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Introduction

Previously, we talked about

• possible ways to evaluate an estimator: error, bias, variance, and MSE, etc.; and

• two general methods for obtaining point estimates: MoM and MLE.

Despite the ease of use, the main problem of point estimators is that they don’t convey

information about the uncertainty or reliability of the estimate.

• A point estimator does not reflect the level of “confidence” we have.
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Point Estimators May Not Equal to the Parameter with High Probability

No matter how small MSE is, there is no reason to expect a point estimate to be

exactly the same as the parameter it estimates. (Because of the randomness in the

random sample and thus the estimator.)

Example: Let p be the probability of a head from a coin toss:

• Suppose we observe 2 flips, then the MLE is p̂ = X/2.

• Note that P(p̂ = 0) = 1/4, P(p̂ = 1/2) = 1/2, and P(p̂ = 1) = 1/4.

• What is the probability that p̂ = p?
• If the unknown p happens to be one of 0, 1/2, or 1, then the probability P(p̂ = p) is

positive. Yet, if we take one more observation, p̂ only take values 0, 1/3, 2/3, or 1.
• What if p does not equal 0, 1/2, or 1? Then the probability is 0!
• We cannot expect P(p̂ = p) to stay positive for all sample sizes!
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Point Estimators Does Not Reflect the Level of Confidence

How “confident” are we in a point estimate?

Example: Let p be the probability of a head from a coin toss:

• Case 1: Observe 3 flips, 2 heads and 1 tail.

• Case 2: Observe 300 flips, 200 heads and 100 tails.

• In both cases, the point estimate is p̂ = 2/3.

Would you be more confident in p̂ = 2/3 under Case 1 or Case 2?
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Introduction

Suppose that, instead of a single value (point estimate), we report an interval within

which we expect to find the true parameter with high probability.

• Such an interval is called a confidence interval (CI) or an interval estimator.

• Compared with a single value, an interval has a much higher chance to contain

the true parameter.

Example: Let p be the probability of a head from a coin toss:

• Observe 3 flips, 2 heads and 1 tail.

• Can you propose an interval that you believe p will fall in with high probability?
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Example: Bernoulli

For example, you may propose the interval [0, 1]. However,

• Although you are certain that this interval will cover the true p,

• [0, 1] provides no additional information regarding the value of p beyond what we

already know even without the data.

Based on what we will learn in this topic, we have:

• Example: (Case 1): Observe 3 flips, 2 heads and 1 tail. We are “95% sure”

that the probability of getting a head is within [0.133, 1.120].

• Example: (Case 2): Observe 300 flips, 200 heads and 100 tails. We are “95%

sure” that the probability of getting a head is within [0.613, 0.720].

What exactly do we mean by “95% sure”? How can we construct such an interval

based on our observations?
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Example: Normal
Suppose we take four observations from a N (µ, 1) population, say,

X = X1, X2, X3, X4, and we wish to estimate µ. A good point estimator for µ is the

sample mean X̄. An intuitive way to construct an interval estimate is to provide a

range of values around the point estimator.

• For example, we may propose the interval X̄ − 1, X̄ + 1.

Consider the following cases:

• Suppose the observations are x = −0.492, 0.732, 1.180,−0.395. Then, x̄ = 0.256

and the interval is x̄− 1, x̄+ 1 = [−0.744, 1.256].

• Suppose the observations are x = −0.444,−0.901,−0.006,−0.040. Then,

x̄ = −0.348 and the interval is x̄− 1, x̄+ 1 = [−1.348, 0.652].

Intervals such as [−0.744, 1.256] and [−1.348, 0.652] (with specific numeric values)

are called the observed confidence intervals.
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Example: Normal, cont’d

For each repetition of the experiment, we calculate the observed CI from the data.

For each observed CI, we can check whether the interval contains the true mean µ.
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Measuring the reliability of the CI

To measure the reliability of the interval, we look at the success rate (i.e., the

proportion of intervals that cover µ) of the CI.

• This success rate is called the confidence level of a CI.

• Reliability: if we repeat the experiment many times, ∼95% of the resulting

intervals would contain the true µ, while only ∼5% would fail to cover µ.



