution F ,

then we say that they constitute a random sample from the distribution F . We also

say that X1, X2, . . . , Xn are independent and identically distributed (i.i.d.).

Why random sample? The i.i.d. property allows us to write the joint PMF/PDF as

f(x1, x2, . . . , xn) =

n∏
i=1

f(xi).

We will see that such a product form simplifies many calculations.



5/82

Introduction Sample Mean Sample Variance Method of Moments Maximum Likelihood Estimation

Statistic

Statistic

A statistic is a random variable whose value is determined by the sample. In other

words, it maps the collection of observations to some real number.

Statistics are constructed from

• anything computable from the data; and

• anything assumed to be known.

You CANNOT construct statistics using

• unknown parameters.
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Statistics vs. Parameters

You need to be able to tell the exact value of a statistics, once the data is given.

Example: The sample mean X̄ is a statistic. Once the data is given, you can

calculate the value of X̄. But (X1 + µ)/2 is not a statistic, because you don’t know

the value of µ.

Value known? Value random? Example

Parameter unknow deterministic Population mean µ, variance σ2

Statistic known random Sample mean X̄, sample variance S2
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Point Estimator
Point Estimator

A statistic θ̂ intended to estimate an unknown quantity of interest (a parameter of the

population) θ is called a point estimator of θ.

The hat notation

The point estimator used to estimate a parameter θ is usually denoted as θ̂.

Point Estimate

After the sample has been selected, θ̂ takes on a particular numerical value; this value

is called the point estimate of θ.

In this topic, we shall see techniques to find reasonable point estimators of the

population parameters.
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Example: Common Point Estimators

Parameter Point estimator

µ = E[X]

Sample mean X̄

Any observation Xi

Use 0 as estimator (Is this reasonable?)

µ1 − µ2 X̄1 − X̄2

σ2 = Var(X)
Sample variance S2

1
n

∑n
i=1(Xi − X̄)2

θ = Cov(X,Y ) 1
n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ )

correlation coefficient ρ 1
n−1

∑n
i=1(Xi−X̄)(Yi−Ȳ )

SXSY
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Sample Mean: Estimating the Mean

Suppose distribution F has mean µ. This is the most common parameter one wishes

to estimate.

A natural estimator: the sample mean of a sample X1, X2, . . . , Xn

X̄ =
1

n

(
X1 +X2 + · · ·+Xn

)
.

The sample mean is a statistic, hence it is a random variable!

Is this a reasonable estimator? More importantly, what makes a good estimator?
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Visualizing the Distribution of the Sample Mean

We have the intuition that the sample mean should be close to the true population

mean, especially when the sample size is large.

How to visualize?

• We want to understand the distribution of the sample mean.

• From descriptive statistics, we can plot the histogram of the sample mean.

• This requires us to take many i.i.d. observations of the sample mean.

1 For a certain sample size n, we draw n i.i.d. samples from the original distribution F

and calculate one observation of the sample mean.

2 Repeat the first step for m times, then we obtain m i.i.d. samples of the sample

mean. The total number of samples from the original distribution F is n×m.
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Table: m = 100 observations of sample mean X̄4 for sample size n = 4

Sample x1 x2 x3 x4 Sample Mean x̄4

1 0.2146 0.6409 0.5702 1.2420 0.6669

2 -1.1453 -0.7257 0.5799 0.8147 -0.1191

3 2.5040 -0.6341 -0.7738 -1.5476 -0.1128

4 -0.2335 -2.0745 -0.2115 -1.3960 -0.9789

5 0.4958 0.6800 -0.0545 0.1364 0.3144
...

...
...

...
...

...

1000 -0.1441 1.1047 0.9348 -0.1594 0.4340

• There are m = 1000 observations of the sample mean, i.e., the values in the last

column of each table.

• We use the m = 1000 observations for the sample mean to plot the histogram.
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Table: m = 100 observations of sample mean X̄50 for sample size n = 50

Group x1 x2 · · · x50 Sample Mean x̄50

1 -0.6197 0.3715 · · · -0.0018 -0.0352

2 -0.0436 -1.1562 · · · -0.3941 0.1770

3 -0.9820 -0.2195 · · · 1.2833 -0.0760

4 1.6812 -1.1482 · · · 0.0877 -0.1705

5 1.0325 0.2447 · · · 0.8609 -0.0913
...

...
...

. . .
...

...

1000 0.3022 -1.2556 · · · -0.0183 0.0984

• There are m = 1000 observations of the sample mean, i.e., the values in the last

column of each table.

• We use the m = 1000 observations for the sample mean to plot the histogram.
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Histogram Plots for Different Sample Sizes

Consider n = 10, n = 50, n = 100, and n = 200.

Followings are the histogram plots of 1000 observations of the sample means (for a

normal population) for each of the four choices of n.
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Properties of Sample Mean

Expectation (center)

E[X̄] = E
[ 1
n
(X1 +X2 + · · ·+Xn)

]
=

1

n

(
E[X1] + · · ·+ E[Xn]

)
= µ.

The sample mean is close to the mean of F .

Variance (dispersion)

Var(X̄) = Var
[ 1
n
(X1 +X2 + · · ·+Xn)

]
=

1

n2

(
Var(X1) + · · ·+Var(Xn)

)
=

1

n
σ2.

This variance depends on sample size n. It decreases to 0 as n increases.

