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Introduction

Previously, we talked about

® possible ways to evaluate an estimator: error, bias, variance, and MSE, etc.; and

® two general methods for obtaining point estimates: MoM and MLE.

Despite the ease of use, the main problem of point estimators is that they don’t convey
information about the uncertainty or reliability of the estimate.

® A point estimator does not reflect the level of “confidence” we have.
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Point Estimators May Not Equal to the Parameter with High Probability

No matter how small MSE is, there is no reason to expect a point estimate to be
exactly the same as the parameter it estimates. (Because of the randomness in the
random sample and thus the estimator.)

Example: Let p be the probability of a head from a coin toss:

® Suppose we observe 2 flips, then the MLE is p = X/2.
® Note that P(p=0)=1/4, P(p=1/2)=1/2,and P(p=1) = 1/4.
e What is the probability that p = p?
® |f the unknown p happens to be one of 0, 1/2, or 1, then the probability P(p = p) is
positive. Yet, if we take one more observation, p only take values 0, 1/3, 2/3, or 1.

® What if p does not equal 0, 1/2, or 1?7 Then the probability is 0!
® \We cannot expect P(p = p) to stay positive for all sample sizes!
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Point Estimators Does Not Reflect the Level of Confidence

How “confident” are we in a point estimate?

Example: Let p be the probability of a head from a coin toss:
® Case 1: Observe 3 flips, 2 heads and 1 tail.
® (Case 2: Observe 300 flips, 200 heads and 100 tails.

® In both cases, the point estimate is p = 2/3.

Would you be more confident in p = 2/3 under Case 1 or Case 27
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Introduction

Suppose that, instead of a single value (point estimate), we report an interval within
which we expect to find the true parameter with high probability.

® Such an interval is called a confidence interval (Cl) or an interval estimator.

® Compared with a single value, an interval has a much higher chance to contain
the true parameter.
Example: Let p be the probability of a head from a coin toss:

® Observe 3 flips, 2 heads and 1 tail.

® Can you propose an interval that you believe p will fall in with high probability?
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Example: Bernoulli

For example, you may propose the interval [0, 1]. However,

® Although you are certain that this interval will cover the true p,

® [0, 1] provides no additional information regarding the value of p beyond what we

already know even without the data.

Based on what we will learn in this topic, we have:

e Example: (Case 1): Observe 3 flips, 2 heads and 1 tail. We are "95% sure”
that the probability of getting a head is within [0.133,1.120].

e Example: (Case 2): Observe 300 flips, 200 heads and 100 tails. We are “95%
sure” that the probability of getting a head is within [0.613,0.720].

What exactly do we mean by “95% sure”? How can we construct such an interval

based on our observations?
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Example: Normal

Suppose we take four observations from a N'(y, 1) population, say,

X = X1, Xo, X3, X4, and we wish to estimate . A good point estimator for p is the
sample mean X. An intuitive way to construct an interval estimate is to provide a
range of values around the point estimator.

® For example, we may propose the interval X — 1, X + 1.
Consider the following cases:

® Suppose the observations are x = —0.492,0.732,1.180, —0.395. Then, = 0.256
and the interval is z — 1, z + 1 = [—0.744, 1.256].

® Suppose the observations are x = —0.444, —0.901, —0.006, —0.040. Then,
Z = —0.348 and the interval is z — 1, £ + 1 = [—1.348, 0.652].

Intervals such as [—0.744, 1.256] and [—1.348, 0.652] (with specific numeric values)
are called the observed confidence intervals.
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Example: Normal, cont'd

For each repetition of the experiment, we calculate the observed Cl from the data.

For each observed Cl, we can check whether the interval contains the true mean p.
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Measuring the reliability of the Cl

To measure the reliability of the interval, we look at the success rate (i.e., the
proportion of intervals that cover 1) of the Cl.
® This success rate is called the confidence level of a Cl.

® Reliability: if we repeat the experiment many times, ~95% of the resulting
intervals would contain the true p, while only ~5% would fail to cover p.
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Purpose of Interval Estimation

® Measure of uncertainty: Confidence intervals provide a range around the point
estimate that likely contains the true population parameter. This range reflects
the uncertainty associated with the point estimate, which is crucial for assessing
its reliability.

