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Introduction

® Hypothesis testing is a critical tool in evidence-based decision-making, a process
that begins with posing a question that demands a clear, data-driven answer.

® This approach is fundamental in fields where decisions have significant
implications, such as healthcare, education, and policy-making.

® |et's elaborate on this concept with two examples.
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vn Variance One-Sample Tests for Normal Hypothesis Tests and Cl

Example: Hypothesis

Question: “Is this new medication more effective than the current standard?”

® \We need to decide between two possibilities:
® Possibility 1: The new medication is no more effective than the current standard.
® Possibility 2: The new medication is more effective than the current standard.
® As a pharmaceutical company, we wish our newly developed medication to be
effective. Hence:
® Possibility 1 represents a conservative stance, assuming no difference until proven
otherwise.
® Possibility 2 is the assertion we hope to support with evidence to promote our new
medication.
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Example: Hypothesis

Question: “Does a new webpage design increase the time visitors spend on the
webpage?”

® We need to decide between two possibilities:
® Possibility 1: The new design does not increase the time spent on the page.
® Possibility 2: The new design increases the time spent on the page.
® As a recreational website, we wish our new webpage design to increase visitor

engagement. Hence,
® Possibility 1 represents a conservative stance, assuming no difference until proven

otherwise.
® Possibility 2 is the assertion we hope to support with evidence to promote our new

design.
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Null Hypothesis and Alternative Hypothesis

® |n both examples, there are two competing possibilities:
® The first possibility states that there is no desirable change or difference.
® The second possibility states that there is an effect.
® Such a pair of possibilities are called the null hypothesis and the alternative

hypothesis.

Null and alternative hypotheses

The null hypothesis (H)) is the hypothesis to be tested. We set up the hypotheses in
hopes of finding evidence against Hy — usually indicating that “nothing happened” or

“no change” occurred.

The alternative hypothesis (H;) is the competing claim and represents our question

of interest — usually asserting that “something happened” or there is a change.
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Deciding Between the Two Hypotheses

Example: “Does a new webpage design increase the time visitors spend on the
webpage?”
® For a data-driven answer, we may deploy both the original and re-designed
webpage to several users and observe their sojourn time on the webpage.
® Original design: X, Xs,..., X, with mean p, = E[X].
® New design: Y1,Y5,...,Y,, with mean p, = EY].
® To test the hypothesis, we compare the two population means:

® Null hypothesis Hy : y1;, > p, (i.e., the new design does not increase sojourn time).
® Alternative hypothesis H : ;1 < p, (i.e., the new design increases sojourn time).
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Deciding Between the Two Hypotheses

We re-expressed our verbal hypothesis (“new design does not increase the sojourn
time” versus “new design increases the sojourn time") as a pair of statistical
hypotheses:

Hy :pup = py  versus  Hy @ pip < fiy.

statistical hypotheses are questions/statements about the population parameters.

® How do we decide between Hy and H; when we do not know the population
means fi; and fi,?
® Fortunately, we can calculate the sample means X and Y, and compare them:
® Should we conclude there is no increase (support Hy) whenever X > Y?
® Due to randomness, even if the new design is better, it is possible that X>Yin
a given sample.
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For demonstration, assume that X ~ N (g, 1) and Y ~ N (g, 1).

Then, the distributions of the sample means are:

XNN(M;E,:) and Y~N<,uy,;).

Equivalently, we can test the hypothesis on the difference:

Hy:pip —py =0 versus  Hy @ pg — iy <O0.

The difference in sample means is then distributed as:

_ 11 2
X_YNN<Nx_Ny7n+n):N</~La:_ﬂyv>‘

n
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Probability of a Wrong Decision under H

Suppose Hj : ji; — jiy = 0 is true, then
PDF of X — Y with n = 100 under Hy : pp = 1y

o 2 2
X—Y~N<ux—uy,>zj\/<0,). 05
n n
o 2
If the sample difference X —Y < 0, we S
mistakenly reject Hy. =
For a symmetric Normal distribution ! Area — 0.5
centered at 0, the probability 05
P(X v < 0) — shaded area — 0.5 0704 03 02 —01 0 01 02 03 04

A high chance of making mistake!

