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Population and Sample

Recall that

• A population is the subjects of interest of a study.

• A sample is a subset of the target population collected for statistical analysis.

• We have seem several ways to collect sample:
• Simple random sampling, systematic sampling, cluster sampling, stratified sampling...

In today’s lecture, we will focus on a specific sampling method that is most frequently

used in statistics: random sample.
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Infinite Population

Simple random sampling

• Deal with finite population, usually without replacement.

• Each element in the population has equal probability of being selected.

If the population is really large or even infinite

• E.g., the height of all people in the world.

• As an abstraction and simplification, we can treat it as a distribution F .
• E.g., F (x) is the fraction of people whose height is less than x.

• In other words, we regard the outcome of a random experiment as a

random variable following the distribution F .

Almost all of the statistical analysis we will see in this class assumes that we observe

sample from a distributions and infer the form of it.
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Random Sample

Random Sample

If X1, X2, . . . , Xn are independent random variables having a common distributiona F ,

then we say that they constitute a random sample of size n from the distribution F .

aalso called independent and identically distributed, i.i.d.

From probability theory, the i.i.d. property tell us that the joint PMF/PDF is

f(x1, . . . , xn) =

n∏
i=1

f(xi)

Example: Let X1, . . . , Xn be a random sample from an exp(λ) population. What is

the joint PDF/CDF of the sample?

Example: If the population is finite, and the distributions is uniform, then random

sample becomes the simple random sample (with replacement).
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Sample from a Finite Population without Replacement

In reality, we usually sample without replacement. Is it still reasonable to assume i.i.d.

sample?

• Without replacement, for finite population, the distributions of X1 and X2 are

not exactly i.i.d.

Example: There are 10 balls, numbering 1 to 10; we sample 2 from them.

• What if the population size is large?

Example: Suppose we have a population of size 1000: {1, . . . , 1000}. We

sample 10 from them without replacement. What is

P(X1 > 200, . . . , X10 > 200)? 0.106164 vs 0.107374 (with replacement).
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Sample from a Finite Population without Replacement

When the population is not too small, sampling with or without replacement are

almost identical.

We focus on the i.i.d. random sample throughout the course unless stated otherwise.
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Population Parameters and Sample Statistics
Consider the population distribution of IQ scores and two samples.

• We don’t (but want to) know (a), at least its population parameters, such as

mean and variance. If the sample is (c), then we have a good idea of (a).
• But in reality, we usually have (b), which does not look like (a). Can we find

certain sample statistics of (b) to tell us about (a)?
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Sample Statistics

Statistic – mathematical defintion

A statistic T (X1, . . . , Xn) is a random variable whose value is determined by the

sample.

It is NOT a function of the parameter! The parameters of interest are assumed to be

unknown, otherwise we wouldn’t need statistical analysis.

In this lecture, we will focus on three statistics and study their properties.

• Sample mean.

• Sample variance.

• Ordered statistics.
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Sample Statistics

Suppose we have a sample from a population with distribution F

X1, X2, . . . , Xn

Sample mean and variance

The sample mean is defined by

X̄ =
X1 + · · ·+Xn

n

The sample variance S2 is defined by

S2 =

∑n
i=1(Xi − X̄)2

n− 1

S =
√
S2 is called the sample standard deviation. For sample size one, S is not defined.
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Sample Statistics

Value known? Value random? Example

Parameter unknow deterministic Population mean µ, variance σ2

Statistic known random Sample mean X̄, sample variance S2

The sample mean X̄ is what we call an estimator of the parameter of interest µ, the

population mean.

Are they useful?

Do X̄ and S2 tell us about µ and σ2 of F?
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Estimator

Estimator

An estimator is a rule for calculating an estimate of a quantity of interest based on

observed data.

The following three are distinguished

• The quantity of interest: some parameter of the population.

• The estimator: a rule of calculation. Estimator is a statistic.

• The estimate: the value of the estimator, which depends on a given set of

observation.
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Properties of the Sample Mean – the Center

Unbiasedness

An estimator is said to be unbiased, if the expected value of the estimator is equal to

the parameter it intends to estimate.

Sample mean is unbiased for the population mean µ

E[X̄] = E

[
X1 + · · ·+Xn

n

]
=

1

n
(E[X1] + · · ·+ E[Xn]) = µ.
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Properties of the Sample Mean – the Center

Mean squared error (MSE) measures the average squared-distance between your

estimator and the sample observations.

Sample mean minimizes mean squared error (MSE)

X̄ = argmina
1

n

n∑
i=1

(Xi − a)2.