¢ Indication of precision: The width of a confidence interval gives insight into the
precision of the estimate.

® Narrower intervals suggest a more precise estimate.
® Wider intervals indicate less precision.
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Purpose of Interval Estimation

® Transparent reporting: Reporting confidence intervals alongside point estimates
promotes transparency in research and data analysis. It provides a fuller picture of
the findings, allowing others to assess the reliability and applicability of the results.
Example:
® |f you propose a financial portfolio and report an annual return of 20%, is this
sustainable? Or is it simply due to a bullish market?
® Suppose you also report a confidence interval of [—50%, 40%)] with a 0.95
confidence level; then we know that a positive return is not guaranteed.
® Suppose you report a confidence interval of [15%, 27%] with a 0.95 confidence level;
then we know that the portfolio is performing well.
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Purpose of Interval Estimation

e Guidance for decision making: In practical applications, knowing just the point
estimate might not be enough for making informed decisions. Confidence intervals
provide a range of plausible values for the parameter, which can be crucial for
decision-making in fields like medicine, policy-making, and business.

Example: If we estimate the hourly number of arrivals to an Emergency
Department to be [10, 20], then we may hire doctors based on the upper
confidence bound, 20, to ensure fast service.
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Confidence Interval
Definition (Confidence interval)

An interval estimate of a real-valued parameter 6 is any pair of statistics, L and U, of
a random sample that satisfies L < U. The random interval [L, U] is called an
interval estimator.

® Being statistics, the interval is calculated from the data and is therefore random.
To be precise, we can write L(X) and U(X).

® Once X is observed, we compute [ = L(X) and u = U(X). Then the inference
I <6 < wuis made.

The endpoints [ and u are called the lower- and upper-confidence limits (bounds).
The goal is to provide L(X) and U(X) such that:

e [(X) <60 <U(X) occurs with high probability (reliable!),
® and the length of the interval, U(X) — L(X), is as short as possible (precise!).
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Confidence Level — The Reliability of a Cl

Definition (Confidence level /coverage Probability)

The coverage probability of an interval estimate is the probability that the random
interval [L(X),U(X)] covers the true parameter 6.
Po(0 € [L(X),U(X)])

This is also called the confidence level, usually written as (1 — «) x 100%.

(1 — ) x 100% Confidence Interval

The interval estimator with a (1 — a)) x 100% confidence level is called a
(1 — @) x 100% confidence interval.
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® The parameter 6 is considered unknown and deterministic.
® The CI (the pair of statistics L(X) and U(X)) is random because it depends on
the sample X.

® We can think of the confidence level as the probability that the deterministic
parameter 6 falls into the random interval.

Example: A 95% confidence interval means that if we collect 20 random samples
from the population, roughly one sample would yield an interval that does NOT cover
the unknown parameter.
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95% Confidence Intervals for the Mean
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Interval Estimator

e If both L(X) and U(X) are finite-valued, the interval called two-sided.

® |n some cases, we only care about bounds on one side.
Example: For light bulbs, quality control department care about the lower
bound of the lifespan, [L(X), c0). l.e., with 95% confidence, the mean lifespan of
the light bulb can burn is at least 5 years.
Example: In clinical trials, we wish to understand the upper bound on the
average time that a vaccine takes effect, (—oo, U(X)].

® These are called one-sided confidence intervals, (—oo, U(X)] or [L(X), c0).
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Example: Normal

For a sample { X1, X2, X3, X4} from N(u, 1), we wish to estimate p and propose the
interval

(X —1,X +1]
as an interval estimator.
Question: Is this interval reasonable?

To assess the reliability of this interval we calculate its confidence level:

P(L(X)g,ugU(X)):P(X—1§M§X+1>

3.
= n

P< Vons 1> - P(\/;zl/n \/02//:1 \/(712/n)

P

<Z<

~ 0.9544.
V 0'2/n)
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Example: Uniform

For a sample X1, ..., X,, from Unif(0,8). We wish to construct a ClI for 6.