Key observations: The sample mean is centered around the true mean µ and

becomes less and less random as the sample size increases.
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Bias

Bias

Suppose θ̂ is used to estimate θ, then is the bias of θ̂ is defined as

Biasθ(θ̂) = Eθ[θ̂ − θ].

• Bias measures the distance between the “center” of the (random) estimator to

the true parameter. Intuitively, a small bias implies that if you estimate for

multiple times, on average you will be closed to the true parameter.

Unbiased Estimator

θ̂ is unbiased if the expected value of the estimator is equal to the parameter it

intends to estimate, i.e., if Eθ[θ̂] = θ for all θ ∈ Θ.
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Is Unbiased Estimators Always Good?

Bias tells us how “on average” how close the estimator is to the true parameter.

Example: If we use a single observation X1 as an estimator of the population mean.

• Is it unbiased?

• What is the variance of this estimator?

• How does the variance compare to that of the sample mean?

Bias says nothing about the “spread” of the estimator.
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Example: Paris Olympic Shooting 10m Air Rifle Men

http://dingyue.ws.126.net/2024/0904/9a08b039g00sjaklm0354d000qo00f0m.gif

Even though achieving a 10.9 is technically a perfect shot, the player isn’t entirely

satisfied because this isolated result doesn’t guarantee consistent performance.

• The inherent instability and variability in shooting means that while one shot

might hit the perfect ring, the athlete cannot confidently predict similar

outcomes in future rounds.

• Consistency is crucial in Olympic air rifle shooting, so a sporadic peak

performance can actually undermine overall confidence and hinder the

development of a reliable competitive edge.

http://dingyue.ws.126.net/2024/0904/9a08b039g00sjaklm0354d000qo00f0m.gif
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Bias Variance Tradeoff

• Bias measures the distance between

the center of the estimator and the

true parameter.

• Variance measures the spread of the

estimator.

• A good estimator should have both

small bias and small variance.

How do we balance these two goals?
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Mean Square Error

Mean Square Error (MSE)

Suppose θ̂ is used to estimate θ. Then

MSEθ(θ̂) = Eθ[(θ̂ − θ)2]

is the mean squared error of θ̂.

• Mean Squared Error estimates the average squared distance from the estimator to

the parameter.

• MSE is NOT the same as Var(θ̂) = Eθ[(θ̂ − E[θ̂])2].
• If θ̂ is unbiased, then Var(θ̂) = MSEθ(θ̂).

• MSE is NOT the same as Var(X) = Eθ[(X − θ)2].
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Bias Variance Decomposition

Bias Variance Decomposition

MSEθ(θ̂) = Varθ(θ̂) + Bias2θ(θ̂)

• Mean Squared Error balances between the two goals: bias and variance.

• In comparing two estimators, we prefer the one with lower MSE, i.e., overall

smaller bias and smaller variance.

Example: MSE of sample mean.

• Var(X̄) = σ2

n .

• Bias(X̄) = 0.

• MSE(X̄) = σ2

n .
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Bias Variance Decomposition

Proof:

MSE(θ̂) = E
[
(θ̂ − θ)2

]
= E

[(
θ̂ − E[θ̂] + E[θ̂]− θ

)2]
= E

[
(θ̂ − E[θ̂])2 + (E[θ̂]− θ)2 + 2(θ̂ − E[θ̂])(E[θ̂]− θ)

]
= E

[
(θ̂ − E[θ̂])2

]
+ (E[θ̂]− θ)2 + 2E

[
(θ̂ − E[θ̂])

]
(E[θ̂]− θ)

= Var(θ̂) + Bias(θ̂)2.
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Relative Efficiency

The mean squared error is used to compare the efficiency of estimators. To achieve the

same “accuracy,” a more efficient estimator needs less amount of data.

Relative Efficiency

Let θ̂1 and θ̂2 be two estimators of θ. Then the relative efficiency of θ̂2 to θ̂1 is

MSEθ(θ̂1)

MSEθ(θ̂2)
.

• If the relative efficiency is less than 1, then we say that θ̂1 is a more efficient

estimation of θ than θ̂2.

• The MSE, and hence the relative efficiency, may depend on the sample size n.

Then we can look at the asymptotic relative efficiency as n → ∞.



23/82

Introduction Sample Mean Sample Variance Method of Moments Maximum Likelihood Estimation

Asymptotic Properties

Consistency

An estimator θ̂ is a consistent estimator for θ if θ̂ converges to θ in probability, i.e.,

P
(
|θ̂ − θ| > ϵ

)
→ 0 as n → ∞.

Example: Sample mean is consistent for the population mean.

This can be understood by the CLT: X̄ ≈ µ+

√
Var(X1)

n Z.
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Law of Large Numbers (LLN)

Theorem (Weak Law of Large Numbers)

If X1, X2, . . . , Xn are independent random variables having a common distribution F

with mean µ, then

P
(∣∣∣ 1

n

(
X1 +X2 + · · ·+Xn

)
− µ

∣∣∣ > ϵ
)
→ 0 as n → ∞.

Example: By the LLN, the sample mean is consistent for the population mean µ:

P
(
|X̄ − µ| > ϵ

)
→ 0 as n → ∞.



25/82

Introduction Sample Mean Sample Variance Method of Moments Maximum Likelihood Estimation

Asymptotic Properties

Consistency implies that having larger sample size helps.