Question: Can we devise a more reliable decision process?
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Conservative Decision Rule

® \We want the probability of making PDF of X — ¥ with n = 100 under Ho : tz = j1y
an incorrect decision to be small, say o
a = 0.05.
® To be conservative, instead of _ i
rejecting Hy when X —Y < 0, we 2
reject Hy (i.e., claim Hy) only when !
0.5
X-Y <-023.

0
04 03 —0.2 =01 0 01 02 03 04
® Under this rule, the probability of a
wrong decision is small:

P(X _V < —0.23) — 0.05.
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How to Decide Between the Two Hypotheses?

How can we make decisions so that we don't claim the wrong hypothesis with high
probability?

® In particular, how do we determine the critical threshold (the “magical number”
—0.23 from the previous slide)?

® This is the central challenge of hypothesis testing.
This topic

® Upon observing the data, we decide wisely which hypothesis is more consistent
with the evidence, with controlled probability of making any mistake.
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Null and Alternative Hypotheses

Null and alternative hypotheses

The null hypothesis (H)) is the hypothesis to be tested. We set up the hypotheses in
hopes of finding evidence against Hy — usually indicating that “nothing happened” or

“no change” occurred.

The alternative hypothesis (H;) is the competing claim and represents our question

of interest — usually asserting that “something happened” or there is a change.

® The alternative hypothesis is what we hope to support with evidence.
® Null hypothesis it the hypothesis that we want to reject!

® Both hypothesis are about the population properties, not the sample!
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Example: Website Design

Statistical hypotheses are often expressed in terms of the (unknown) population
parameters.

Parameters:

® ... population mean sojourn time for the old design.

® 1. population mean sojourn time for the new design.

Research Question: Does the new design increase the visitor sojourn time?

Statistical Hypotheses:

Ho: pgy > pby  versus  Hy o ju, < juy.
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Example: Cardiovascular Risk Factors

® Suppose we are interested in high cholesterol levels as an indicator of
cardiovascular risk.

® The “average/typical” cholesterol level is 175 mg/dL.

® A group of men who have died from heart disease within the past year are
identified, and their cholesterol levels are collected.

Parameters: Let ;1 be the population mean of the cholesterol levels of all men who
have died from heart disease within the past year.

Research Question: Do men who have died from heart disease have higher than the
usual cholesterol level?

Statistical Hypotheses:

Hy:p=175 mg/dL wversus Hj:p > 175 mg/dL.
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Decisions of a Hypothesis Test

Once hypotheses have been formulated, we need a method for using the sample data
to determine whether Hy should be rejected or not.

Hypothesis test

A hypothesis test is a rule to decide between two competing statistical hypotheses
using the sample data.

Possible decisions of a hypothesis test
® Reject Hj in favor of Hi: This indicates that there is sufficient statistical
evidence to support that something unusual has happened.

¢ Fail to reject Hy (accept Hp): This indicates that there is insufficient statistical
evidence to support that something unusual has happened.

v
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Types of Errors

In a hypothesis test, the goal is to see if there is sufficient statistical evidence to reject
a presumed null hypothesis in favor of a conjectured alternative hypothesis.

Four possible outcomes of a hypothesis test

Truth
Hy H,y
. Fail to reject Hy v Type Il error
Decision k
Reject Hy Type | error v

Type | error = Reject Hy when Hy is true.
Type Il error = Fail to reject Hy when Hj is true (so Hy is false).
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Inevitable Errors in Hypothesis Testing

Ideally, we want to incur no error at all, but due to experimental randomness, some
error is inevitable.
Example: Webpage Design Assume Hj is true (no PDF of X — ¥ with n = 100 under Ho : i, = 1,
increase in sojourn time).
® Recall that we claim H; when X —Y < —0.23.

® Thus, a Type | error (incorrectly rejecting Hy) O
occurs whenever X — Y < —0.23.

® The probability of a Type | error is

P(X _V < —0.23) — 0.05.

No matter how you choose your threshold ¢, P(X -Y < 5) > (. There is always a
positive chance of making a Type | error!



Introduction Concepts Normal Mean with Known Variance One-Sample Tests for Normal Hypothesis Tests and Cl
0000000000 0000008000000 0000000000000 000000000 0000000000 000

Rejection (Critical) Region: Website Example
Critical /Rejection region

In hypothesis testing, the rejection region is the set of test statistic values for which
we reject the null hypothesis Hy.