® An intuitive way to construct an interval estimation is to provide a range
of values around a good point estimator.

® The MLE of A is Y = X(n) = max; X;.

We can use [aY, bY] for some constants 1 < a < b as a interval estimator for 6. Then
the confidence coefficient is

a® b’

1y 1\ 1 1
0 —a)

Py(0 € [aY,bY]) = Py (b <Y 1

Let a = 1 and b be a constant slightly larger than 1. Then the confidence coefficient is
close to 1 when the sample size n is large.
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When the Coverage Probability depends on 6

Example: Consider the same sample X7, ..., X, from Unif(0, ). We can also use
[Y + ¢, Y + d] for some positive constants ¢ < d as an interval estimator for 6.

d Y c c\" a\"
Po(f € [Y +c,Y +d]) =Py (1 S< <1 9> (1 9) <1 9>

*Above holds when 6 > d.

Observations

® The coverage probability can depend on the parameter 6.

® As 0 gets large, the coverage probability decreases to 0!
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Reference: Distribution of X,
® Distribution of X,

Fx,, (x) = P(X(n) < x) - P<max{X1,X2, LX) < :c)

® Since the X; are independent,

Fy, (@) =P(X1 <2, Xo <, ..., X, <a) = [[P(X; < 2) = [Fg(m)r.
i=1

® Here, Fy(x) is the CDF of the Uniform(0, #) distribution:

0, =z<0,
Fy(e) =45, 0<z<9,
1, z=>86.
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When the Coverage Probability depends on 6

When the coverage probability depends on the parameter 6, we use a more robust
concept of the confidence coefficient, to guard against worst case confidence level over
the possible range of parameters:

Definition (Confidence Coefficient)

The confidence coefficient of an interval estimate is is the infimum of the coverage
probabilities.

1—a = jnf Py(8 € [L(X),U(X)])

« here is called the significance level.

Example: Consider the same sample X1,..., X, from Unif(0, ). The confidence
level of [Y + ¢, Y 4 d] is 0%!
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Case 1: Cl for Normal Mean p with Known Variance
Let X1,...,X, bei.i.d. random variables from N (y,o?).
® Suppose o2 is known, so that it can be used in your estimators.
® We are interested in estimating p.
® The goal is to find a (1 — a)) x 100% confidence interval.

How to find such an interval?

® The core idea is to start with a good point estimator and expand it to a range.

® Suppose we propose the interval X — ¢, X + ¢, where X is the sample mean and c

is a constant to be determined.

® \We seek to find a constant ¢ such that

P(X—cﬁuﬁ)f—kc)zl—a.
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Case 1: Cl for Normal Mean p with Known Variance

To calculate the coverage probability }P’()_( —c<pu< X+ c), we need to know the
distribution of the sample mean X.
¢ Distribution of the Sample Mean:
2

de\/(u,%), hence Z_(;/f

® Coverage Probability: We express the probability that 4 lies in the interval
X—-c,X+cas

~ N(0,1).

P<X—CSM§X+C):IP(—ch_ugC):p(_

- (I)<U/C\/ﬁ> B (b(_a/i/ﬁ)

08000000000 0OO0C 0000000000000 O0OOO000000
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Critical Value for Standard Normal

Critical value/z-score

Let Z be a standard normal random
variable. We define z, to be the value
such that

P(Z > z4) = .

® An « proportion of observations

fall above z,,.

-3 -2 -1 0 1 2 3

Example: Z20.05 — 1.645, 20.025 — 1.96, 20.005 = 2.576.



Determining the Constant ¢

We wish to find a constant ¢ such that

<L>:1—a.

P~ <2< o

The relevant critical values from the

standard normal distribution are z, /9

and z1_,/2. By symmetry, we have 20975 = —1
Area = 0.95

Raf2 = T Rl—a/2-
-3 -2 —1 0 1 2 3
Hence, we set
_c __ = c=z 7
— — .
o/\/n /2 /2 Vn
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Cl for Normal Population Mean with Known Variance

Cl for p with known o
If Z is the observed sample mean of a random sample with size n and known variance
02, a (1 — a) x 100% confidence interval on y is given by

[‘f - Za/QO-/\/ﬁv T+ Za/QO-/\/ﬂ

e Notice that we used a lower-case T to denote the realized value, instead of the
random statistic.