• This is a desired property we want for most estimators.

• In general, the condition P
(
|θ̂ − θ| > ϵ

)
→ 0 is not straightforward to check.

MSE allow us to prove consistency without the need of calculating P(|θ̂n − θ| > ϵ).

Theorem (Sufficient condition for consistency)

If the MSE of θ̂n converges to 0 as n → ∞, then θ̂n is consistent.

Example: Sample mean is consistent for the population mean.

MSE(X̄) =
σ2

n
→ 0, as n → ∞.
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A Quick Summary: Evaluating Estimators

The Center: Biasθ(θ̂) = E[θ̂]− θ.

The Dispersion: Var(θ̂).

An Overall Measure: MSE(θ̂) = E
[
(θ̂ − θ)2

]
= Var(θ̂) + Bias(θ̂)2.

• When multiple estimators are available, we prefer the one with smaller MSE.

The Convergence: Consistency. MSE converging to 0 implies consistency.

Example: The sample mean is unbiased and consistent.

Example: Consider a Poisson population, we know that E[X] = λ. So sample mean

can be used to estimate λ. It is unbiased and consistent.
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Estimating the variance σ2 when µ is known

If the mean µ is known, then we can use

σ̂2 =
1

n

n∑
i=1

(Xi − µ)2.

• It is a valid statistic only when µ is known.

• It is the sample mean of (Xi − µ)2.

Bias

E[σ̂2] = E
[ 1
n

n∑
i=1

(Xi − µ)2
]
=

1

n

n∑
i=1

E[(Xi − µ)2] =
1

n

n∑
i=1

σ2 = σ2.

Hence, σ̂2 is unbiased.
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Variance of σ̂2 and Its MSE

Var(σ̂2) = Var
( 1

n

n∑
i=1

(Xi − µ)2
)
=

1

n2

n∑
i=1

Var
(
(Xi − µ)2

)
=

1

n
Var

(
(X1 − µ)2

)
.

How do we calculate Var
(
(X1 − µ)2

)
?

Var
(
(X1 − µ)2

)
= E

[
(X1 − µ)4

]
−
(
E
[
(X1 − µ)2

])2
= µ4 − σ4,

where µ4 = E
[
(X1 − µ)4

]
is the 4th central moment (kurtosis).

Hence, Var(σ̂2) = µ4

n − σ4

n . Together with the unbiasedness of σ̂2, we have

MSE(σ̂2) =
µ4

n
− σ4

n
+ 02 → 0, which implies that σ̂2 is consistent.
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Variance of σ̂2 and Its MSE

Example: For a normal

population N (µ, σ2), the 4th

central moment is

µ4 = 3σ4.

Thus,

MSE(σ̂2) = Var(σ̂2) =
2σ4

n
.

Reference: the 4th Central Moment for a Normal Distribution

Consider a random variable X ∼ N(µ, σ2). Define Z = X−µ
σ

so

that Z ∼ N(0, 1). Then, the 4th central moment of X is

µ4 = E
[
(X − µ)4

]
= E

[
(σZ)4

]
= σ4E

[
Z4

]
.

Derivation for E[Z4]: For a standard normal variable, the even

moments are given by the formula

E[Z2k] =
(2k)!

2kk!
.

For k = 2, we have E[Z4] = 4!
22·2! =

24
4·2 = 24

8
= 3. Hence, the 4th

central moment of X is

µ4 = σ4 · 3 = 3σ4.
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Estimating the Variance when µ is Unknown
If the mean µ is unknown

• the previous estimator is no longer valid because it contains the unknown quantity

µ. An estimator must be a statistic.
• we would not be able to determine its realized value even with all observations in

hand.

Alternatively, we can use the sample variance defined by

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Question: But why use 1
n−1 instead of 1

n?

Sample variance is unbiased

The use of 1
n−1 is to make S2 an unbiased estimator of σ2.
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Sample Variance is Unbiased

Proof:

Recall from Descriptive Statistics (Slide 47) that S2 = 1
n−1

∑n
i=1X

2
i − n

n−1X̄
2.

Then

(n− 1)E[S2] = E

[
n∑

i=1

X2
i − nX̄2

]
= nE[X2

1 ]− nE[X̄2]

= n
(
Var(X1) + E[X1]

2
)
− n

(
Var(X̄) + E[X̄]2

)
= n

(
σ2 + µ2

)
− n

(
σ2/n+ µ2

)
= (n− 1)σ2.

Divide both sides by (n− 1), we see that S2 is unbiased.
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Variance of the Sample Variance S2

It turns out that the variance of the sample variance can be quite complicated because

the summands are mutually dependent through X̄: S2 = 1
n−1

∑n
i=1(Xi − X̄)2.

Fortunately, an explicit expression exists:

Var(S2) =
µ4

n
− σ4(n− 3)

n(n− 1)
,

where µ4 = E[(X1 − µ)4] is the 4th central moment (kurtosis). Since S2 is unbiased,

the MSE of S2 is given by

MSE of the sample variance

MSE(S2) =
µ4

n
− σ4(n− 3)

n(n− 1)
.

For a detailed calculation, see Section 2.5 in https://hal.science/hal-02012458.

https://hal.science/hal-02012458
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Consistency of the Sample Variance

Theorem

Assume that the 4th central moment is finite. Since

MSE(S2) =
µ4

n
− σ4(n− 3)

n(n− 1)
→ 0, as n → ∞.