Example: Webpage Design. Hypotheses:
Hy :pup > pry  versus  Hy :pip < fiy.

® We choose a critical value § = —0.23 so that if X — Y < —0.23, we reject H.
® The rejection region is
X -Y <—-023.

® This threshold is selected to control the probability of Type | error at < o = 0.05.

How to design a good rejection region?
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Key quantities
Significance level = o = P(Type | error)
B = P(Type Il error)
Power = 1 — 8 = P(Reject Hy | Hj is true)

® |deally, we want the error rates small and the power high.
® The power is interpreted as the ability to detect the alternative hypothesis and
reject the null hypothesis.

Alternative terminology

Truth

HQ Hl

Fail to reject Hy true negative (prob. =1 —«)  false negative (prob. = ()

Decision ) .. ..
! Reject Hy false positive (prob. = «) true positive (prob. = power)
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Example: Flip a coin 10 times, let X; denote the outcome of the ith flip.
Hy:p=20.5.

® Rejection region Z}il X; <2o0r >8 Whatis a?
® Rejection region 21'121 X; <1lor>9. What is ag?
® Rejection region Z}il X; <2or>8, and Hy : p=0.25. What is 81 and power?
® Rejection region 22'121 X;<1lor>9, and Hy : p=0.25. What is 52 and power?

Solution: Under Ho, we have X = 310, X; ~ Bin(10,0.5):

0 1 2 8 9 10
a = P(X < 2)+P(X > 8) = ( >0.500.510+( )0.510A59+< >0A520A58+( )0.580.52+< )0.59051-&-( >0<5100.50 ~ 0.1094
10 10 10 10 10 10
_ _ (0 0, <10 1 1, .9 9 9, 1 10 1 0
ag =P(X <1)+P(X >9) = 0.5%0.510 + 0.5%0.5% + 0.5%0.5' + 0.5100.5% ~ 0.0215.
10 10 10 10
Under Hy, we have X = Z}il X,; ~ Bin(10,0.25):

o i 10—i
B1=P2<X<8=> <10>0A25 (1 —0.25) A~ 0.4740 and power = 1 — By ~ 0.5260.
1=3

8 .
i . .
B2=P1<X<9)=> <10)0A25‘(1 —0.25)107% ~ 0.7559 and power = 1 — B & 0.2441.
=2
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Observation from the previous example

® When H; is not an equality, the power depends on the true parameter, under
which you calculate the probability.
® As the rejection region shrinks, the probability of type | error reduces.
® |n a test with small «, rejecting Hy = VERY strong evidence against Hy.

® As the rejection region shrinks, the probability of type Il error increases, and so
the power decreases.

® However, small « also result in increased risk of type Il error.

Ideally, we want the probability of both error to be small at the same time.
Unfortunately, this is not achievable.

There is a trade off between « and !
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Neyman-Person Paradigm

With the trade off between o and 5. What we usually do is:

e Control the type | error rate (significance level, a) by setting a tolerance level.
® We usually target o < 0.1, 0.05 or even 0.01.
® *Minimize type Il error rate when possible. (In advanced statistic course.)

® |nstead of rigorously find the “most powerful”, we present intuitive ways to construct
good enough tests.

Type | error is usually more serious

The reason for the primary focus to be on controlling the type | error is because we are
more concerned about making a false positive claim (claiming there is an effect when
there isn't) than making a false negative claim (failing to detect an effect when there is
one).
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Type | and Type Il Errors in Different Contexts

What are the type | and type Il errors in the following situations?

e “Hy Not Guilty versus Hy Guilty” or “Hy Guilty versus Hy Not Guilty”?
® “Hy Spam versus Hy Not Spam” or “Hy Not Spam versus H; Spam”?
e “H, Healthy versus Hy Sick” or “Hy Sick versus H; Healthy”?

[ ]

“Hy Drug is not safe versus safe” or “Hj is safe versus Hj not safe”?
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Type | Error is More Serious Than Type Il Error
Example: Criminal Justice: Hy: Not Guilty, Hy: Guilty.