So the sample mean is a “center” of the sample.

A useful algebraic identity

If x̄ =
∑n

i=1 xi/n, then

n∑
i=1

(xi − a)2 =

n∑
i=1

(xi − x̄+ x̄− a)2 =

n∑
i=1

(xi − x̄)2 +

n∑
i=1

(x̄− a)2
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Properties of the Sample Mean – the Variability

The center itself does not tell us about the dispersion/variability of our estimator.

Example: Consider two factors in the accuracy of measuring length: (a) the precision

of the ruler; and (b) the number of measurements you take.

If F has finite variance σ2, then

Var(X̄) = Var

(
X1 + · · ·+Xn

n

)
=

1

n2
[Var(X1) + · · ·+Var(Xn)] =

nσ2

n2
=

σ2

n
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Properties of the Sample Mean – the Variability

As the sample size n increases, the sample mean becomes less and less random.

Together with the fact that it is unbiased, we see that the sample mean converges to

the population mean.

• This property is called consistency, which we shall see in a few slides.
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Sample Mean – The Distritbution

Having seen the mean and variance of the sample mean, what about its distribution?

Convolution

Suppose X and Y are independent continuous random variables with PDFs fX and

fY . The PDF of Z = X + Y is

fZ(z) =

∫ ∞

−∞
fX(w)fY (z − w)dw

The exact distribution of the sample mean (for small n) is usually hard to compute.

Exceptions: normal (we will see later), Poisson and other exponential families.
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Consistency Fail to Hold – Cauchy
Example: Consistency does not always hold. Recall that the sample mean satisfies

Var(X̄) =
σ2

n
→ 0, as n → ∞.

One would expect that as long as we collect enough data, we can always get a precise

estimation. Is it always true?

Cauchy distribution

A random variable is said to be a Cauchy(0, ξ) random variable, if its pdf is

f(x) =
1

πξ

1

1 + (x/ξ)2
.

• For i.i.d. Cauchy(0, 1) Zi, Z̄ is still Cauchy(0, 1)!
• So we no longer observe the convergence as n → ∞. Why is that?
• Because Cauchy random variables do not have finite means.
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Properties of the Sample Variance – the Center

Now we look at the sample variance S2, as an estimator for σ2.

Question 1: is S2 unbiased for σ2?

An equivalent formula for sample variance

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

n∑
i=1

X2
i − n

n− 1
X̄2.

Note how it resembles

σ2 = Var(X) = E[(X − µ)2] = E[X2]− µ2.

Proof. Expanding the square.
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Properties of the Sample Variance – the Center

Is S2 unbiased for σ2?

(n− 1)E[S2] = E

[
n∑

i=1

X2
i − nX̄2

]
=

n∑
i=1

(
E[X2

i ]− E[Xi]
2
)
+

n∑
i=1

(
E[Xi]

2 − E[X̄2]
)

= nVar(X1) +

n∑
i=1

(
E[X̄]2 − E[X̄2]

)
= nσ2 − nVar(X̄) = (n− 1)σ2

Unbiased estimator for σ2

E[S2] = σ2
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Statistic and Parameters

We now see that how the statistics, X̄ and S2, are related to the parameters µ and σ2.

• Need to be careful: which is random/deterministic, known/unknown?

Value known? Value random? Example

Parameter unknow deterministic Population mean µ, variance σ2

Statistic known random Sample mean X̄, sample variance S2
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The Law of Large Numbers

Sometimes when we may think that the the statistics of a data set is still very irregular.

• One would say collect more data!

• Does this intuition make sense? Why?

• The law of large numbers ensures that large samples generally give you better

information.
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The Weak and Strong Laws of Large Numbers

Let’s add a subscript n to denote the sample size (number of observations).

Weak Law of Large Numbers

If X1, X2, X3, . . . are i.i.d. with finite mean µ and variance σ2, then

P
{∣∣X̄n − µ

∣∣ > ϵ
}
→ 0 as n → ∞.

*Converge in probability.

Strong law of large numbers

If X1, X2, X3, . . . are i.i.d. with finite mean µ and variance σ2, then

P
(
lim
n→∞

∣∣X̄n − µ
∣∣ < ϵ

)
= 1.

*Converge almost surely.
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Consistent Estimators

From LLN, the sample mean converges to the population mean.