The sample variance S2 is a consistent estimator of the population variance σ2.
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Comparing the Cases with and without Knowledge of µ

With knowledge of µ

σ̂2 =
1

n

n∑
i=1

(Xi − µ)2, MSE(σ̂2) =
µ4

n
− σ4

n
.

Without knowledge of µ

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2, MSE(S2) =
µ4

n
− n− 3

n− 1

σ4

n
.

Notice that MSE(S2) > MSE(σ̂2). Having more information (the knowledge of µ) helps

reduce the variability of our estimator.

• The ratio between the two MSE converges to 1 as n → ∞, hence as the sample size

increases, they are asymptotically indistinguishable.
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Example: Assume in addition that Xi ∼ N(0, 1) follows a standard normal

distribution. Then the 4th central moment is µ4 = 3σ4. (Slide 27)

Hence,

MSE of the sample variance under normal population

MSE(S2) =
3σ4

n
− n− 3

n− 1

σ4

n
=

2σ4

n− 1
.

We have

MSE(S2) =
2σ4

n− 1
>

2σ4

n
= MSE(σ̂2).

However,
MSE(S2)

MSE(σ̂2)
→ 1 as n → ∞.
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Comparing the Estimators for Variance

We have just compared the two estimators for the variance σ2:

• σ̂2 = 1
n

∑n
i=1(Xi − µ)2 when µ is known.

• S2 = 1
n−1

∑n
i=1(Xi − X̄)2 when µ is unknown.

• We see that knowing more information is beneficial.

• However, this comparison is unfair as they use different information.

Suppose we compare the following two estimators, both assuming no knowledge of µ:

• S2 = 1
n−1

∑n
i=1(Xi − X̄)2.

• S2
alt =

1
n

∑n
i=1(Xi − X̄)2.

• Which one is better?
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Alternative Estimator when µ is Unknown
Now, let’s investigate an alternative estimator:

S2
alt =

1

n

n∑
i=1

(Xi − X̄)2 =
n− 1

n
S2.

• S2
alt is biased:

Bias(S2
alt) = E[S2

alt]− σ2 =
n− 1

n
E[S2]− σ2 = −σ2

n
.

• But it is asymptotically unbiased:

Bias(S2
alt) → 0 as n → ∞.

Asymptotically Unbiased Estimator

An estimator is asymptotically unbiased if its bias converges to 0 as the sample size

increases.
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Variance and MSE of the Alternative Estimator S2
alt

Variance of S2
alt:

Var(S2
alt) = Var

(n− 1

n
S2

)
=

(n− 1

n

)2
Var(S2) =

(n− 1

n

)2
(
µ4

n
− σ4(n− 3)

n(n− 1)

)
.

MSE of S2
alt:

MSE(S2
alt) = Var(S2

alt) + Bias2(S2
alt) =

(n− 1

n

)2
(
µ4

n
− σ4(n− 3)

n(n− 1)

)
+

σ4

n2
.

Example: For a standard normal population, µ4 = 3σ4. Then,

Var(S2
alt) =

(n− 1

n

)2
(

2σ4

n− 1

)
,

MSE(S2
alt) =

(n− 1

n

)2
(

2σ4

n− 1

)
+

σ4

n2
=

σ4(2n− 1)

n2
<

2σ4

n− 1
= MSE(S2).
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Comparing S2
alt and S2 for Normal Population

• S2
alt =

1
n

∑n
i=1(Xi − X̄)2 is biased. S2 = 1

n−1

∑n
i=1(Xi − X̄)2 is unbiased.

• In the Gaussian (normal) case,

MSE(S2
alt) < MSE(S2),

hence S2
alt is considered a better estimator.

Bias-Variance Tradeoff:

Usually, we can considerably decrease the variance of an estimator by introducing a

little bit of bias. Overall, we may reduce the MSE, hence obtaining a better estimator.

• One may check that
MSE(S2)

MSE(S2
alt)

→ 1 as n → ∞.

So as the sample size grows, the efficiency is almost the same.
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Example: Estimation for Poisson
Recall the Poisson(λ) distribution with PMF

P (X = i) = e−λλ
i

i!
, i = 0, 1, 2, . . .

We have

E[X] = Var(X) = λ.

We can use either the sample mean or the sample variance to estimate λ.

Both are unbiased and consistent. Which one is better?

• The MSE of X̄: Var(X̄) = λ
n .

• The MSE of S2
n: Var(S

2
n) =

1
n

(
E[X4]− E[X2]2 n−3

n−1

)
= λ

n(1 + 2λ n
n−1). This one

needs tedious computation so the steps are omitted.

• The asymptotic relative efficiency of X̄ to S2
n is 1 + 2λ. So X̄ is better.
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Two Systematic Ways to Construct Estimators

We have now studied in detail the properties of the sample mean and sample variance,

as estimators of the population mean and variance, respectively.

Question: How do we construct point estimators for other parameters of interest?

Next, we look at two more ways to construct point estimators

• Method of moments (MoM)

• Maximum likelihood estimators (MLE)
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Sample Moments

Recall that the jth population moment defined as

µj = E[Xj ].

Sample moments

Let X1, . . . , Xn be a random sample, the jth sample moment is defined as

µ̂j =
1

n

n∑
i=1

Xj
i .