10/60

Introduction Concepts of Interval Estimation Examples of Interval Estimation

Purpose of Interval Estimation

• Measure of uncertainty: Confidence intervals provide a range around the point

estimate that likely contains the true population parameter. This range reflects

the uncertainty associated with the point estimate, which is crucial for assessing

its reliability.

• Indication of precision: The width of a confidence interval gives insight into the
precision of the estimate.

• Narrower intervals suggest a more precise estimate.
• Wider intervals indicate less precision.
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Purpose of Interval Estimation

• Transparent reporting: Reporting confidence intervals alongside point estimates

promotes transparency in research and data analysis. It provides a fuller picture of

the findings, allowing others to assess the reliability and applicability of the results.
Example:

• If you propose a financial portfolio and report an annual return of 20%, is this

sustainable? Or is it simply due to a bullish market?
• Suppose you also report a confidence interval of [−50%, 40%] with a 0.95

confidence level; then we know that a positive return is not guaranteed.
• Suppose you report a confidence interval of [15%, 27%] with a 0.95 confidence level;

then we know that the portfolio is performing well.
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Purpose of Interval Estimation

• Guidance for decision making: In practical applications, knowing just the point

estimate might not be enough for making informed decisions. Confidence intervals

provide a range of plausible values for the parameter, which can be crucial for

decision-making in fields like medicine, policy-making, and business.

Example: If we estimate the hourly number of arrivals to an Emergency

Department to be [10, 20], then we may hire doctors based on the upper

confidence bound, 20, to ensure fast service.
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Confidence Interval
Definition (Confidence interval)

An interval estimate of a real-valued parameter θ is any pair of statistics, L and U , of

a random sample that satisfies L ≤ U . The random interval [L,U ] is called an

interval estimator.

• Being statistics, the interval is calculated from the data and is therefore random.

To be precise, we can write L(X) and U(X).

• Once X is observed, we compute l = L(X) and u = U(X). Then the inference

l ≤ θ ≤ u is made.

The endpoints l and u are called the lower- and upper-confidence limits (bounds).

The goal is to provide L(X) and U(X) such that:

• L(X) ≤ θ ≤ U(X) occurs with high probability (reliable!),

• and the length of the interval, U(X)− L(X), is as short as possible (precise!).
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Confidence Level – The Reliability of a CI

Definition (Confidence level/coverage Probability)

The coverage probability of an interval estimate is the probability that the random

interval [L(X), U(X)] covers the true parameter θ.

Pθ

(
θ ∈ [L(X), U(X)]

)
This is also called the confidence level, usually written as (1− α)× 100%.

(1− α)× 100% Confidence Interval

The interval estimator with a (1− α)× 100% confidence level is called a

(1− α)× 100% confidence interval.
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• The parameter θ is considered unknown and deterministic.

• The CI (the pair of statistics L(X) and U(X)) is random because it depends on

the sample X.

• We can think of the confidence level as the probability that the deterministic

parameter θ falls into the random interval.

Example: A 95% confidence interval means that if we collect 20 random samples

from the population, roughly one sample would yield an interval that does NOT cover

the unknown parameter.
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Interval Estimator

• If both L(X) and U(X) are finite-valued, the interval called two-sided.

• In some cases, we only care about bounds on one side.

Example: For light bulbs, quality control department care about the lower

bound of the lifespan, [L(X),∞). I.e., with 95% confidence, the mean lifespan of

the light bulb can burn is at least 5 years.

Example: In clinical trials, we wish to understand the upper bound on the

average time that a vaccine takes effect, (−∞, U(X)].

• These are called one-sided confidence intervals, (−∞, U(X)] or [L(X),∞).
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Example: Normal
For a sample {X1, X2, X3, X4} from N(µ, 1), we wish to estimate µ and propose the

interval

[X̄ − 1, X̄ + 1]

as an interval estimator.

Question: Is this interval reasonable?