® The Cl requires knowledge of the variance 2. We will see later how to deal with
the unknown variance.

® We constructed this Cl by finding a symmetric interval around the sample mean
X such that the coverage probability is 1 — a. Why a symmetric interval?
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Why Symmetric Interval?

® The goal is to provide Cl with a
guaranteed coverage probability
(i.e., the interval is reliable).

® At the same time, we want the
interval length, U(X) — L(X), to
be as short as possible (i.e., the
information is more precise).

® Given a fixed coverage probability
1 — a, a symmetric interval
around the sample mean yields
the shortest possible interval.

Examples of Inte
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Notice that Red Area = Blue Area = «,
but the symmetrical blue interval is

shorter, hence is preferred over the red.



Discussion: the Width of the Cl

The

width of the confidence interval is given by

g

2204/2 \/ﬁ

o: Assumed to be known. A larger variance implies a wider Cl.

a: Related to the confidence level (usually given). A smaller significance level «
(i.e., a higher coverage confidence level 1 — a) implies a wider CI.

n: Sample size, chosen by the experimenter. A larger sample size implies a
narrower Cl.
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Example:

Suppose we send a signal of value i from A to B. The destination B receives p + Z, where
Z ~ N(0,4). The signal is sent 9 times and we receive:

5,8.5,12,15,7,9,7.5,6.5,10.5.
Then, X =9,02 =4, n =09, and 205 = 1.645, n20.025 = 1.96, 29.005 = 2.576.
® The 99% confidence interval for p is:
T+ 20.005 - 02//n = 9+ 2.576 - % ~ (9 — 1.717,9 + 1.717) ~ (7.28, 10.72).
® The 95% confidence interval for p is:
T+ 20005 - 0% /vV/n=941.96- ; ~ (9 —1.307,9 + 1.307) =~ (7.69, 10.31).
® The 90% confidence interval for y is:

2
T 20050 0%/ =92 1645 5 ~ (9 - 1.097,9 + 1.097) ~ (7.91, 10.09).
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Controlling the Width of the Confidence Interval

The width of the Cl is given by 2z To reduce the width of the CI, we can:

O‘/2f
® Decrease o (i.e., reduce variability in the data), which is not always possible.

® |ncrease the sample size n.

We say that the sample mean estimate has an error less than za/Qf with
(1 — ) x 100% confidence. This is because the error is less than the half-width
of the CI if and only if 1 is covered by the CI.
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Choice of Sample Size

Question
How many observations do we need so that the estimation error is smaller than some
tolerance ¢ with 1 — « confidence?

ez (2]

where [z] is the ceiling function, i.e., the smallest integer that is > z.

As confidence level increase (or as « decrease), we need more sample.

As error tolerance decrease, we need more sample.

® As variance increase, we need more sample.

The sample size does not depend on the center of the data, i.e. Z.
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Example: Mean Weight of Salmon

Suppose the weight of salmons from a farm is normally distributed with a known
standard deviation o = 0.3 pounds. We wish to estimate the mean y from a sample.

If we want to be 95% confident that our estimate is correct to within +0.1 pound, how
large a sample is needed?

® Since we want to be 95% confident, we have 1 — a = 0.95 = «/2 = 0.025.
® The critical value is zg.g25 = 1.96.

® The margin of error is given by za/gﬁ <0.1.

Solving for n, we obtain:

Vn >

196 x 0.3 (196 x0.3
0.1 = 0.1

2
) ~ 34.57.

Thus, we need n > 35.
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One-sided Confidence Interval

In the previous case, we constructed two-sided confidence intervals, i.e., both L(X)
and U(X) are finite.

® If we care only about one side, we may also construct a one-sided confidence
interval, e.g., [L(X),00) or (—oo, U(X)].

Example: (Confidence lower bound) We consider an intuitive choice L(X) = X —c.

® Given a confidence level 1 — «, we choose ¢ such that
IP’(MG [X—c,oo)) =1—a.