• Sample moments have the desired properties of unbiasedness and consistency

(under very mild technical conditions).

• Why?
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Example: Estimating µ and σ2 using Sample Moments
Sample moments can be used to estimate parameters other than the population

moments. To demonstrate the main idea, consider the following example.

0 Example: Find estimators of µ and σ2 for a general population using sample

moments.

• Recall that µ = µ1 and σ2 = µ2 − µ2
1, where µ1 and µ2 are the first and second

population moments, respectively. Equivalently, µ1 = µ and µ2 = σ2 + µ2.

• We have natural estimators µ̂1 and µ̂2 for µ1 and µ2, namely,

µ̂1 ≈ µ1 = µ and µ̂2 ≈ µ2 = σ2 + µ2.

• These give us a set of two equations in the two unknowns µ and σ2, which yield

the estimators:

µ ≈ µ̂1 = X̄, σ2 ≈ µ̂2 − µ̂2
1 =

1

n

n∑
i=1

(Xi − X̄)2.
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Derivation of µ̂2 − µ̂2
1 =

1
n

∑n
i=1(Xi − X̄)2

µ̂2 − µ̂2
1 =

1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

[
(Xi − X̄) + X̄

]2
− X̄2

=
1

n

n∑
i=1

[
(Xi − X̄)2 + 2X̄(Xi − X̄) + X̄2

]
− X̄2

=
1

n

n∑
i=1

(Xi − X̄)2 +
2X̄

n

n∑
i=1

(Xi − X̄) + X̄2 − X̄2

=
1

n

n∑
i=1

(Xi − X̄)2,

since
n∑

i=1

(Xi − X̄) = 0.
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The Method of Moments generalizes this idea of constructing estimators based on sample

moments.

Method of Moments

Suppose we have p numbers of unknown parameters θ = (θ1, . . . , θp). Suppose we also have a

random sample X1, . . . , Xn of size n. To estimate the parameters θ:

1 Step 1: Calculate the first p population moments as functions of θ.

µ1 = µ1(θ1, . . . , θp) = E[X1], . . . , µp = µp(θ1, . . . , θp) = E[Xp].

2 Step 2: Equate the p population moments to the p corresponding sample

moments, we get a set of p equations to solve for p unknown variables:

µ1(θ1, . . . , θp) =
1

n

n∑
i=1

X1
i , . . . , µp(θ1, . . . , θp) =

1

n

n∑
i=1

Xp
i .

3 Step 3: The solutions θ̂1, . . . , θ̂p are called the MoM estimators for θ1, . . . , θp.
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MoM for Mean and Variance

Example: To estimate the mean µ, the sample mean is the MoM estimator for µ.

Example: To estimate the mean µ and variance σ2 at the same time, so θ = (µ, σ2).

µ =
1

n

n∑
i=1

Xi

σ2 + µ2 =
1

n

n∑
i=1

X2
i

Thus, the MoM estimators are µ̂ = X̄ and

σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2
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Method of Moments

Example: (Normal) N (µ, σ2). The

unknown parameters are θ = (µ, σ2).

E[X] = µ =
1

n

n∑
i=1

Xi = X̄

E[X2] = µ2 + σ2 =
1

n

n∑
i=1

X2
i

So the estimators are

µ̂ = X̄

σ̂2 =
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(Xi − X̄)2

Example: Binomial (k, p). The unknown

parameters are θ = (k, p).

E[X] = kp =
1

n

n∑
i=1

Xi = X̄

E[X2] = kp(1− p) + k2p2 =
1

n

n∑
i=1

X2
i

So the estimators are

k̂ =
X̄2

X̄ − 1
n

∑n
i=1(Xi − X̄)2

∈ Z+?

p̂ =
X̄

k̂
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Remarks

Advantages

• Simple to use and easy to construct.

• Usually gives consistent estimators, though often biased.

However,

• It sometimes give estimates outside the domain, like k̂ in the last slide.

• It is quite arbitrary depending on which moments to use. By default, we use the

first p moments, if p parameters are to be estimated.
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Maximum Likelihood Estimator

In estimating parameters of a Normal

distribution and general distributions, Gauss

and R.A. Fisher (widely regarded as the father

of modern statistics) summarized the following

magnificent intuition:

A proper estimator of the true parameter is the

one that makes the given observation

x1, x2, . . . , xn most likely to occur. Figure: Carl Friedrich Gauss (left) and

R.A. Fisher (right)
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Maximum Likelihood Estimator
Example: 10 coin tosses gives you 9 heads and 1 tail. Can you confidently estimate

that the probability of getting a head is p = 0.5? No!

Because the probability of getting “9 heads and 1 tail” under p = 0.5 is

Pp=0.5(9 heads out of 10) =

(
10

1

)
× 0.59 × 0.51 =

10

1024
≈ 0.01.

How about p = 0.9?

The probability of getting “9 heads and 1 tail” under p = 0.9 is

Pp=0.9(9 heads out of 10) =

(
10

1

)
× 0.99 × 0.11 ≈ 0.39 ≫ 0.01.

p = 0.9 is the scenario where the data “9 heads and 1 tail” has much more chance of

being observed.
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Intuition for Maximum Likelihood Estimation

Intuition:

• To find the estimator, we search among all possible values of the parameter for

the one that makes the data we have the most likely to occur.