To assess the reliability of this interval we calculate its confidence level:

P
(
L(X) ≤ µ ≤ U(X)

)
= P

(
X̄ − 1 ≤ µ ≤ X̄ + 1

)
= P

(
−1 ≤ X̄ − µ ≤ 1

)
= P

( −1√
σ2/n

≤ X̄ − µ√
σ2/n

≤ 1√
σ2/n

)
= P

( −1√
1/4

≤ Z ≤ 1√
σ2/n

)
≈ 0.9544.
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Example: Uniform

For a sample X1, . . . , Xn from Unif(0, θ). We wish to construct a CI for θ.

• An intuitive way to construct an interval estimation is to provide a range

of values around a good point estimator.

• The MLE of θ is Y = X(n) = maxiXi.

We can use [aY, bY ] for some constants 1 ≤ a ≤ b as a interval estimator for θ. Then

the confidence coefficient is

Pθ(θ ∈ [aY, bY ]) = Pθ

(
1

b
≤ Y

θ
≤ 1

a

)
=

1

an
− 1

bn
.

Let a = 1 and b be a constant slightly larger than 1. Then the confidence coefficient is

close to 1 when the sample size n is large.
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When the Coverage Probability depends on θ

Example: Consider the same sample X1, . . . , Xn from Unif(0, θ). We can also use

[Y + c, Y + d] for some positive constants c ≤ d as an interval estimator for θ.

Pθ(θ ∈ [Y + c, Y + d]) = Pθ

(
1− d

θ
≤ Y

θ
≤ 1− c

θ

)
=
(
1− c

θ

)n
−
(
1− d

θ

)n

*Above holds when θ ≥ d.

Observations

• The coverage probability can depend on the parameter θ.

• As θ gets large, the coverage probability decreases to 0!
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Reference: Distribution of X(n)

• Distribution of X(n)

FX(n)
(x) = P

(
X(n) ≤ x

)
= P

(
max{X1, X2, . . . , Xn} ≤ x

)
.

• Since the Xi are independent,

FX(n)
(x) = P(X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x) =

n∏
i=1

P(Xi ≤ x) =
[
Fθ(x)

]n
.

• Here, Fθ(x) is the CDF of the Uniform(0, θ) distribution:

Fθ(x) =


0, x < 0,
x

θ
, 0 ≤ x ≤ θ,

1, x > θ.
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When the Coverage Probability depends on θ

When the coverage probability depends on the parameter θ, we use a more robust

concept of the confidence coefficient, to guard against worst case confidence level over

the possible range of parameters:

Definition (Confidence Coefficient)

The confidence coefficient of an interval estimate is is the infimum of the coverage

probabilities.

1− α = inf
θ∈Θ

Pθ(θ ∈ [L(X), U(X)])

α here is called the significance level.

Example: Consider the same sample X1, . . . , Xn from Unif(0, θ). The confidence

level of [Y + c, Y + d] is 0%!
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Case 1: CI for Normal Mean µ with Known Variance

Let X1, . . . , Xn be i.i.d. random variables from N (µ, σ2).

• Suppose σ2 is known, so that it can be used in your estimators.

• We are interested in estimating µ.

• The goal is to find a (1− α)× 100% confidence interval.

How to find such an interval?

• The core idea is to start with a good point estimator and expand it to a range.

• Suppose we propose the interval X̄ − c, X̄ + c, where X̄ is the sample mean and c

is a constant to be determined.

• We seek to find a constant c such that

P
(
X̄ − c ≤ µ ≤ X̄ + c

)
= 1− α.
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Case 1: CI for Normal Mean µ with Known Variance

To calculate the coverage probability P
(
X̄ − c ≤ µ ≤ X̄ + c

)
, we need to know the

distribution of the sample mean X̄.

• Distribution of the Sample Mean:

X̄ ∼ N
(
µ,

σ2

n

)
, hence Z ≡ X̄ − µ

σ/
√
n

∼ N (0, 1).