® Note that

]P)(/LE[X—C,OO)):P(X—M<C>:P<f/?/§<a/c\/ﬁ>.

® In contrast to the two-sided Cl, here we only care about one side of the inequality.
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We wish to choose ¢ so that

P(f/_wg< o/cﬁ> “lhe @ P@/_ﬁ%/cﬁ) -

We then set

C

o/vn

=24 & C=2,

28,025 — 1.96
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One-sided Cl for p with known o

If Z is the observed sample mean of a random sample with size n and known variance
02, a (1 — a) x 100% one-sided confidence lower bound on p is given by

[Z — za0/v/n,0) .

A (1 — a) x 100% one-sided confidence upper bound on p is given by

(—00,Z + 240/+/n] .
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Case 2: Normal Population Mean with Unknown Variance
Previously, we constructed Cls under the assumption of known variance, because our
Cls (e.g., [T — 2a/20/V/N, T + 24/20/+/n]) require o2
® |f the variance is unknown, we can no longer compute these Cls.

® A natural idea: estimate the variance using the sample variance S? and plug it
into our previous Cl. For example, one might consider

- S S S
X—c—, X+ c—]
[ vn' Vn
However, the key step in constructing the Cl is to calculate the exact coverage
probability, i.e., we need to determine

_ S _ X’—u
_ <y < — ) = —c< < .
]P’(X c\/ﬁ_,u_X—l—c ) IP’(C _c)

e Question: What is the distribution of 5),_(/\_/’%?
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The ¢-Statistic

Let us standardizes the sample mean using the sample standard deviation:
_X-up
- S/yn’

In contrast, when variance is known, we have

T

_X—p
o/

e Although T differs from Z, they should not be too different. Since S? is a
consistent estimator of o2, it will converge to o2 as the sample size increases,
making T and Z nearly indistinguishable for large samples.

Z

N(0,1).

e With a large sample size, we may consider T ~ Z.

® The main differences appear in moderate to small samples.
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It turns out that T follows exactly the so-called Student’s ¢-distribution with degrees of

freedom v =n — 1.

Student’s t distribution

Let _
_ X—u

_X—w_ o N(O1)
Sivn V82t 2 /(- 1)

Then, T has a Student’s ¢ distribution with degree of freedom n — 1.

T

® A t-distribution has one parameter, v = n — 1, and is typically denoted as ¢,,.

® The distribution is named after William Sealy Gosset’s 1908 paper in Biometrika,
published under the pseudonym “Student”.
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PDF of the ¢ distribution

0.3
0.2

0.1

® |ts pdf has a “bell” shape, similar to normal.

® As the sample size n grows to oo, the t distribution is closer and closer to a
standard normal distribution. Why?

® |t has “heavier tail” than normal distributions, so it will more frequently produce
outliers. This is due to the additional randomness introduced by the need to use
sample variance.
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Critical value for ¢ distribution 0.4

Let T be a Student's ¢ distribution
with degree of freedom n. We define
the critical value (also called the
t-score) associated with the desired

0.3

significance level o to be the value ¢,, o

such that 011

P(T > tha) = . 0—— ) 0 2 4

® An « proportion of observations fall above ¢, 1_.

® To find out the value of t,, o, use scipy.stats.t.ppf (1-alpha,DoF) in Python.
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Case 2: Normal Population Mean with Unknown Variance
We can write the coverage probability of the Cl [ f’X + Cf} with
€= tn—l,a/Z as

_ _ S X — o
P(X Cf spsX Cﬁ) P( fn-ta/2 S g7 S t“/lv“/Q)

:]P)( n— 1a/2<T§ n— 1,a/2):a'

Cl for p with unknown o

If Z is the observed sample mean of a random sample with size n and unknown

variance, a (1 — «) x 100% confidence interval on p is given by

[:Z‘ - tn—l,a/Qs/ﬁa T+ tn—l,a/Qs/\/ﬁ]

Notice that we used a lower-case T and s to denote the realized values, instead of the
random statistics.
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Example on Slide 29
® Data: X =9, 52 =9.5,and n = 9.
® Known Variance: Assume 02 = 4 (so o = 2). Then, the 95% Cl for y is

2
94+1.96—==9+1307 = (7.69,10.31).