Implementation:

• Find a reasonable function to represent the “likelihood” of observing a data set.

• Maximize the “likelihood function.”

The goal of maximum likelihood estimation is to determine the parameters for which

the observed data have the highest joint probability.
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Likelihood Function

To measure the change of occurance, we introduce the likelihood function.

Let x = {x1, . . . , xn} be an observed sample from a pdf f(x|θ) with parameter θ.

Likelihood function

The likelihood function of the sample x = {x1, . . . , xn} is the joint probability density

function of X, evaluated at X = x, i.e.,

L(θ|x) =
n∏

i=1

f(xi|θ).

• The likelihood function is a function of θ.

• It measures how likely an experiment produces the observed x as a sample,

if the parameter takes the value of θ.
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Comparing Joint Density with Likelihood

• Joint Density: f(x|θ) = ∏n
i=1 f(xi|θ).

• This is viewed as a function of x = {x1, . . . , xn} with the parameter θ fixed.
• Probability Theory Perspective: How likely is it to observe X = x under a true,

fixed (but unknown) parameter θ?

• Likelihood: L(θ|x) = ∏n
i=1 f(xi|θ).

• Interpreted as a function of θ with the observed data x held fixed.
• Statistical Perspective: Now that we have observed x, what is the chance of

observing x if the unknown parameter takes on a particular value of θ?

This view provides a tool to assess the plausibility of different guesses for θ, under the

observed x, leading to the principle of choosing the most plausible value as our

estimate.
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Likelihood Inferences

• We saw that the likelihood function L(θ|x) is just the probability of obtaining the

data x when the true value of the parameter is θ.

• This imposes a belief ordering on possible values of the parameter θ: we believe

θ1 is more plausible than θ2 if

L(θ1|x) > L(θ2|x).

• Maximum likelihood estimation is based on this ordering.
• It is possible that the value of L(θ|x) is very small for every value of θ.
• It is not the actual value of the likelihood that tells us how much support to give a

particular θ, but rather its value relative to the likelihoods of other possible

parameter values.
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Maximum Likelihood Estimator

Maximum Likelihood Estimators

The Maximum Likelihood Estimators (MLE), denoted as θ̂MLE, is the value of the

parameter θ that maximizes the likelihood function for the given sample X, i.e.

θ̂MLE = argmax
θ

L(θ|X)

• Equivalently, θ̂MLE = argmaxθ logL(θ|X) maximizes the log-likelihood function.

• This is because the log function is strictly monotone.

• We will see why this can help in many of our cases.
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Calculating the Maximum Likelihood Estimator

To calculate the MLE, we need to solve the maximization problem.

θ̂MLE = argmax
θ

L(θ|X)

From calculus, you know that

• It can be solved by
• If θ is 1-dimensional, set the derivative d

dθL(θ|X) = 0 or d
dθ logL(θ|X) = 0 .

• If θ is k-dimensional, set the partial derivatives ∂
∂θi

L(θ|X) = 0 or
∂
∂θi

logL(θ|X) = 0

• Check the second-order derivative to make sure it is not local minimum.

Maximizing logL(θ|X) is usually much easier. As we see next in the Normal example.
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Example: MLE for Bernoulli Population I

Example: Suppose we randomly choose 30 chips from a production line and find that

26 of them are of acceptable quality. We wish to estimate the probability p that a chip

passes quality control (QC).

• Modeling: Assume that each chip passes QC with probability p, independent of

others.

• Likelihood Function:

L(p|X) =

n∏
i=1

f(Xi|p) =
n∏

i=1

pXi(1− p)1−Xi = p
∑n

i=1 Xi(1− p)n−
∑n

i=1 Xi .

• How to maximize L(p|X) over p ∈ [0, 1]?
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Example: MLE for Bernoulli Population II
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Example: MLE for Bernoulli Population III

The likelihood function is given by

L(p|X) =

n∏
i=1

f(Xi|p) =
n∏

i=1

pXi(1− p)1−Xi = p
∑n

i=1 Xi(1− p)n−
∑n

i=1 Xi .

Taking logarithms, we have

ℓ(p|X) ≡ logL(p|X)

= log p
∑n

i=1 Xi + log(1− p)n−
∑n

i=1 Xi

=
( n∑
i=1

Xi

)
log p+

(
n−

n∑
i=1

Xi

)
log(1− p).
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Example: MLE for Bernoulli Population IV

To maximize the log-likelihood, we differentiate with respect to p:

d

dp
ℓ(p|X) =

1

p

( n∑
i=1

Xi

)
− 1

1− p

(
n−

n∑
i=1

Xi

)
.

Setting the derivative equal to zero,

1

p

( n∑
i=1

Xi

)
− 1

1− p

(
n−

n∑
i=1

Xi

)
= 0,

we solve for p and obtain the MLE:

p̂MLE =
1

n

n∑
i=1

Xi.
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Example: MLE for Bernoulli Population V

To verify that this is a maximum, we check the second derivative:

d2

dp2
ℓ(p|X) = − 1

p2

( n∑
i=1

Xi

)
− 1

(1− p)2

(
n−

n∑
i=1

Xi

)
< 0.

Evaluating at p = p̂MLE, we see that the second derivative is negative, confirming a

maximum.