• Coverage Probability: We express the probability that µ lies in the interval

X̄ − c, X̄ + c as

P
(
X̄ − c ≤ µ ≤ X̄ + c

)
= P

(
−c ≤ X̄ − µ ≤ c

)
= P

(
− c

σ/
√
n
≤ Z ≤ c

σ/
√
n

)
= Φ

( c

σ/
√
n

)
− Φ

(
− c

σ/
√
n

)
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Critical Value for Standard Normal

Critical value/z-score

Let Z be a standard normal random

variable. We define zα to be the value

such that

P(Z > zα) = α.

• An α proportion of observations

fall above zα.
−3 −2 −1 0 1 2 3

Area = α

zα

Example: z0.05 = 1.645, z0.025 = 1.96, z0.005 = 2.576.
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Determining the Constant c

We wish to find a constant c such that

P
(
− c

σ/
√
n
≤ Z ≤ c

σ/
√
n

)
= 1− α.

The relevant critical values from the

standard normal distribution are zα/2
and z1−α/2. By symmetry, we have

zα/2 = −z1−α/2.

−3 −2 −1 0 1 2 3

Area = 0.95

z0.025 = 1.96z0.975 = −1.96

Hence, we set
c

σ/
√
n
= zα/2 ⇒ c = zα/2

σ√
n
.
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CI for Normal Population Mean with Known Variance

CI for µ with known σ

If x̄ is the observed sample mean of a random sample with size n and known variance

σ2, a (1− α)× 100% confidence interval on µ is given by[
x̄− zα/2σ/

√
n, x̄+ zα/2σ/

√
n
]

• Notice that we used a lower-case x̄ to denote the realized value, instead of the

random statistic.

• The CI requires knowledge of the variance σ2. We will see later how to deal with

the unknown variance.

• We constructed this CI by finding a symmetric interval around the sample mean

X̄ such that the coverage probability is 1− α. Why a symmetric interval?



28/60

Introduction Concepts of Interval Estimation Examples of Interval Estimation

Why Symmetric Interval?

• The goal is to provide CI with a

guaranteed coverage probability

(i.e., the interval is reliable).

• At the same time, we want the

interval length, U(X)− L(X), to

be as short as possible (i.e., the

information is more precise).

• Given a fixed coverage probability

1− α, a symmetric interval

around the sample mean yields

the shortest possible interval.

−3 −2 −1 0 1 2 3

Notice that Red Area = Blue Area = α,

but the symmetrical blue interval is

shorter, hence is preferred over the red.
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Discussion: the Width of the CI

The width of the confidence interval is given by

2zα/2
σ√
n
.

• σ: Assumed to be known. A larger variance implies a wider CI.

• α: Related to the confidence level (usually given). A smaller significance level α

(i.e., a higher coverage confidence level 1− α) implies a wider CI.

• n: Sample size, chosen by the experimenter. A larger sample size implies a

narrower CI.
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Example:
Suppose we send a signal of value µ from A to B. The destination B receives µ+ Z, where

Z ∼ N (0, 4). The signal is sent 9 times and we receive:

5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5.

Then, X̄ = 9, σ2 = 4, n = 9, and z0.05 = 1.645, nz0.025 = 1.96, z0.005 = 2.576.

• The 99% confidence interval for µ is:

x̄± z0.005 · σ2/
√
n = 9± 2.576 · 2

3
≈ (9− 1.717, 9 + 1.717) ≈ (7.28, 10.72).

• The 95% confidence interval for µ is:

x̄± z0.025 · σ2/
√
n = 9± 1.96 · 2

3
≈ (9− 1.307, 9 + 1.307) ≈ (7.69, 10.31).

• The 90% confidence interval for µ is:

x̄± z0.05 · σ2/
√
n = 9± 1.645 · 2

3
≈ (9− 1.097, 9 + 1.097) ≈ (7.91, 10.09).
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Controlling the Width of the Confidence Interval

The width of the CI is given by 2zα/2
σ√
n
. To reduce the width of the CI, we can:

• Decrease σ (i.e., reduce variability in the data), which is not always possible.

• Increase the sample size n.