Consider the sample variance

S2
n =

∑n
i=1(Xi − X̄)2

n− 1

=
1

n− 1

(
n∑

i=1

X2
i − nX̄2

)

=
n

n− 1

1

n

n∑
i=1

X2
i − n

n− 1
X̄2

⇒ 1× E[X2]− 1× µ2 = σ2

By LLN, if Var(X2) is finite, then S2
n converges to σ2 as the sample size grows.
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Consistent Estimators

We have seen that both the sample mean and sample variance converges to the

parameter they estimates.

Consistency

An estimator Tn is a consistent estimator for θ if Tn converges to θ in probability.

• Consistency implies that having larger sample size helps.

• This is a desired property we want for most estimators.

Sn is also a consistent estimator for σ (*by continuous mapping theorem).
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Beyond Sample Mean/variance

Example: Consider an unfair die provided by a casino. You want to check the

probability of 6.

• Intuitively, you can roll it 1000 times, and count the number of 6s, and divide it

by 1000.

• Does the intuition lead to accurate estimate?

• LLN can help. But how?

Empirical probability

The empirical probability of an event is the frequency of this event normalized by the

total number of events.
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Empirical Probability

Key observation

For an event A, consider the random variable 1Xi∈A, then

P(Xi ∈ A) = E[1Xi∈A].

• The variance of 1Xi∈A is always finite. So LLN implies that

Convergence of the empirical probability

As n → ∞, 1
n

∑n
i=1 1Xi∈A → E[1Xi∈A] = P(A) almost surely.

• To estimate the probability of an event, compute its empirical probability in a

large sample.
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Empirical Cumulative Distribution Function

Empirical probability works for continuous RV as well.

Example: What is the probability that a snake is shorter than 1 meter? Use 1Xi<1.

We can conveniently combine these empirical probabilities into empirical distributions.

Empirical cumulative distribution function

Fn(x) =
1

n

n∑
i=1

1Xi≤x.

• Empirical CDF is always discrete, even if X is continuous.

• By LLN, limn→∞ Fn(x) = F (x) almost surely.
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The Central Limit Theorem

Consider a normalized sample Yi = (Xi − µ)/σ. By LLN,

1

n

n∑
i=1

Yi ⇒ 0.

However, if we use a different scale

Central Limit Theorem (CLT)

If X1, X2, X3, . . . are i.i.d. with finite mean µ and variance σ2, then

1√
n

n∑
i=1

Yi =
X1 + · · ·+Xn − nµ

σ
√
n

⇒ N(0, 1).
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Normal Approximation

If the sample size n is “large”, then the sum
∑n

i=1Xi is approximately normal with

mean nµ and variance nσ2.

• The CLT can be applied regardless of the distribution of the individual values.

• The quality of the normal approximation varies.
• If the underlying distribution is normal, then the approximation is perfect.
• If the underlying distribution is skewed, then the approximation may be poor for

smaller sample sizes.

• In reality, for distributions that are not too skewed, the rule of thumb is that

n = 30 will usually suffice.
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Normal Approximation
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Example
Let Y =

∑n
i=1Xi denote the sum of the variables in a random sample of size n = 30

from the uniform distribution on [0, 1].

Find normal approximations of P(13 < Y < 18).

• By CLT,

1√
30× (1/12)

(Y − 30× 0.5) =
1√
30

∑n
i=1(Xi − 0.5)√

1/12
⇒ N(0, 1).

So

P(13 < Y < 18) ≈ P(−1.26 < Z < 1.90) ≈ 0.87.

• The 90% percentile of Y .
• First compute the 90% percentile of a standard normal RV Z, 1.28. Then transform

it to get it for Y : 1.28×
√
30/12 + 0.5× 30 ≈ 17.0.
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Normal Approximates Binomial

Let X ∼Binomial(n, p), what happens if we fix p and let n grow large?

We can think of X =
∑n

i=1Xi with Xi ∼Bernoulli(p) for all i.

We want to approximate

P(a ≤ X ≤ b) = P

(
a− np√
np(1− p)

≤ X − np√
np(1− p)

≤ b− np√
np(1− p)

)

= Φ

(
b− np√
np(1− p)

)
− Φ

(
a− np√
np(1− p)

)
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Distribution of the Statistics

CLT states that normal distribution can be used to approximate sum or sample mean

of random variables. What can we say about the distribution of the statistics for

normal random sample?

Question: Why do we need the distribution of the statistics?

Example: Let’s say that we suspect that a population have mean 0. How do we

check if we are correct?

• We know that X̄ is a good approximation of the population mean.

• We calculate X̄ and compare it with our hypothesized value 0.

• If X̄ is faraway from 0, it is not likely that µ = 0.