In our example, with n = 30 chips and
∑30

i=1 xi = 26 acceptable chips, the MLE is

p̂MLE =
26

30
≈ 0.8667.
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Maximum Likelihood Estimator – Bernoulli

d

dp
logL(p|X) =

1

p

n∑
i=1

Xi −
1

1− p

(
n−

n∑
i=1

Xi

)
MLE for Bernoulli Sample

p̂MLE =
1

n

n∑
i=1

Xi
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Example 2 – Bernoulli Population I

Suppose I asked Tony and Paul to proofread “T4.pdf”. The findings are:

• Tony found 10 typos.

• Paul found 12 typos.

• 6 typos were found by both.

Assume they work independently (without collusion).

Goal: Estimate the total number of typos, N .

Modeling: Assume each typo is detected by Tony with probability p1 and by Paul with

probability p2 (Bernoulli random variables). Suppose there are N typos in total.

Estimation:
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Example 2 – Bernoulli Population II

• Tony’s detection: Tony finds 10 out of N typos. Thus, by the MLE for Bernoulli,

p̂1 =
10

N
.

• Overlap: Among the 12 typos found by Paul, Tony identified 6. Thus, by the

MLE,

p̂1 =
6

12
=

1

2
.

Equate the two estimates:
10

N
=

1

2
⇒ N = 20.

Therefore, the estimated total number of typos in “T4.pdf” is 20.
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Example: MLE for Normal Population
Example: Normal sample. Likelihood function

L(µ, σ|X) = f(X|µ, σ) =
(

1√
2πσ

)n

exp

[−∑n
i=1(Xi − µ)2

2σ2

]
Take logarithm (because derivatives of multiplications are usually harder to calculate)

logL(µ, σ|X) = −n log(
√
2πσ)−

∑n
i=1(Xi − µ)2

2σ2
.

Take partial derivatives

∂

∂µ
logL(µ, σ|X) = −

∑n
i=1(Xi − µ)

σ2
,

∂

∂σ
logL(µ, σ|X) = −n

σ
+

∑n
i=1(Xi − µ)2

σ3

MLE for Normal Sample, θ = (µ, σ)

µ̂MLE =

∑n
i=1 Xi

n
and σ̂MLE =

[∑n
i=1(Xi − µ̂)2

n

] 1
2
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Normal MLE

For Normal random sample, the MLEs are µMLE = X̄ and σ̂2
MLE = n−1

n S2.

We have seen that

• the MLE gives smaller MSE, trading off bias for smaller variance.

• Both S2 and σ̂2
MLE are asymptotically unbiased and consistent.
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MLE for Normal Distribution Parameters (µ, σ2)
Example: What is the MLE for (µ, σ2) in a Normal sample?

The log-likelihood function

logL(µ, σ2|X) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2.

It has the same form, but understood as a function of σ2.

Differentiate with respect to σ2:

∂ logL

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑
i=1

(Xi − µ)2.

Setting ∂ logL
∂σ2 = 0 and substituting µ = X̄ yields:

σ̂2
MLE =

1

n

n∑
i=1

(Xi − X̄)2.
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MLE for Normal Distribution Parameters (µ, σ2)

MLE for normal parameter (µ, σ2)

The MLE for (µ, σ2) is

µ̂MLE = X̄ and σ̂2
MLE =

1

n

n∑
i=1

(Xi − X̄)2.

Notice that σ̂2
MLE is exactly the square of the MLE for σ.
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Invariance Property of MLEs

For a distribution, we may use different parameters to describe it. Or, we may be

interested in a new parameter that is a function of the default parameters.

Example: For Normal distribution, we can may use either standard devation or

variance.

Do we need to recalculate the MLE every time we change the parameter? No!

Theorem (Invariance of MLE)

Let θ̂1, . . . , θ̂k are the MLEs of the parameters θ1, . . . , θk. Then the MLE of any

function h(θ1, . . . , θk) is h(θ̂1, . . . , θ̂k).

Example: If X̄ is the MLE for θ, then X̄2 is the MLE for θ2.

Example: If σ̂ is the MLE for the standard deviation, then σ̂2 is the MLE for the

variance, and vice versa.
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Example: MLE for Poisson Population
Assume that X1, X2, . . . Xn ∼ Poisson(λ).

Likelihood

L(λ|X) =
e−λλX1

X1!

e−λλX2

X2!
. . .

e−λλXn

Xn!
=

e−nλλ
∑n

i=1 Xi

x1! . . . Xn!

Take logarithm

logL(λ|X) = −nλ+

n∑
i=1

Xi log(λ)− log(X1! . . . Xn!)

Differentiate
d

dλ
logL(λ|X) = −n+

1

λ

n∑
i=1

Xi

MLE for Poisson Sample

λ̂MLE =
X1 +X2 + · · ·+Xn

n
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Example: MLE for Exponential Distribution
Assume that X1, X2, . . . , Xn ∼ Exponential(λ). Likelihood

L(λ|X) =

n∏
i=1

λe−λXi = λn exp
(
−λ

n∑
i=1

Xi

)
.

Take logarithm

logL(λ|X) = n log(λ)− λ

n∑
i=1

Xi.

Differentiate

d

dλ
logL(λ|X) =

n

λ
−

n∑
i=1

Xi.