® Type | Error: Convicting an innocent person (rejecting " Not Guilty” when it is
true).

e Type Il Error: Acquitting a guilty person (failing to reject " Not Guilty” when it
is false).

Example: Spam Detection: If we set Hy: Email is Not Spam and H;y: Email is Spam:

® Type | Error: Misclassifying a legitimate email as spam.
® Type Il Error: Failing to detect an actual spam email.

Example: Health Diagnosis: If Hy: Healthy and H;: Sick:

® Type | Error: Diagnosing a healthy person as sick (false positive).
® Type Il Error: Failing to diagnose a sick person (false negative).

Example: Drug Safety: If Hy: Drug is Safe and Hy: Drug is Not Safe:
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A Normal Example

Example: Samples X,...,

® Hypotheses
Hy:p=pg. vs.

e Consider the statistic below

/-statistic

Assume that X is normally distributed with unknown mean p and known variance o.

Under Hy : o = po
X — o

=i~

X,, are generated from N (p, o
known o2. We suspect that the mean is not .

N(0,1) and observed value 2z =

Onr SHmp\r |L sts for Normal

Hypothesis Tests and Cl

) with unknown x and

Hy : p # po.

T — o

o/vn

The Z-statistic quantifies how far Z is from g in its standard deviation units.
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When should we reject Hy : pt = po?

® Intuitively, if we observe a & that is far smaller or far greater than pg, we should

to reject Hy.

® This is equivalent to observing a

_ T — o

/v

that is far smaller or far greater than 0.

z

® The rejection region should be
R={|z| > ¢},

for critical value ¢ to be determined.
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Suppose the rejection region is R = {|z| > c}.

® When the probability of type | error
equals o, we can calculate the critical
value:

Area=q/2 Area=q/2

=P (Z € Rl Ho) =P (|Z| > ¢)| Ho)

Results in ¢ = Za)2- Area =1—«

® The rejection region is then

REJECT ACCEPT REJECT

R= {‘Z‘ > za/Q} = {«f 2> po + 2504/20'/\/777’}U{CE < po — Za/ZO-/\/ﬁ}

Observations
The type | error rate o can always be reduced by appropriate selection of the critical
values, i.e., zq/2 ¢+ .
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Decision Procedure and Critical Region

In summary, we choose the following form of the critical region:

j_
R= {xl,xg,...,a:n: 0/\/'[%) >Za/2} ={z:2> 242},

° 2= ”/\‘/‘9 is called the observed test statistic.

® The critical value z, /5 is the cutoff point that defines the boundary of the

rejection region.
® The critical region R has a Type | error probability of exactly a.

Testing Procedure

@ Collect observations 1, s, ..., T, and compute observed test statistic z = :*“O.

@® Check if z1,x9,...,2, € R, i.e., if |2] > 2/2:
® If [2] > 242, reject Hy.
® If [2| < 2472, accept Hy.
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Example: Effective Substance in a Medicine

The effective substance in a medicine needs to be 8.5 mg per tablet. Suppose you
sample 5 tablets and obtain a sample mean of 8.8 mg. Assume that the amount follows
a normal distribution with mean p and variance 1. We want to test the hypothesis

Hy:p=28.5 wversus Hp:p#8.5,

at a significance level of o = 0.05.

Solution:

e Compute z = j/\“fo = 8\8/35 \91 ~ 0.671.

e Compare z with zp 925 = 1.96. Since 0.671 < 1.96, we do not reject Hy.

® Conclusion: There is insufficient evidence to reject the claim. We accept Hy and
conclude that the effective substance in the medicine meets the standard of
8.5 mg per tablet.
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Example: (Cont'd) Effect of Sample Size
® What if the sample mean of 8.8 mg is obtained from 100 sampled tablets?
e Compute the observed test statistic:
T—pp 88-85 03

T on T /1100 01 °

® Compare with the critical value zp 925 = 1.96 we see that z = 3 > 1.96.

® Conclusion: Since z > z, /5, we reject Hy and claim that the effective substance
in the medicine fails to meet the standard of 8.5 mg per tablet.