We say that the sample mean estimate has an error less than zα/2
σ√
n
with

(1− α)× 100% confidence. This is because the error is less than the half-width

of the CI if and only if µ is covered by the CI.

x
L(x) U(x)x̄µ

Error = |x̄− µ|
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Choice of Sample Size

Question

How many observations do we need so that the estimation error is smaller than some

tolerance ε with 1− α confidence?

zα/2
σ√
n
≤ ε ⇒ n ≥

⌈(zα/2σ
ε

)2⌉
where ⌈x⌉ is the ceiling function, i.e., the smallest integer that is ≥ x.

• As confidence level increase (or as α decrease), we need more sample.

• As error tolerance decrease, we need more sample.

• As variance increase, we need more sample.

• The sample size does not depend on the center of the data, i.e. x̄.
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Example: Mean Weight of Salmon
Suppose the weight of salmons from a farm is normally distributed with a known

standard deviation σ = 0.3 pounds. We wish to estimate the mean µ from a sample.

If we want to be 95% confident that our estimate is correct to within ±0.1 pound, how

large a sample is needed?

• Since we want to be 95% confident, we have 1− α = 0.95 ⇒ α/2 = 0.025.

• The critical value is z0.025 = 1.96.

• The margin of error is given by zα/2
σ√
n
≤ 0.1.

• Solving for n, we obtain:

√
n ≥ 1.96× 0.3

0.1
⇒ n ≥

(
1.96× 0.3

0.1

)2

≈ 34.57.

• Thus, we need n ≥ 35.
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One-sided Confidence Interval
In the previous case, we constructed two-sided confidence intervals, i.e., both L(X)

and U(X) are finite.

• If we care only about one side, we may also construct a one-sided confidence

interval, e.g., [L(X),∞) or (−∞, U(X)].

Example: (Confidence lower bound) We consider an intuitive choice L(X) = X̄ − c.

• Given a confidence level 1− α, we choose c such that

P
(
µ ∈ [X̄ − c,∞)

)
= 1− α.

• Note that

P
(
µ ∈ [X̄ − c,∞)

)
= P

(
X̄ − µ ≤ c

)
= P

(
X̄ − µ

σ/
√
n

≤ c

σ/
√
n

)
.

• In contrast to the two-sided CI, here we only care about one side of the inequality.
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We wish to choose c so that

P
(
X̄ − µ

σ/
√
n

≤ c

σ/
√
n

)
= 1− α ⇔ P

(
X̄ − µ

σ/
√
n

>
c

σ/
√
n

)
= α.

We then set
c

σ/
√
n
= zα ⇔ c = zα

σ√
n
.

−3 −2 −1 0 1 2 3

Area = α

z0.025 = 1.96
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One-sided CI for µ with known σ

If x̄ is the observed sample mean of a random sample with size n and known variance

σ2, a (1− α)× 100% one-sided confidence lower bound on µ is given by[
x̄− zασ/

√
n,∞

)
.

A (1− α)× 100% one-sided confidence upper bound on µ is given by(
−∞, x̄+ zασ/

√
n
]
.



37/60

Introduction Concepts of Interval Estimation Examples of Interval Estimation

Case 2: Normal Population Mean with Unknown Variance
Previously, we constructed CIs under the assumption of known variance, because our

CIs (e.g.,
[
x̄− zα/2σ/

√
n, x̄+ zα/2σ/

√
n
]
) require σ2.

• If the variance is unknown, we can no longer compute these CIs.

• A natural idea: estimate the variance using the sample variance S2 and plug it

into our previous CI. For example, one might consider[
X̄ − c

S√
n
, X̄ + c

S√
n

]
.

However, the key step in constructing the CI is to calculate the exact coverage

probability, i.e., we need to determine

P
(
X̄ − c

S√
n
≤ µ ≤ X̄ + c

S√
n

)
= P

(
−c ≤ X̄ − µ

S/
√
n

≤ c

)
.

• Question: What is the distribution of X̄−µ
S/

√
n
?
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The t-Statistic

Let us standardizes the sample mean using the sample standard deviation:

T =
X̄ − µ

S/
√
n
,

In contrast, when variance is known, we have

Z =
X̄ − µ

σ/
√
n

∼ N (0, 1).

