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Population and Sample

Recall that

® A population is the subjects of interest of a study.

e A sample is a subset of the target population collected for statistical analysis.
® We have seem several ways to collect sample:

® Simple random sampling, systematic sampling, cluster sampling, stratified sampling...

In today’s lecture, we will focus on a specific sampling method that is most frequently
used in statistics: random sample.
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Infinite Population
Simple random sampling

® Deal with finite population, usually without replacement.

® Each element in the population has equal probability of being selected.
If the population is really large or even infinite

® E.g., the height of all people in the world.
® As an abstraction and simplification, we can treat it as a distribution F'.
® E.g., F(x) is the fraction of people whose height is less than z.
® |n other words, we regard the outcome of a random experiment as a
random variable following the distribution F'.

Almost all of the statistical analysis we will see in this class assumes that we observe
sample from a distributions and infer the form of it.
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Random Sample

Random Sample
If X1, X5,...,X, are independent random variables having a common distribution? F,
then we say that they constitute a random sample of size n from the distribution F'.

?also called independent and identically distributed, i.i.d.

From probability theory, the i.i.d. property tell us that the joint PMF/PDF is
f($1,...,l’n) = Hf($l)
i=1

Example: Let Xi,...,X,, be a random sample from an exp(\) population. What is
the joint PDF/CDF of the sample?

Example: If the population is finite, and the distributions is uniform, then random

sample becomes the simple random sample (with replacement).
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Variance

rmal Distribution

Sample from a Finite Population without Replacement

In reality, we usually sample without replacement. Is it still reasonable to assume i.i.d.

sample?

® Without replacement, for finite population, the distributions of X7 and X5 are
not exactly i.i.d.

Example: There are 10 balls, numbering 1 to 10; we sample 2 from them.

® What if the population size is large?
Example: Suppose we have a population of size 1000: {1,...,1000}. We
sample 10 from them without replacement. What is
P(X; > 200,..., X0 > 200)? 0.106164 vs 0.107374 (with replacement).



Random Samples Sample Mean and Variance LLN and CLT Sample from Normal Distribution Order Statistics*
0000e0 0000000000000 000000000000 000000000000 00000

Sample from a Finite Population without Replacement

When the population is not too small, sampling with or without replacement are
almost identical.

We focus on the i.i.d. random sample throughout the course unless stated otherwise.
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Population Parameters and Sample Statistics

Consider the population distribution of 1Q scores and two samples.
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¢ We don't (but want to) know (a), at least its population parameters, such as
mean and variance. If the sample is (c), then we have a good idea of (a).

¢ But in reality, we usually have (b), which does not look like (a). Can we find
certain sample statistics of (b) to tell us about (a)?



Random Samples Sample Mean and Variance LLN and CLT Sample from Normal Distribution Order Statistics*
000000 9000000000000 000000000000 000000000000 00000

Sample Statistics

Statistic — mathematical defintion

A statistic T'(X1, ..., X,) is a random variable whose value is determined by the
sample.

It is NOT a function of the parameter! The parameters of interest are assumed to be
unknown, otherwise we wouldn't need statistical analysis.

In this lecture, we will focus on three statistics and study their properties.
® Sample mean.

® Sample variance.

® Ordered statistics.
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Sample Statistics

Suppose we have a sample from a population with distribution F’

X1, Xo,..., Xy,
Sample mean and variance
The sample mean is defined by The sample variance S? is defined by
o Xt + Xy 5222?:1(Xi—)‘()2
n n—1

S =1/ 52 is called the sample standard deviation. For sample size one, S is not defined.
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Sample Statistics
Value known? Value random? Example
Parameter unknow deterministic Population mean y, variance o
Statistic known random Sample mean X, sample variance S?

The sample mean X is what we call an estimator of the parameter of interest 4, the
population mean.

Are they useful?
Do X and S? tell us about y and o2 of F?
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Estimator

Estimator

An estimator is a rule for calculating an estimate of a quantity of interest based on

observed data.

The following three are distinguished

® The quantity of interest: some parameter of the population.