Observations

With the same distance between the sample mean of 8.8 mg and the hypothesize value
of 8.5 mg, the conclusion of the test may change when sample size changes. A larger
sample size make it easier to reject when observing the same sample mean.
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Some Intuitions
We decide by comparing test statistic z = f/_—“\/% with the critical value z, /5.

e Effect of the Sample Mean:
If the sample mean deviates more from g, then z becomes larger in absolute
value. Consequently, it is more likely that 2 will exceed the critical value z, /o,
leading to rejection of Hy.

e Effect of the Sample Size:
With all else fixed, a larger sample size n decreases the denominator o/y/n. This
increases the absolute value of z, making it easier to reject Hy.

e Effect of the Significance Level:
Increasing av makes z, /5 larger, which in turn makes the rejection region larger
and the test less conservative (i.e., easier to reject Hy). Conversely, a smaller «
leads to a smaller z, /o, making the test more conservative.
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One-Sided Hypothesis Test for Mean with Known Variance

We wish to test whether the population mean 1 exceeds a specified value pyg, i.e.,

Ho:p=po versus Hjp:p> pp.

® |Intuitively, if the sample mean Z is much higher than pg, we reject Hy.

® We define the critical region as

R=A{x1,29,...,2y : T — pp > c}.

® In standardized form, let z = then the critical region becomes (one-sided)

/f’
R={z:2>c/(c/v/n)}.

® How to determine ¢ in order to control the Type | error at significance level o
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Similar to the two-sided test, we seek to control the probability of a Type | error
(rejecting Hp when it is true) to be less than the significance level a.

® Under the null hypothesis, the test
statistic is

_ Cutoff z,
_ X — o

- o/yn
® Therefore, the probability of a Type |

VA

~ N(0,1).

Area=«

Area =1—«

error is

) ACCEPT REJECT
P(X—uo > c) = P(i/_\//%o > U/C\/ﬁ) = P(Z > U/L\/?J

To ensure this probability equals «, we set
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Decision Procedure and Critical Region (One-Sided Test, Right-tailed)

In testing Hg : p = po versus Hy : pu > po, we choose the following critical region:

T — po
R:{xl,xg,...,xn: 0/\;% >za}:{z:z>za}.

2 = Z710 s called the observed test statistic.
a/vn

® The critical region C' is chosen such that the probability of a Type | error
(rejecting Hy when it is true) is exactly a.

Testing Procedure

T—o
a/vn’
® Check whether the computed z falls in the critical region R, i.e., if 2 > z4:
® If z > z,, reject Hy.

@ Collect observations 1,3, ..., T, and compute observed test statistic z =

°® If 2 < z,, fail to reject (accept) Hyp.
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Decision Procedure and Critical Region (One-Sided Test, Left-tailed)

In testing Hg : p = po versus Hy : j1 < pp, we choose the following critical region:

T — o

o/vn

R:{xl,xg,...,xn: <—za}:{z:z<—za}.

e » = 710 s called the observed test statistic.
a/vn

® The critical region C' is chosen such that the probability of a Type | error

(rejecting Hy when it is true) is exactly a.

Testing Procedure

@ Collect observations 1,3, ..., T, and compute observed test statistic z = f—/_\/&%

® Check whether the computed z falls in the critical region R, i.e., if 2 < —z,:
° |f 2 < —z,, reject Hy.
® If 2 > —2z,, fail to reject (accept) Hy.
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Measuring Evidence Against H)

Example: Speeding Offense: Decide whether a driver commits a speeding offense:
Hy:s=sg (notspeeding) versus Hjp:s> sy (speeding),

where so = 40 km/h is the speed limit.

e Assume driving speed follows a normal distribution: S ~ A/(40, 25).
® For a driver with speed 55 km/h, standardize:

~5—-40
-5
Only 0.13% of drivers would be faster than 55 km/h.

e = Strong evidence against not speeding.

~N(0,1) = P(S>55) = P(Z > L55) — P(Z > 3) ~ 0.0013.

VA

Conclusion: With such strong evidence against Hy, a speeding ticket is
warranted.
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Cutoff s = 55

Area = 1 — p = 0.9987

Hypothesis Tests and Cl

® For a driver traveling at 55 km/h, the p-value is given by
S—40 _ 15
>

—P(5 > 55) = P( >
® This means that only 0.13% of all drivers would be driving “more
extreme(faster)” than the driver at question.

® This probability p is called the p-value.