• Although T differs from Z, they should not be too different. Since S2 is a

consistent estimator of σ2, it will converge to σ2 as the sample size increases,

making T and Z nearly indistinguishable for large samples.

• With a large sample size, we may consider T ≈ Z.

• The main differences appear in moderate to small samples.
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It turns out that T follows exactly the so-called Student’s t-distribution with degrees of

freedom ν = n− 1.

Student’s t distribution

Let

T =
X̄ − µ

S/
√
n

=

X̄−µ
σ/

√
n√

S2/σ2
=

N(0, 1)√
χ2
n−1/(n− 1)

Then, T has a Student’s t distribution with degree of freedom n− 1.

• A t-distribution has one parameter, ν = n− 1, and is typically denoted as tν .

• The distribution is named after William Sealy Gosset’s 1908 paper in Biometrika,

published under the pseudonym “Student”.
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−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4 N (0, 1)
ν = 10
ν = 5
ν = 2
ν = 1

PDF of the t distribution

• Its pdf has a “bell” shape, similar to normal.

• As the sample size n grows to ∞, the t distribution is closer and closer to a

standard normal distribution. Why?

• It has “heavier tail” than normal distributions, so it will more frequently produce

outliers. This is due to the additional randomness introduced by the need to use

sample variance.
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Critical value for t distribution

Let T be a Student’s t distribution

with degree of freedom n. We define

the critical value (also called the

t-score) associated with the desired

significance level α to be the value tn,α
such that

P(T > tn,α) = α. −4 −2 0 2 4
0

0.1

0.2

0.3

0.4

fTν

Area = α

tν,1−α

• An α proportion of observations fall above tν,1−α.

• To find out the value of tn,α, use scipy.stats.t.ppf(1-alpha,DoF) in Python.
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Case 2: Normal Population Mean with Unknown Variance
We can write the coverage probability of the CI

[
X̄ − c S√

n
, X̄ + c S√

n

]
with

c = tn−1,α/2 as

P
(
X̄ − c

S√
n
≤ µ ≤ X̄ + c

S√
n

)
= P

(
−tn−1,α/2 ≤

X̄ − µ

S/
√
n

≤ tn−1,α/2

)
= P(−tn−1,α/2 ≤ T ≤ tn−1,α/2) = α.

CI for µ with unknown σ

If x̄ is the observed sample mean of a random sample with size n and unknown

variance, a (1− α)× 100% confidence interval on µ is given by[
x̄− tn−1,α/2s/

√
n, x̄+ tn−1,α/2s/

√
n
]

Notice that we used a lower-case x̄ and s to denote the realized values, instead of the

random statistics.
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Example on Slide 29
• Data: X̄ = 9, S2 = 9.5, and n = 9.

• Known Variance: Assume σ2 = 4 (so σ = 2). Then, the 95% CI for µ is

9± 1.96
2√
9
= 9± 1.307 =⇒ (7.69, 10.31).

• Unknown Variance: Using the sample variance and t0.025,8 = 2.306, the 95% CI

for µ is

9± 2.306

√
9.5√
9

≈ 9± 2.370 =⇒ (6.63, 11.37).

• Other Confidence Levels (Unknown Variance):
• 99% CI: 9± 3.335

√
9.5√
9

≈ (7.28, 10.72).

• 90% CI: 9± 1.859
√
9.5√
9

≈ (7.91, 10.09).

• Observation: When σ2 is unknown, the CI becomes wider due to the additional

uncertainty in estimating the variance.
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Choice of Sample Size

Recall the CI with unknown variance is given by[
x̄− tn−1,α/2s/

√
n, x̄+ tn−1,α/2s/

√
n
]

Question

How many observations do we need so that the estimation error is smaller than some

tolerance ε?

We need

tn−1,α/2
s√
n
≤ ε ⇒ n ≥

⌈(
tn−1,α/2s

ε

)2
⌉
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One-sided Confidence Interval

If we care only about one side of the value, we construct one-sided confidence interval.

• In this case, we assign probability only to one side of the sample mean.

One-sided CI for normal population mean with unknown variance

A (1− α)× 100% upper-confidence bound is

µ ≤ x̄+ tn−1,αs/
√
n.