® The estimator: a rule of calculation. Estimator is a statistic.
® The estimate: the value of the estimator, which depends on a given set of

observation.
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Properties of the Sample Mean — the Center

Unbiasedness
An estimator is said to be unbiased, if the expected value of the estimator is equal to

the parameter it intends to estimate. )

Sample mean is unbiased for the population mean

n n
4

EX]=E [M] ~ X+ + B =
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Properties of the Sample Mean — the Center

Mean squared error (MSE) measures the average squared-distance between your
estimator and the sample observations.

Sample mean minimizes mean squared error (MSE)
_ 1< )
X = argmin, - Z(X2 —a).

=1

So the sample mean is a “center” of the sample.

A useful algebraic identity
If 2 =>3"" x;/n, then
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Properties of the Sample Mean — the Variability

The center itself does not tell us about the dispersion/variability of our estimator.

Example: Consider two factors in the accuracy of measuring length: (a) the precision
of the ruler; and (b) the number of measurements you take.

If F has finite variance o2, then

B Xi 4+ X,
Var(X) = Var (1++>

n

= %[Val"()ﬁ) +---+ Var(X,)]| = — = —
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Properties of the Sample Mean — the Variability

As the sample size n increases, the sample mean becomes less and less random.
Together with the fact that it is unbiased, we see that the sample mean converges to
the population mean.

® This property is called consistency, which we shall see in a few slides.



Random Samples Sample Mean and Variance LLN and CLT Sample from Normal Distribution Order Statistics*

D0000C0 O0000000e0000 OO00000000C 0O0oooooo000O0O 00 DOO0C

Sample Mean — The Distritbution
Having seen the mean and variance of the sample mean, what about its distribution?

Convolution
Suppose X and Y are independent continuous random variables with PDFs fx and
fy. The PDFof Z=X+Y is

f22)= [ " el — s

The exact distribution of the sample mean (for small n) is usually hard to compute.

Exceptions: normal (we will see later), Poisson and other exponential families.
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Consistency Fail to Hold — Cauchy

Example: Consistency does not always hold. Recall that the sample mean satisfies

_ 0‘2
Var(X) = — — 0, asn — oc.
n

One would expect that as long as we collect enough data, we can always get a precise
estimation. Is it always true?
Cauchy distribution

A random variable is said to be a Cauchy(0, &) random variable, if its pdf is

1 1

@) = e Ty e

® Fori.i.d. Cauchy(0,1) Z;, Z is still Cauchy(0,1)!
® So we no longer observe the convergence as n — oo. Why is that?
® Because Cauchy random variables do not have finite means.
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Properties of the Sample Variance — the Center

Now we look at the sample variance S2, as an estimator for o2.

Question 1: is S? unbiased for 2?7

An equivalent formula for sample variance

n

1 . RN no
2 _ o 2 _ 2 _ 2
S _n—li;(X’ X) n—lZ;Xl — X2

Note how it resembles

0” = Var(X) = E[(X — u)?] = E[X”] - 1>

Order Statistics*
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Proof. Expanding the square.
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Properties of the Sample Variance — the Center

Is S? unbiased for o2?
(0= 1)E[S?) = [z X2 nX ] _ 3 (B ~ BXP) + 3 (BLX — BXY)
i=1 i=1

= nVar(Xy) + i (E[X}Q - E[XQD
=no? — nVar()_;) = (n—1)o?

Unbiased estimator for o2

E[S?] = o?
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Statistic and Parameters

We now see that how the statistics, X and S?, are related to the parameters ;i and 2.

® Need to be careful: which is random/deterministic, known/unknown?

Value known? Value random? Example

Parameter unknow deterministic Population mean y, variance o

Statistic ~ known random Sample mean X, sample variance S2
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The Law of Large Numbers

Sometimes when we may think that the the statistics of a data set is still very irregular.

® One would say collect more data!

® Does this intuition make sense? Why?

® The law of large numbers ensures that large samples generally give you better
information.
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The Weak and Strong Laws of Large Numbers
Let's add a subscript n to denote the sample size (number of observations).