MLE for Exponential Sample

λ̂MLE =
n∑n

i=1 Xi
.
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Example: Apply the Invariance Property

Example: Suppose 10 rats are used in a biomedical study where they are injected with

cancer cells and given a drug to increase their survival rate. The survival times

(months) are 14, 17, 27, 18, 12, 8, 22, 13, 19 and 12. We usually use exponential

distribution to model survivals. What is the MLE of the mean survival time?

• For exponential f(x|λ) = λ exp(−λx), the MLE is 1/X̄.

• So the mean survival time is 1/λ̂ = X̄ = 16.2.
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Properties of a MLE

Properties of a MLE

Under very general and not restrictive conditions when the sample size n is large, the

MLE θ̂MLE enjoys the following properties

• θ̂MLE is approximately unbiased estimator for θ.

• The variance of θ̂MLE is nearly as small as the variance that could be obtained

with any other estimator.

• θ̂MLE has an approximate normal distribution.

This explains why the maximum likelihood estimation technique is widely used.
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An Important Remark

In many cases, there will be restrictions on the value a parameter can take, e.g. in a

set of possible values Θ.

Example: The rate of the exponential distribution is always larger than zero. So

Θ = (0,∞) in this case.

Example: The binomial distribution with unknown number of trials k and unknown

success probability p. Then k ∈ Z+ and p ∈ [0, 1].

Example: We may only be interested in several potential values of a paremeter.

(Perhaps only these values are feasible in your experiments, say due to the restriction

of your equiptment.)



75/82

Introduction Sample Mean Sample Variance Method of Moments Maximum Likelihood Estimation

An Important Remark
In the case where the parameters are restricted, MLE only maximize over the set of

possible values Θ. For this reason, MLE will not produce invalid parameter values, e.g.

non-integer k for binomial distribution as in MoM estimator.

MLE is calculated by

θ̂MLE = argmax
θ∈Θ

L(θ|X).

• In all previous examples, we did not explicitly consider the restriction on the

range, e.g. for the variance of Normal. But the solutions turn out to fall in the

range. Example: Variance of Normal. Recall that

σ2
MLE =

∑n
i=1(Xi − µ̂)2

n
≥ 0.

• Usually, we first maximize regardless of the range, then check if the MLE falls in

the range.
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MLE for Continuous Uniform Distribution

Assume that X1, . . . , Xn are a random sample from Uniform(0, θ), where θ ≥ 0. We

want to estimate the parameter θ.

• Suppose you observed a piece of data x1 = 1.77.
• What can you say about θ?

θ ≥ 1.77

• Suppose you observed another piece of data x2 = 0.46.
• What can you say about θ?

θ ≥ 1.77

• Suppose you observed yet another piece of data x3 = 1.82.
• What can you say about θ?

θ ≥ 1.82

Question: Suppose you have x1, . . . , xn, can you guess an estimator for θ?
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A Different Example: MLE for Uniform Population

Example: Assume that

X1, X2, . . . , Xn ∼ Uniform([0, θ]).

Likelihood

f(X|θ) = 1

θ
× · · · × 1

θ
10≤X1≤θ · · ·10≤Xn≤θ

MLE for Uniform Sample

θ̂ = max(X1, . . . , Xn)

MoM uses θ̂ = 2X̄. The two estimators are

very different.
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Alternative Estimators for Uniform

Suppose X1, . . . , Xn are sampled from Uniform([0, θ]).

• Estimator 1 (MoM)

d1(X) = 2X̄

• Estimator 2 (MLE)

d2(X) = max
i

Xi

Compare: For the MoM estimator:

Biasθd1(X) = 0

MSEθd1(X) = Var(d1(X, θ)) + 02

=
4

n2
(Var(X1) + . . .+Var(Xn)) =

4

n

θ2

12
=

θ2

3n
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*Alternative Estimators for Uniform

What is the distribution of d2(X) = maxiXi?

Note that

P(max
i

Xi < x) = P(X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x) = P(X1 ≤ x)P(X2 ≤ x) · · ·P(Xn ≤ x),

where P(Xi ≤ x) = x
θ10≤x≤θ is the CDF of Uniform([0, θ]).

Taking derivative with respect to x, we have the pdf

fd2(x) =
n

θn
xn−1

10≤x≤θ.
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*Alternative Estimators for Uniform

So

E[d2(X)] =
n

n+ 1
θ Var(d2(X)) =

nθ2

(n+ 2)(n+ 1)2

Hence

Biasθd2(X) = − 1

n+ 1
θ

MSEθd2(X) =
nθ2

(n+ 2)(n+ 1)2
+

1

(n+ 1)2
θ2

=
2θ2

(n+ 1)(n+ 2)
<

θ2

3n
= MSEθd1(X)
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*Comparison of d1 and d2

• d1 is unbiased; has MSE θ2

3n ; is consistent (WLLN).

• d2 is negatively biased; has MSE 2θ2

(n+1)(n+2) ; is consistent and asymptotically

unbiased.

• The asymptotic relative efficiency of d2 to d1 is infinite.

• Those MSE decreases on the order of n−2 is called super efficient. Recall that the

MSE of sample mean (which is a decent estimator) only decreases at n−1.
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Extended Readings

• Sections 7.3, 7.4 of Douglas C. Montgomery and George C. Runger, Applied

Statistics and Probability for Engineers, 7th Ed.


	Introduction
	

	Sample Mean
	Sample Variance
	Method of Moments
	Maximum Likelihood Estimation