7) — P(Z > 3) ~ 0.0013.
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Cutoff

p=P(S > 45) = 0.1587
Area =1 —p=0.8413

s =45

Consider another driver traveling at 45 km/h:

® The p-value is

S —40 S 45 — 40
5 5

e With a p-value of 0.1587, about 15.87% of all drivers would drive more
extremely.

e |f this driver is ticketed, then we would ticket at least 15.87% of all drivers —
clearly too many.

p=P(s > 45) = P( ) =P(Z 2 1) % 0.1587.
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p-Value

p-value

Given an observed ¢ (e.g. s in speeding example), the evidence against H\ can be
measured by the p-value, defined as the probability of observing a more extreme

(unlikely) value of the test statistic 7' (e.g. S in speeding example) outcome than ¢,
under the null hypothesis Hy : u = .

® The p-value depends on the observed sample .
® |t measures, for an observation, the strength of evidence against Hy.

® The smaller the p-value, the stronger the evidence against Hj. (Because fewer
people would be expected to act “more extremely”.)
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Meaning of “More Extreme” Depends on H;
If Hy: = po versus Hy : > po:
® When z is large, T is much larger than pg. This suggests that p is more likely to
be larger than pg, providing evidence in support of H;.
® The pvalueisp=P(Z > z), Z~ N(0,1).
If Hy: p = po versus Hy : p < po:
® When z is small, & is much smaller than pg. This suggests that p is more likely to
be smaller than pg, providing evidence in support of H;.
® The pvalueisp=P(Z < z), Z~ N(0,1).
If Hy: u = po versus Hy : p # po:
e When || = =2
o//n
from po. Hence, a large |z| is considered more “extreme.”
Zl>12), Z~N(0,1).

is large, |Z — po| is large, indicating that w is likely to differ

® The p-valueis p = P (
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Connection to the Rejection Region

Consider the one-sided test as an example:

Ho:p=pg versus Hy:p> pg.

® The p-value is defined as p = P(Z > z), Z ~ N(0,1), where z = i;\’/*% is the

observed test statistic.

® The rejection region is given by
R={z:2>z,}.
® Notice that p < « is equivalent to z > z,.

Decision rule using p-values
e If p<al(ie, z€C), reject Hy.
e If p > a, fail to reject (accept) Hp.
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Equivalence of rejection rule and p-value decision rule
e If p <« if and only if z € C, then we reject Hy.

e If p> «if and only if z ¢ C, then we fail to reject (accept) Hyp.

p < a implies rejection of Hy p > « implies failure to reject Hy

Rejection cutoff z, Rejection cutoff z,

Observed z9 Observed 21
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Exercise: Verification of Rejection Rules

1. One-Sided Test: Hg: u = g versus Hy : pu < pg

® The test statistic is _
5= L — Mo

~o/yn

® The p-value is defined as
p=P(Z<z), Z~N(0,1).

® To reject Hy at significance level «, we require p < a.

® Since P(Z < —z,) = «, the condition p < « is equivalent to
z2 < —Zg-

® Hence, rejecting Hy when z < —z, is equivalent to p < a.
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Exercise: Verification of Rejection Rules
2. Two-Sided Test: Hy : u = g versus Hy : o # g

® The test statistic is _
= L — Ho

~o/vn’

® The p-value is defined as
p=B(|Z| > |zl), Z~N(O,1).

® To reject Hy at significance level «, we require p < a.

® Since P(|Z| > 2,/2) = «, the condition p < « is equivalent to
|z| > Za/2-

® Thus, rejecting Ho when |z| > 2,5 is equivalent to p < a.



Introduction Concepts Normal Mean with Known Variance One-Sample Tests for Normal H |)uthgsw>, Tests and Cl
00 00 00 0000000000080 o o o000

Hypothesis Testing using p-values

Procedure:

@ Collect observations =1, s, ..., T, and compute z = YNGR

® Compute the p-value associated with the observed z
* p=P(Z>2), Z~N(0,1),if H :p> po.
* p=P(Z<z), Z~N(0,1),if H :p< po.
© p=P(|Z] > |2}, Z~N(O,1),f Hy:p# po.
© Decision: For a prespecified significance level a:
® |f p < a, reject the null hypothesis Hy.
® If p > «, accept (fail to reject) Hyp.
Alternatively, use rejection regions:
® If 2 > z,, reject the null hypothesis Hy for Hy : p > pp.
® If 2 < —2z4, reject the null hypothesis Hy for Hy : p < pp.
® If [2| > z4/2, reject the null hypothesis Hy for Hy : ju # po.
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Two Equivalent Procedures for Rejection

Two equivalent procedures for rejection

@ Specified a rejection region with significance level «, observe the data, and reject
if the data falls in the rejection region.