Weak Law of Large Numbers

If X1, X9, X3,... arei.i.d. with finite mean x and variance o2, then

P{|Xn—,u|>e}—> 0 asn — oo.

*Converge in probability.
Strong law of large numbers

If X1, X9, X3, ... arei.i.d. with finite mean x and variance o2, then

P <nlggo ‘X’n = ,u| < e) =1.

*Converge almost surely.
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Consistent Estimators

Sample Mean and Variance

LLN and CLT
008000000000

Sample from Normal Distribution
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From LLN, the sample mean converges to the population mean.

Consider the sample variance

52 _ Z?:l(Xl — X)2

By LLN, if Var(X?) is finite, then S2 converges to o as the sample size grows.

n—1
1 n
= ZXZ?—TLX'Q
n—1 —
no1— n
S D L
n—1n“ n—1

1=

= 1xE[X?] —1xp? =o?

Order Statistics*
00000
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Consistent Estimators

We have seen that both the sample mean and sample variance converges to the
parameter they estimates.

Consistency J

An estimator T, is a consistent estimator for @ if T, converges to @ in probability.

® Consistency implies that having larger sample size helps.

® This is a desired property we want for most estimators.

Sy is also a consistent estimator for o (*by continuous mapping theorem). J
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Beyond Sample Mean /variance

Example: Consider an unfair die provided by a casino. You want to check the
probability of 6.

® |ntuitively, you can roll it 1000 times, and count the number of 6s, and divide it
by 1000.

® Does the intuition lead to accurate estimate?

® LLN can help. But how?

Empirical probability
The empirical probability of an event is the frequency of this event normalized by the

total number of events.
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Empirical Probability

Key observation

For an event A, consider the random variable 1x,c 4, then

]P’(XZ S A) = E[]lXieA]-

® The variance of 1x,c4 is always finite. So LLN implies that

Convergence of the empirical probability J

Asn — 00, 3 Tx.ea — E[lx,ca] = P(A) almost surely.

''n

® To estimate the probability of an event, compute its empirical probability in a

large sample.
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Empirical Cumulative Distribution Function

Empirical probability works for continuous RV as well.
Example: What is the probability that a snake is shorter than 1 meter? Use 1x,<;.

We can conveniently combine these empirical probabilities into empirical distributions.

Empirical cumulative distribution function

1 n
Fo(z) = - > lx<a
=1

® Empirical CDF is always discrete, even if X is continuous.

® By LLN, lim,, oo Fy(x) = F(z) almost surely.
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The Central Limit Theorem

Consider a normalized sample Y; = (X; — uu)/o. By LLN,
1 n
— E Y, = 0.
n-
=1

However, if we use a different scale

Central Limit Theorem (CLT)

If X1, X2, X3, ... areiid. with finite mean x and variance o2, then

ZY = UJ\F/;( = N(0,1).

Order Statistics*
00000
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Normal Approximation

If the sample size n is “large”, then the sum 7" | X; is approximately normal with

mean ny and variance no?.

® The CLT can be applied regardless of the distribution of the individual values.

® The quality of the normal approximation varies.

® |f the underlying distribution is normal, then the approximation is perfect.
® |f the underlying distribution is skewed, then the approximation may be poor for

smaller sample sizes.
® |n reality, for distributions that are not too skewed, the rule of thumb is that

n = 30 will usually suffice.



Random Samples Sample Mean and Variance
000000 0000000000000

Normal Approximation

LLN and CLT
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Values of X

Values of X

Sample from Normal Distribution
000000000000

Values of X

Values of X

Values of ¥

Values of ¥

Values of ¥

Values of X

Values of ¥

Values of X

Order Statistics*
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Example

Let Y = >"" | X; denote the sum of the variables in a random sample of size n = 30
from the uniform distribution on [0, 1].

Find normal approximations of P(13 < Y < 18).

e By CLT,
1 1 3T (Xi—0.5)
m(Y —30x0.5) = 750 1\/@ = N(0,1).
So

P(13 <Y < 18) ~ P(~1.26 < Z < 1.90) ~ 0.87.

® The 90% percentile of Y.