• But how far is far enough?
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Normal Sample Mean and Variance

Theorem (Normal Sample)

If F ∼ N (µ, σ2), then

1 X̄ ∼ N (µ, σ2/n)

2 X̄ and S are independent

3 (n− 1)S2/σ2 is χ2
n−1
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Chi-squared Distribution

For part three, let’s first define Chi-squared distributions.

Definition

If X1,. . . ,Xn are independent standard normal, then Q =
∑k

i=1X
2
i ∼ χ2

k has

chi-squared distribution with k degrees of freedom.

• Mean: k

• PDF:

f(x|k) = 1

2k/2Γ(k/2)
xk/2−1e−x/2

• Additivity: χ2
k1

+ χ2
k2

= χ2
k1+k2

.
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Implication

• Although both X̄ and (n− 1)S2 =
∑n

i=1(Xi − X̄)2 have X̄ in it, they are

independent!

• Sample variance indeed measures the “spread” without affected by the “center”.

• (n− 1)S2 has n squared normal RVs. They are correlated, have mean zero and

variance 1− 1/n. Nevertheless, the sum is χ2
n−1!
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Student’s t

It is easy to see that X̄−µ
σ/

√
n
is standard normal, what about

X̄ − µ

S/
√
n

=
(X̄ − µ)/(σ/

√
n)√

S2/σ2
=

N(0, 1)√
χ2
n−1/(n− 1)

=
U√

V/(n− 1)

Student’s t distribution

Let U be a standard normal random variable and let V be a chi-squared random

variable with degree of freedom n− 1. Furthermore, assume that U and V are

independent. Then tn−1 =
U√

V/(n−1)
has a Student’s t distribution with degree of

freedom n− 1.

• When n is large (n ≥ 20), tn−1 is pretty much the same as a standard normal.
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Snedecor’s F

If (X1, . . . , Xn) from N(µX , σ2
X) and (Y1, . . . , Ym) from N(µY , σ

2
Y ), want to compare

σ2
X/σ2

Y , but can only observe S2
X/S2

Y .

F distribution

Fn−1,m−1 =
S2
X/σ2

X

S2
Y /σ2

Y
has F distribution with n− 1 and m− 1 degrees of freedom.

• If X ∼ Fp,q, then 1/X ∼ Fq,p.

• If X ∼ tq, then X2 ∼ F1,q.
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Normal Sample Proof – Part One, Distribution of Sample Mean

Suppose X1, X2, · · · , Xn are independent and N (µi, σ
2
i ).

The sum is still normal X =
∑

iXi ∼ N (µ, σ2), where

µ =
∑
i

µi, and σ2 =
∑
i

σ2
i .

This solves part one.
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Normal Sample Proof – Part Two, Independence of Sample Mean and

Sample Variance*

Let X = (X1, . . . , Xk) be a random vector and let Σ be its covariance matrix, i.e.,

Σi,j = Cov(Xi, Xj).

Joint PDF x = (x1, . . . , xk), µ = (µ1, . . . , µk)

fX(x) =
1

(2π)
k
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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Important Properties of Normal RVs*

Theorem

Let Xj ∼ N (µj , σ
2
j ), j = 1, . . . , n, independent.

U =
n∑

j=1

ajXj , V =

n∑
j=1

bjXj .

U and V are independent if and only if Cov(U, V ) =
∑n

j=1 ajbjσ
2
j = 0.

In general, let X ∼ N (µ,Σ), consider a matrix A ∈ Rm×n and AX then AX is jointly

normal with mean Aµ and covariance matrix ATΣA.
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Independence of Sample Mean and Sample Variance*

For part two, consider standard normal.

• Suffices to show X̄ is independent of (X2 − X̄,X3 − X̄, . . . , Xn − X̄).

• Why X1 − X̄ is not needed? Because
∑n

i=1(Xi − X̄) = 0.

• (X̄,X2 − X̄, . . . , Xn − X̄) is a linear transformation AX, where

A =


1/n 1/n · · · 1/n

−1/n 1− 1/n . . . −1/n
...

...
. . .

...

−1/n −1/n · · · 1− 1/n


Need to show ATA has zero entries on the first row/column (except the diagonal).
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Independence of Sample Mean and Sample Variance*

Alternative derivation of independence*

• Consider the transformation y1 = x̄, yi = xi − x̄, i = 2, . . . , n, with Jacobian 1/n.