A (1− α)× 100% lower-confidence bound is

µ ≥ x̄− tn−1,αs/
√
n.
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Case 3: Confidence Interval for the Population Variance

Let X1, . . . , Xn be i.i.d. N (µ, σ2).

• Suppose both the mean µ and the variance σ2 are unknown.

• We want to construct a 95% CI for the unknown population variance σ2.

• We know that the sample variance S2 is a good point estimator for σ2.

Question: What kind of distribution does the sample variance S2 follow?
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Chi-squared Distribution

Let

X2 =
(n− 1)S2

σ2
=

n∑
i=1

(
Xi − X̄

σ

)2

.

• Think of this as a standardized version of S2.

χ2 distribution

Let X2 = (n−1)S2

σ2 , then X2 follows the chi-squared distribution with degree of

freedom ν = n− 1, usually denoted as χ2
n−1.

Notice that X2 is NOT a statistic because it depends on the unknown parameter σ2.
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• The chi-squared distribution with ν

degrees of freedom can be written as

χ2
ν =

ν∑
i=1

Z2
i ,

where the Zi are independent standard

normal random variables.

• χ2
n−1 is always non-negative.

• This distribution is asymmetric and

skewed to the right.

• E[χ2
ν ] = ν, Var(χ2

ν) = 2ν.
0 2 4 6 8 10

PDF of the χ2
ν distribution

χ2
1

χ2
2

χ2
3

χ2
4

χ2
6

χ2
9
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χ2 critical value

Let X2 be a χ2
n−1 random variable.

We define χ2
n−1,α to be the value such

that

P(X2 > χ2
n−1,α) = α.

• An α proportion of observations

fall above χ2
n−1,α.

0 2 4 6 8 10 12 14

Area = α

χ2
n−1,1−α

PDF of the χ2
n−1 distribution
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Case 3: Confidence Interval for the Population Variance

Steps to construct a confidence interval for the population variance σ2:

1 Find a statistic S2 informative about the parameter.

2 Find the distribution of the statistic:

X2 =
(n− 1)S2

σ2
∼ χ2

n−1.

3 Write down the probability equality

P(χ2
n−1,1−α/2 ≤ X2 ≤ χ2

n−1,α/2) = 1− α.

4 Re-arrange terms to get the coverage probability

P

(
(n− 1)S2

χ2
n−1,α/2

≤ σ2 ≤ (n− 1)S2

χ2
n−1,1−α/2

)
= 1− α.

−2 0 2 4 6 8 10 12 14

Area = 0.05

χ2
n−1,0.025

χ2
n−1,0.975
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Two-sided CI for population variance

A two-sided (1− α)× 100% confidence interval for the population variance σ2 is[
(n− 1)s2

χ2
n−1,α/2

,
(n− 1)s2

χ2
n−1,1−α/2

]
.

Notice that we used a lower-case s to denote the realized value.

Remarks

• One-sided CI (
−∞,

(n− 1)s2

χ2
n−1,1−α

]
and

[
(n− 1)s2

χ2
n−1,α

,∞

)
• Symmetric CI? In fact, this is not optimal in terms of minimizing the length.

Beyond the scope of this course.
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Case 4: Large-Sample Confidence Interval for Population Proportion

It is often necessary to construct confidence intervals on a population proportion.

Example: A random sample has been taken from a large population and that X

observations in this sample belong to a class of interest. Then the sample proportion,

P̂ = X/n, is a point estimator for the population proportion of that class.

Example: (Bernoulli) Observe 300 flips, 200 heads and 100 tails. We are “95% sure”

that the probability of getting a head is within [0.613, 0.720].

• How to construct a CI for population proportion?
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Steps:

• Statistic: P̂ = X/n.

• Distribution of the statistic: (for large-sample n ≥ 30)

Z =
X − np√
np(1− p)

=
P̂ − p√

p(1− p)/n
≈ N(0, 1).

• Probability equality

P(−zα/2 ≤ Z ≤ zα/2) ≈ 1− α.