® First compute the 90% percentile of a standard normal RV Z, 1.28. Then transform
it to get it for Y: 1.28 x 1/30/12 4 0.5 x 30 ~ 17.0.
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Statistics*
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Normal Approximates Binomial

Let X ~Binomial(n,p), what happens if we fix p and let n grow large?
We can think of X = 37" | X; with X; ~Bernoulli(p) for all 7.

We want to approximate

_ a—np X —np b—np
Hasx=t _P<\/np(1—p) = Vwli-p) \/”p(l_p)>

() - i)
np(1 — p) np(1l — p)
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Distribution of the Statistics

CLT states that normal distribution can be used to approximate sum or sample mean
of random variables. What can we say about the distribution of the statistics for
normal random sample?

Question: Why do we need the distribution of the statistics?
Example: Let's say that we suspect that a population have mean 0. How do we
check if we are correct?

® We know that X is a good approximation of the population mean.

® We calculate X and compare it with our hypothesized value 0.

e If X is faraway from 0, it is not likely that = 0.

® But how far is far enough?
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Normal Sample Mean and Variance

Theorem (Normal Sample)
If F ~ N(u,0?), then
® X ~ N(u,0%/n)
® X and S are independent
O (n-1)8%/0 52,

Sample from Normal Distribution
0O@0000000000

Order Statistics*
00000
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Chi-squared Distribution

For part three, let's first define Chi-squared distributions.
Definition

If X1,...,X,, are independent standard normal, then @ = 3% | X2 ~ y2 has
chi-squared distribution with k& degrees of freedom.

® Mean: k

* PDF:
1
k) — k/2—1 _—z/2

o Additivity: x7 + X%, = X7, 14,
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Implication

® Although both X and (n —1)5? =37 | (X; — X)? have X in it, they are
independent!

® Sample variance indeed measures the “spread” without affected by the “center”.

® (n—1)5? has n squared normal RVs. They are correlated, have mean zero and

variance 1 — 1/n. Nevertheless, the sum is x2 ;!



Rmdom bmlp\ S nnp\ HL an md \/mm( LLN md (LI Sample from Normal Distribution O\d r QUU:U(\“’

Student's ¢

It is easy to see that = /f is standard normal, what about

X-p_(X-w/o/yn) __ NO1 U
Sivn - SR e je—1) VY= D)

Student’s ¢ distribution
Let U be a standard normal random variable and let V' be a chi-squared random
variable with degree of freedom n — 1. Furthermore, assume that U and V are

independent. Then ¢, = W has a Student's ¢ distribution with degree of
n

freedom n — 1.

® When n is large (n > 20), t,,—1 is pretty much the same as a standard normal.
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Snedecor’s F

If (X1,...,X,) from N(ux,0%) and (Y1,...,Ys,) from N(uy, o3 ), want to compare
0% /0%, but can only observe 5% /S%.

F' distribution

2 2
Foim—1= %);2%;% has F' distribution with n — 1 and m — 1 degrees of freedom.

® If X ~F,, then 1/X ~ F, .
® If X ~t, then X2~ Fy .
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Normal Sample Proof — Part One, Distribution of Sample Mean

Suppose X1, Xa, -+, X, are independent and A (u;, 02).
The sum is still normal X =", X; ~ N (u,0?), where

#:Z,LLZ’, and o?= Za?.
i i

This solves part one.
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Normal Sample Proof — Part Two, Independence of Sample Mean and
Sample Variance*

Let X = (X4,...,X) be a random vector and let X be its covariance matrix, i.e.,
Ei,j = COV(XZ',XJ‘).

Joint PDF x = (z1,...,2%), = (1, -, k)

fx(x) = 1

—F €X —lx— st x—
PRI o~y w= k)
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Important Properties of Normal RVs*

Theorem
Let X; ~ /\/'(,uj,a]z), j=1,...,n, independent.

n n

U=> a;X;, V=Y bX;

j=1 j=1

U and V are independent if and only if Cou(U, V) = >7\_, a;b; 0' =0.