V9
® Unknown Variance: Using the sample variance and ¢ 0258 = 2.306, the 95% ClI
for u is
V9.5
9+ 2.306W ~9+2370 = (6.63,11.37).

¢ Other Confidence Levels (Unknown Variance):

* 99% Cl: 9+ 3.3355:5 ~ (7.28,10.72).

© 90% Cl: 9+ 1. 859‘7 (7.91,10.09).
e Observation: When o2 is unknown, the Cl becomes wider due to the additional
uncertainty in estimating the variance.
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Choice of Sample Size

Recall the Cl with unknown variance is given by

[i‘ - tn—l,a/Qs/\/ﬁa T+ tn—l,a/?’s/\/ﬁ]

Question
How many observations do we need so that the estimation error is smaller than some

tolerance €7

We need

9

t,_ s\ 2
<e=n> <"1a/2>

S
tn—l,a/2%
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One-sided Confidence Interval

If we care only about one side of the value, we construct one-sided confidence interval.

® In this case, we assign probability only to one side of the sample mean.

One-sided Cl for normal population mean with unknown variance

A (1 — a) x 100% upper-confidence bound is

p< T+ ty_1,05/Vn.

A (1 — a) x 100% lower-confidence bound is

=T — tn—l,as/\/ﬁ~
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Case 3: Confidence Interval for the Population Variance

Let X1,...,X, beiid N(u,d?).

2

® Suppose both the mean p and the variance o are unknown.

® We want to construct a 95% Cl for the unknown population variance o2.

® We know that the sample variance S? is a good point estimator for o2.

Question: What kind of distribution does the sample variance 52 follow?
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Chi-squared Distribution

Let

e Think of this as a standardized version of S2.
x? distribution

Let X2 = & , then X2 follows the chi-squared distribution with degree of
freedom v = n — 1, usually denoted as Xn—l'

Notice that X2 is NOT a statistic because it depends on the unknown parameter o2.
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® The chi-squared distribution with v PDF of the y2 distribution

degrees of freedom can be written as

v —2

X12/ = Z Zi2’ - X%

= —x3

where the Z; are independent standard Xi
normal random variables. X%

2
® \2_, is always non-negative. \N\ X9

® This distribution is asymmetric and

skewed to the right. \
* E[\}]=v, Var(x?)=2w. ‘ \\r\_\
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PDF of the x2_, distribution

x? critical value ‘ ‘

Let X2 be a x2_; random variable.
We define X%L—l,a to be the value such
that

]P)(X2 > X?Z“Lfl,a) = Q.

Area = «
® An « proportion of observations
2
fall above x;,_; .
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Case 3: Confidence Interval for the Population Variance

Steps to construct a confidence interval for the population variance o?:

@ Find a statistic S? informative about the parameter.

® Find the distribution of the statistic:

2
(n _ 1)52 9 Xn—1,0.975

2
X = 2 ~ Xn—1-

g

© Write down the probability equality

2
Xn—1,0.025

P(X?z—l,l—oc/2 <X < Xi—l,a/2) =1l-a

Area = 0.05

@ Re-arrange terms to get the coverage probability

_ 192 _1)52 -
IP<(n 1)S < 2<(n 1)S>:1_a. 2 0 2 4 6 8 10 12 14

2 0 =3
Xn—1,a/2 Xn-1,1—a/2
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Two-sided Cl for population variance

A two-sided (1 — a) x 100% confidence interval for the population variance o2 is

(n—1)s% (n—1)s?

2 N
Xn—1,0/2 Xn—1,1-a/2

Notice that we used a lower-case s to denote the realized value.

Remarks

® One-sided Cl
2 2
(n—1)s and (n—1)s

2 2
Xn—l,lfa Xn—l,a

, OO

e Symmetric CI? In fact, this is not optimal in terms of minimizing the length.
Beyond the scope of this course.
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Case 4: Large-Sample Confidence Interval for Population Proportion

It is often necessary to construct confidence intervals on a population proportion.