• Re-arrange terms

P

(
P̂ − zα/2

√
p(1− p)

n
≤ p ≤ P̂ − zα/2

√
p(1− p)

n

)
≈ 1− α.

We have a problem!

• CI as statistics cannot have unknown parameters.
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Solution: it is often satisfactory if we simply replace p by P̂ , when the sample size n is

suitably large (n ≥ 30).

Large-Sample CI for population proportion

A (1− α)× 100% confidence interval for the population proportion p is[
p̂− zα/2

√
p̂(1− p̂)

n
, p̂+ zα/2

√
p̂(1− p̂)

n

]
.

Notice that we used a lower-case p̂ to denote the realized value.
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Example: Observe 300 coin flips, 200 heads and 100 tails. Calculate a 95% CI:[
p̂− zα/2

√
p̂(1− p̂)

n
, p̂+ zα/2

√
p̂(1− p̂)

n

]

=

2
3
− 1.96 ∗

√
2
3(1−

2
3)

300
,
2

3
+ 1.96 ∗

√
2
3(1−

2
3)

300


= [0.613, 0.720].

Example: Observe 3 coin flips, 2 heads and 1 tails. Calculate a 95% CI:2
3
− 1.96 ∗

√
2
3(1−

2
3)

3
,
2

3
+ 1.96 ∗

√
2
3(1−

2
3)

3

 = [0.133, 1.120].
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Example: Inferring Sample Size from a Poll
On October 14, 2003, the New York Times reported that a poll indicated that 52% of

the population was in favor of President Bush’s job performance with 95% confidence

and a margin of error of ±4%. What does this mean? Can we infer how many people

were questioned?

Interpretation:

• With 95% confidence, the true proportion p lies in the interval

[0.52− 0.04, 0.52 + 0.04] = [0.48, 0.56].

• The margin of error (half-width) of the 95% CI is given by z0.025

√
p̂(1−p̂)

n , where

p̂ = 0.52 and z0.025 = 1.96.

x
L(x) U(x)x̄µ

Error = |x̄− µ|
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Example: Inferring Sample Size from a Poll

Calculations:

1.96

√
0.52× 0.48

n
= 0.04.

Solving for n:√
0.52× 0.48

n
=

0.04

1.96
=⇒ n =

0.52× 0.48(
0.04
1.96

)2 ≈ 599.29.

Thus, approximately 600 people were surveyed.
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Case 5: Large-Sample Confidence Interval

For real-world problems, the population is not normally distributed.

For population mean µ

• By CLT, for large sample (n ≥ 30) we have X̄−µ
σ
√
n
≈ N(0, 1).

• So

[x̄+ zα/2σ/
√
n, x̄+ z1−α/2σ/

√
n]

is still an effective (1− α)× 100% CI.

• Similarly, when σ is unknown, replace σ by s.

• For one-sided CI, we have

(−∞, x̄+ zαs/
√
n] or [x̄− zαs/

√
n,+∞).

Similarly, we can construct CI for σ just as we did for normal sample.
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General Steps for Constructing a (1− α)× 100% CI

1 Use only the samples, the known parameter(s) and the parameter of interest
to construct a quantity Y , such that its distribution is known, and the distribution
does not depend on θ.

• Usually starts with a point estimator of the target parameter.

2 Compute a interval [A,B] such that the following (approximately) holds

P (Y ∈ [A,B]) = 1− α.

• For one-sided case, set A to −∞ or B to +∞ accordingly;
• For two-sided case, find A,B such that they assign equal probability α/2 to each

side.

3 Rearrange the interval A ⩽ Y ⩽ B using the expression of Y obtained in Step 1,

and obtain a interval that covers the population parameter of interest. This final

interval will be the desired CI.
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Extended Reading

• Chapter 8 of Douglas C. Montgomery and George C. Runger, Applied Statistics

and Probability for Engineers, 7th Ed.

• (Advanced) More on t distribution and χ2 distribution. Section 4.6 of this book:

https://www.utstat.toronto.edu/mikevans/jeffrosenthal/chapt4.pdf

https://www.utstat.toronto.edu/mikevans/jeffrosenthal/chapt4.pdf
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