® [The usual way] Observe the data, calculate the p-value, and reject if the p < a.

Hy Rejection region p-value
WEpo 2> 2 B(Z] > [2 | Ho true)
> o z> 24 P(Z > z | Hy true)
< po z2 < 2o P(Z < z | Hy true)

*Z ~ N(0,1)
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One-Sample Tests for Normal

® One-sample t-Test for normal mean with unknown variance.

® One-sample y2-test for normal variance and standard deviation

Hypothesis Tests and Cl
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One-Sample t-Test — Normal Mean with Unknown Variance

Consider a normal random sample where i is unknown and ¢ is unknown.

Recall from Confidence Interval (Slide 38) that we introduced the ¢-distribution as the
distribution of standardized sample mean when the variance is unknown.

T-statistic
Assume that X is normally distributed with unknown mean p and unknown variance
o2, Under Hy : i1 = o,

roX-m _ E-w)/e/ym) __ NOQD

S/Vn 5o 2 /(n—1)

where tg4¢ denotes a t-distribution with degree of freedom df.
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One-Sample t-Test — Normal Mean with Unknown Variance

Two-sided ¢-test rejection region One-sided (left) ¢-test rejection region One-sided (right) t-test rejection region

Cutoff 1.0

Cutoff —t,_1,0,

Cutoff —t—1,0 Cutoff —ty—1.0

Area :01/2

ACCEPT REJECT

REJECT ACCEPT

REJECT ACCEPT

Two-sided ¢-test p-value One-sided (left) ¢-test p-value One-sided (right) t-test p-value

observed t

observed t

observed — || observed |t|

Area=p/2 Area=p/2

H, Rejection region p-value
WFfo > te1ap POT| > [f]] Ho)
> o t>th—1,a P(T >t | Hy)
< o t < _tn—l,a P(T <t | H())

*T ~ th_1, IP(T > tn—l,a) = .
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Example — One-Sample ¢-Test (One-Sided)

Example: In the smart student example, assume that the standard deviation of population 1Q
is unknown. From the random sample of 9 students, we can calculate Z = 112.8 and s = 12.7.

¢ Null and alternative hypothesis

Hy:p=100. ws. Hjp:p>100.

® Test statistic _
X —
T = S/\/%O ~ tn,_1 under Hy,n =9
T — o 112.8 — 100
t = = ~ 3.02.
s/v/n 12.7/7/9
® p-value

p="P(T >3.02 | Hy) = 0.0083 < 0.05 = a.

® Conclusion: Reject the Hj at significance level 0.05.

Alternatively, find the rejection region {t : ¢t > t,,_1 o = 1.8595}.
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Example — One-Sample ¢-Test (Two-Sided)

Example: An insurance company is reviewing its current policy rates. When
originally setting the rates, they believed that the average claim amount was $1,800.
They are concerned that the true mean is actually different from this:
® |f the mean is much higher than $1,800, they lose money because of the claims.
e |f the mean is much lower than $1,800, they lose clients because they may be
charging too much for the insurance.
We assume the claim follows a normal distribution with a unknown variance.

They randomly select 100 claims, and calculate a sample mean of $1,650 and sample
standard deviation of $700.

Question: Consider a test at significance level & = 0.05 to see if the insurance
company should be concerned.
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Null and alternative hypothesis
Hy: p=1800. ws. Hip:p # 1800.

Test statistic

X —
T = S/\/’%O ~ t,_1 under Hy,n = 100,
f_ Tl _ 1650 — 1800 ~_914.
s/y/n 700/+/100
p-value:

p=P(T| > |—2.14| | Hyp) = 0.0348 < 0.05 = a.
Conclusion: Reject the Hj at significance level 0.05. There are significant
evidence that the mean of the claims is not $1,800.