• Because fX(x1, . . . , xn) =
1

(2π)n/2 e
− 1

2

∑n
i=1 x

2
i , we have

fY (y1, . . . , yn) =
n

(2π)n/2
e−

1
2
(y1−

∑n
i=2 yi)

2
e−

1
2

∑n
i=2(yi+y1)2

=

[( n

2π

)1/2
e−

1
2
ny21

] [
n1/2

(2π)(n−1)/2
e−

1
2
[
∑n

i=2 y
2
i +(

∑n
i=2 yi)

2]

]



44/49

Random Samples Sample Mean and Variance LLN and CLT Sample from Normal Distribution Order Statistics*

Normal Sample Proof – Part Three, S2 Is Chi-Squared*

(n− 1)S2 is a sum of n linearly dependent normal RV squared. Want to show

(n− 1)S2/σ2 ∼ χ2
n−1. Set σ = 1 for simplicity.

• Use induction
• The basis: When n = 2, S2

2 = (X2 −X1)
2/2 is χ2

1 (why?)
• Inductive step:

(n− 1)S2
n =

n∑
i=1

X2
i − nX̄2

n =

(
n−1∑
i=1

X2
i − (n− 1)X̄2

n−1

)
+

n− 1

n
(Xn − X̄n−1)

2

= (n− 2)S2
n−1 +

n− 1

n
(Xn − X̄n−1)

2.

(1) n−1
n (Xn − X̄n−1)

2 is a standard normal R.V. squared

(2) (Xn, X̄n−1) is independent of Sn−1.

*Can also be verified by evaluating the MGF of S2
n and χ2

n−1.
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Order Statistics

Definition

Order statistics (X(1), . . . , X(n)) is the ascending order of random sample

(X1, . . . , Xn).

• Sample range X(n) −X(1).

• Sample median
• X((n+1)/2) if n is odd
• (X(n/2) +X(n/2+1)

)
/2 if n is even

• The (100p)th percentile is X(⌊np⌋)
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Order Statistics

Theorem (Discrete)

Suppose the PMF is f(xi) = pi for x1 < x2 < . . .. Define P0 = 0 and Pi =
∑i

j=1 pj .

Then,

P(X(j) ≤ xi) =

n∑
k=j

(
n

k

)
P k
i (1− Pi)

n−k

P(X(j) = xi) =

n∑
k=j

(
n

k

)[
P k
i (1− Pi)

n−k − P k
i−1(1− Pi−1)

n−k
]

P(X(j) ≤ xi) = P(at least j samples are less than equal to xi) =
n∑

k=j

(
n

k

)
P k
i (1− Pi)

n−k
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Order Statistics

Theorem (Continuous)

Suppose the PDF is f and cdf is F . Then,

FX(j)
(x) =

n∑
k=j

(
n

k

)
[F (x)]k[1− F (x)]n−k

fX(j)
(x) =

n!

(j − 1)!(n− j)!
f(x)[F (x)]j−1[1− F (x)]n−j

For Uniform (0, 1),

fX(j)
(x) =

n!

(j − 1)!(n− j)!
xj−1(1− x)n−j

=
Γ(n+ 1)

Γ(j)Γ(n− j + 1)
xj−1(1− x)(n−j+1)−1 ∼ Beta(j, n− j + 1)
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Order Statistics

Theorem (Continuous – Joint)

Suppose the PDF is f and cdf is F . Then the joint PDF,

fX(i),X(j)
(u, v) =

n!

(i− 1)!(j − 1− i)!(n− j)!
f(u)f(v)

[F (u)]i−1[F (v)− F (u)]j−1−i[1− F (v)]n−j , u < v

• Informal proof:

fi,j(u, v) = P(i− 1 less than u, n− j greater than v, one at u, one at v).

• Be careful about the domain! fX(1),...,X(n)
(x1, . . . , xn) = n!f(x1) · · · f(xn),

x1 < x2 < · · · < xn.



49/49

Random Samples Sample Mean and Variance LLN and CLT Sample from Normal Distribution Order Statistics*

Order Statistics

Example: Consdier range: R = X(n) −X(1), and midrange: V = (X(n) +X(1))/2

For Uniform (0, a), the joint PDF

fX(1),X(n)
(x1, xn) =

n(n− 1)

a2

(xn
a

− x1
a

)n−2
=

n(n− 1)(xn − x1)
n−2

an
, 0 < x1 < xn < a.

X(1) = V −R/2, X(n) = V +R/2

The joint distribution for (R, V ) is

fR,V (r, v) =
n(n− 1)rn−2

an
, 0 < r < a,

r

2
< v < a− r

2
.