In general, let X ~ N (u,Y), consider a matrix A € R™*™ and AX then AX is jointly
normal with mean Ay and covariance matrix ATSA.
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Independence of Sample Mean and Sample Variance*

For part two, consider standard normal.

e Suffices to show X is independent of (X5 — X, X3 — X,..., X, — X).
® Why X; — X is not needed? Because Y I ;(X; — X) = 0.
* (X,Xy—X,..., X, — X) is a linear transformation AX, where

1/n 1/n - 1/n
A —1/n 1—:1/n —1/n
—l/n —l/n 1—.1/n

Need to show AT A has zero entries on the first row/column (except the diagonal).
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Independence of Sample Mean and Sample Variance*
Alternative derivation of independence*
e Consider the transformation y; = Z, y; = x; — &, i = 2,...,n, with Jacobian 1/n.

_lswm 2
® Because fx(x1,...,2n) = We 3 2.i=1%7  we have

Prlo) = (27;/2€_§(91—Z?_2 Yi)? o= 3 Lima(yityn)?
T n

1/2

_ [(2”)” ? 6_;@;} [Me—;[zy_ﬂ%@?_mﬂ
us m)\n—
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Normal Sample Proof — Part Three, S? Is Chi-Squared*

(n —1)S? is a sum of n linearly dependent normal RV squared. Want to show
(n—1)S%/0? ~ x2_,. Set o0 = 1 for simplicity.

® Use induction
® The basis: When n =2, S3 = (X2 — X1)%/2 is x? (why?)
® [nductive step:

(n—1)S2 = sz—nxﬂ <ZX2 (n—1)X2 1>+"_1(Xn—xn1)2

n—1

=(n—2)5._,+

(1) 2=1(X,, — X,,_1)? is a standard normal R.V. squared
(2) (X, X,,—1) is independent of S,,_1.

*Can also be verified by evaluating the MGF of S2 and x?2_;.
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Order Statistics

Definition
Order statistics (X(), ..., X(y)) is the ascending order of random sample
(X1,...,X5).

Order Statistics*
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® Sample range X(,) — X(1).
® Sample median

® X((n+1)/2) if n is odd

® (X(n/2) + X(nj2+1)) /2 if nis even
® The (100p)*" percentile is X(|np))
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Order Statistics

Theorem (Discrete)

Suppose the PMF is f(z;) = p; for x1 < x9 <
Then,

.... Define Py =0 and P; = Z;lej.

Order Statistics*
00000

Sample from Normal Distribution
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P(X(j) < x4)

P(at least j samples are less than equal to ;)
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Order Statistics

Theorem (Continuous)
Suppose the PDF is f and cdf is F'. Then,

Sample from Normal Distribution
000000000000

Fx,@ =Y (1) F@FL - Fa

Order Statistics*
00000

k=j
@) = =iy @F @Y - )
For Uniform (0, 1),
n! - n—j
fX(J)(x) = (] — 1)'(n — ])'xj 1(1 - .’L‘)
I'(n+1)

_ P 2) D Betain — 4 1)

LGI(n—3j+1)
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Order Statistics

Theorem (Continuous — Joint)
Suppose the PDF is f and cdf is F. Then the joint PDF,

n!

Fxy.x0 (0, 0) = G—DG—1—9)ln— j)!f(u)f(’”)

[F) M F(v) = F(w) ™ 'L = Fv)]" ™,

Order Statistics*
00080

® Informal proof:

fij(u,v) =P(i — 1 less than u, n — j greater than v, one at u, one at v).

e Be careful about the domain! fX(1)7~-~aX(n) (X1, zn) =nlf(z1) - f(zn),

1 < X9 < - < Tp.
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Order Statistics

Example: Consdier range: R = X,y — X(y), and midrange: V = (X(,,) + X(1))/2
For Uniform (0,a), the joint PDF

a a

n(n 2— 1) (iL"n :L"1>”—2 _n(n—1)(zn — :U1)"_27 0<a <z <a.
a a”

fX(l),X(n) ($15In) =
Xay=V = R/2, Xy =V + R/2
The joint distribution for (R, V') is
n(n — 1)r"=2

r
, O0<r<a, - <v<a-——.
a™ 2

fry(r,v) =