Alternatively, find the rejection region {t : t > t100—1,0.05 = 20.05 = 1.96}. Since
| —2.14| > 1.96 reject Hy at significance level 0.05.
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One-sample y?-test — Normal Variance and Standard Deviation

Now, we want to test hypotheses regarding the variance of a normal population.

Assumptions

® Normal random sample or large sample.

2

® Both mean u and the variance ¢© are unknown.

Hypotheses
Hy:o0* =02 ws. Hy:o0%#ob.

Test statistic )
- 1S
X% = % ~ x2_, under H,.
)

where X?lf denotes a y2-distribution with degree of freedom df .

Normal Mean with Known Variance One-Sample Tests for Normal ypothesis Tests and Cl
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Two-sided x>-test rejection region One-sided (left) x*-test rejection region One-sided (right) x>-test rejection region
Cutoff x% | Cutoff 32, s Cutoff X2, Cutoff x5 10

Area=of2 Area=a/2 Arta=a

REJECT ACCEPT REJECT REJECT ACCEPT ACCEPT REJECT

Two-sided x>-test p-value One-sided (left) x>-test p-value One-sided (right) x>-test p-value

observed x2 observed x2 observed x? observed y?

Area=pf2 Area=p/2 Area=p

H, Rejection region p-value
ot #£ ol 1?> X?L—l,a/Q or 22 < Xi—l,l—a/? 2 x min{P(X > 2? | Hy),P(X? < 2? | Hp)}
%> o8 > XE 1. P(X?% > 22 | Ho)
o? <o 22 <2 1. P(X2% < 22 | Hp)

X2~ xp oy P(X2 > X%A,a) = Q.
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Example — One-Sample Y2-Test for Normal Standard Deviation

Example: The lapping process is used to grind certain silicon wafers to the proper
thickness. It is acceptable only if o, the population standard deviation is at most 0.5
mil (thousandth of an inch). Suppose we have a sample of size 15 and observed a
sample standard deviation of 0.64 mil.

Question: Set a = 0.05, is the sample significant enough to support the claim that
the population variance o > 0.57
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Null and alternative hypotheses
Hy:0=00=0.5. vs. H;:oc>0..
Test statistic
X% =(n—1)S?/02 ~ x%_; under Hy,n =15
22 = (n—1)s%/of = (15 — 1) x 0.64%/0.5% ~ 22.94.
p-value
p=P(X%*> 2% | Hy) =P(X?> 2294 | Hy) = 0.061 > 0.05 = a.

Conclusion: We fail to reject the null hypothesis “no difference” at significance
level 0.05.

Alternatively, find the rejection region: {z*:2* > x2_; , = 23.68}. Note that
22.94 < 23.68, fail to reject Hy.
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Connection Between Confidence Intervals and Hypothesis Tests

Confidence intervals and hypothesis tests are two sides of the same coin.
e Confidence intervals provide a range of plausible values for a population
parameter.

® Hypothesis tests offer a formal procedure to decide whether to accept or reject a
specific claim about that parameter.

® |n many cases, the results of a hypothesis test at a given significance level a can
be directly interpreted through the corresponding 100(1 — )% confidence interval.



Introduction Concepts Normal Mean with Known Variance One-Sample Tests for Normal Hypothesis Tests and ClI
0000000000 0000000000000 0000000000000 000000000 0000000000 o] le}

Connection Between Confidence Intervals and Hypothesis Tests

Example:

@ For testing Hy: p = po versus Hy :p # po at level o
® We construct a two-sided 100(1 — )% confidence interval for p.
® |f the interval contains po, we do not reject Hy.

® For testing Hy : = pg versus Hi : > g at level a

® We construct a one-sided 100(1 — )% confidence lower bound for .
® |f the bound contains pg, we do not reject Hy.

© For testing Hy : p = po versus Hjp : p < po at level a,

® We construct a one-sided 100(1 — )% confidence upper bound for (.
® |f the bound contains i, we do not reject Hy.
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Hypothesis Testing and Confidence Interval

Connections
® Typically, conclusion from a hypothesis test can be reached using a Cl.

e If the observed (1 — «) x 100% CI does not contain the hypothesized value
specified in the null hypothesis, we reject Hy in favor of a two-sided H; at
significance level a.
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