Example: A random sample has been taken from a large population and that X
observations in this sample belong to a class of interest. Then the sample proportion,
P = X/n, is a point estimator for the population proportion of that class.

Example: (Bernoulli) Observe 300 flips, 200 heads and 100 tails. We are “95% sure”
that the probability of getting a head is within [0.613,0.720].

® How to construct a Cl for population proportion?
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Steps:
e Statistic: P = X/n.
e Distribution of the statistic: (for large-sample n > 30)
X —np P— D
Z pu— p—
Vnp(l—p)  /p(1—p)/n

® Probability equality

~ N(0,1).

P(—24/2 < Z < 24p2) =1 —a.

® Re-arrange terms

P(ﬁ_zaﬂ,/m—mgpgﬁ_w/w> .
n n

We have a problem!

® (| as statistics cannot have unknown parameters.

0000080000000
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Solution: it is often satisfactory if we simply replace p by P, when the sample size n is
suitably large (n > 30).

Large-Sample Cl for population proportion
A (1 — ) x 100% confidence interval for the population proportion p is

. [p(1 —p) [p(1 —p
et p( p)) B 2 pL-p)|
n mn

Notice that we used a lower-case p to denote the realized value.
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Example: Observe 300 coin flips, 200 heads and 100 tails. Calculate a 95% Cl:

2 21-2) 2
== —-1. 3 37
3~ 1964/ 00

= [0.613,0.720].

Example: Observe 3 coin flips, 2 heads and 1 tails. Calculate a 95% Cl:

= [0.133,1.120].
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Example: Inferring Sample Size from a Poll
On October 14, 2003, the New York Times reported that a poll indicated that 52% of
the population was in favor of President Bush's job performance with 95% confidence
and a margin of error of £4%. What does this mean? Can we infer how many people

were questioned?
Interpretation:
e With 95% confidence, the true proportion p lies in the interval
[0.52 — 0.04,0.52 4 0.04] = [0.48,0.56].

® The margin of error (half-width) of the 95% Cl is given by 20251/ w, where
]3 =0.52 and 20.025 — 1.96.
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Example: Inferring Sample Size from a Poll

Calculations:

0.52 x 0.48
Lo [0,
n
Solving for n:
52 x 0.4 .04 52 x 0.4
052x048 004 _  ~_052x048 00
- 1.96 (0.04)2

1.96

Thus, approximately 600 people were surveyed.
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Case 5: Large-Sample Confidence Interval

For real-world problems, the population is not normally distributed.

For population mean p

e By CLT, for large sample (n > 30) we have f—\;g ~ N(0,1).
®* So
[T + za/ga/\/ﬁ, T+ zl,a/ga/\/m
is still an effective (1 — ) x 100% CI.
® Similarly, when o is unknown, replace o by s.

® For one-sided CI, we have

(=00, T + z48/V/n] or [T — z48/V/n,+).

Similarly, we can construct Cl for ¢ just as we did for normal sample.

0000000000800
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General Steps for Constructing a (1 — «) x 100% Cl

@ Use only the samples, the known parameter(s) and the parameter of interest
to construct a quantity Y, such that its distribution is known, and the distribution
does not depend on 6.

® Usually starts with a point estimator of the target parameter.

® Compute a interval [A, B] such that the following (approximately) holds

P(Y €[A,B)=1-a.

® For one-sided case, set A to —oo or B to +0o accordingly;
® For two-sided case, find A, B such that they assign equal probability a/2 to each
side.
© Rearrange the interval A <Y < B using the expression of Y obtained in Step 1,
and obtain a interval that covers the population parameter of interest. This final
interval will be the desired CI.
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Extended Reading

® Chapter 8 of Douglas C. Montgomery and George C. Runger, Applied Statistics
and Probability for Engineers, 7th Ed.

¢ (Advanced) More on t distribution and x? distribution. Section 4.6 of this book:
https://www.utstat.toronto.edu/mikevans/jeffrosenthal/chapt4.pdf


https://www.utstat.toronto.edu/mikevans/jeffrosenthal/chapt4.pdf
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