
IEDA 2540 Statistics for Engineers

Hypothesis Testing

Wei YOU

Spring, 2025

1/59



2/59

Introduction Concepts Normal Mean with Known Variance One-Sample Tests for Normal Hypothesis Tests and CI

Introduction

• Hypothesis testing is a critical tool in evidence-based decision-making, a process

that begins with posing a question that demands a clear, data-driven answer.

• This approach is fundamental in fields where decisions have significant

implications, such as healthcare, education, and policy-making.

• Let’s elaborate on this concept with two examples.
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Example: Hypothesis

Question: “Is this new medication more effective than the current standard?”

• We need to decide between two possibilities:
• Possibility 1: The new medication is no more effective than the current standard.
• Possibility 2: The new medication is more effective than the current standard.

• As a pharmaceutical company, we wish our newly developed medication to be
effective. Hence:

• Possibility 1 represents a conservative stance, assuming no difference until proven

otherwise.
• Possibility 2 is the assertion we hope to support with evidence to promote our new

medication.
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Example: Hypothesis

Question: “Does a new webpage design increase the time visitors spend on the

webpage?”

• We need to decide between two possibilities:
• Possibility 1: The new design does not increase the time spent on the page.
• Possibility 2: The new design increases the time spent on the page.

• As a recreational website, we wish our new webpage design to increase visitor
engagement. Hence,

• Possibility 1 represents a conservative stance, assuming no difference until proven

otherwise.
• Possibility 2 is the assertion we hope to support with evidence to promote our new

design.
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Null Hypothesis and Alternative Hypothesis

• In both examples, there are two competing possibilities:
• The first possibility states that there is no desirable change or difference.
• The second possibility states that there is an effect.

• Such a pair of possibilities are called the null hypothesis and the alternative

hypothesis.

Null and alternative hypotheses

The null hypothesis (H0) is the hypothesis to be tested. We set up the hypotheses in

hopes of finding evidence against H0 – usually indicating that “nothing happened” or

“no change” occurred.

The alternative hypothesis (H1) is the competing claim and represents our question

of interest – usually asserting that “something happened” or there is a change.
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Deciding Between the Two Hypotheses

Example: “Does a new webpage design increase the time visitors spend on the

webpage?”

• For a data-driven answer, we may deploy both the original and re-designed
webpage to several users and observe their sojourn time on the webpage.

• Original design: X1, X2, . . . , Xn with mean µx = E[X].
• New design: Y1, Y2, . . . , Yn with mean µy = E[Y ].

• To test the hypothesis, we compare the two population means:
• Null hypothesis H0 : µx ≥ µy (i.e., the new design does not increase sojourn time).
• Alternative hypothesis H1 : µx < µy (i.e., the new design increases sojourn time).
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Deciding Between the Two Hypotheses

We re-expressed our verbal hypothesis (“new design does not increase the sojourn

time” versus “new design increases the sojourn time”) as a pair of statistical

hypotheses:

H0 : µx = µy versus H1 : µx < µy.

statistical hypotheses are questions/statements about the population parameters.

• How do we decide between H0 and H1 when we do not know the population

means µx and µy?

• Fortunately, we can calculate the sample means X̄ and Ȳ , and compare them:
• Should we conclude there is no increase (support H0) whenever X̄ ≥ Ȳ ?

• Due to randomness, even if the new design is better, it is possible that X̄ ≥ Ȳ in

a given sample.
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• For demonstration, assume that X ∼ N (µx, 1) and Y ∼ N (µy, 1).

• Then, the distributions of the sample means are:

X̄ ∼ N
(
µx,

1

n

)
and Ȳ ∼ N

(
µy,

1

n

)
.

• Equivalently, we can test the hypothesis on the difference:

H0 : µx − µy = 0 versus H1 : µx − µy < 0.

• The difference in sample means is then distributed as:

X̄ − Ȳ ∼ N
(
µx − µy,

1

n
+

1

n

)
= N

(
µx − µy,

2

n

)
.
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Probability of a Wrong Decision under H0

Suppose H0 : µx − µy = 0 is true, then

X̄− Ȳ ∼ N
(
µx − µy,

2

n

)
= N

(
0,

2

n

)
.

If the sample difference X̄ − Ȳ < 0, we

mistakenly reject H0.

For a symmetric Normal distribution

centered at 0, the probability

P
(
X̄ − Ȳ < 0

)
= shaded area = 0.5.

A high chance of making mistake!
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Question: Can we devise a more reliable decision process?
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Conservative Decision Rule

• We want the probability of making

an incorrect decision to be small, say

α = 0.05.

• To be conservative, instead of

rejecting H0 when X̄ − Ȳ < 0, we

reject H0 (i.e., claim H1) only when

X̄ − Ȳ < −0.23.

• Under this rule, the probability of a

wrong decision is small:

P
(
X̄ − Ȳ < −0.23

)
= 0.05.
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How to Decide Between the Two Hypotheses?

How can we make decisions so that we don’t claim the wrong hypothesis with high

probability?

• In particular, how do we determine the critical threshold (the “magical number”

−0.23 from the previous slide)?

• This is the central challenge of hypothesis testing.

This topic

• Upon observing the data, we decide wisely which hypothesis is more consistent

with the evidence, with controlled probability of making any mistake.
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Null and Alternative Hypotheses

Null and alternative hypotheses

The null hypothesis (H0) is the hypothesis to be tested. We set up the hypotheses in

hopes of finding evidence against H0 – usually indicating that “nothing happened” or

“no change” occurred.

The alternative hypothesis (H1) is the competing claim and represents our question

of interest – usually asserting that “something happened” or there is a change.

• The alternative hypothesis is what we hope to support with evidence.

• Null hypothesis it the hypothesis that we want to reject!

• Both hypothesis are about the population properties, not the sample!
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Example: Website Design

Statistical hypotheses are often expressed in terms of the (unknown) population

parameters.

Parameters:

• µx: population mean sojourn time for the old design.

• µy: population mean sojourn time for the new design.

Research Question: Does the new design increase the visitor sojourn time?

Statistical Hypotheses:

H0 : µx ≥ µy versus H1 : µx < µy.
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Example: Cardiovascular Risk Factors

• Suppose we are interested in high cholesterol levels as an indicator of

cardiovascular risk.

• The “average/typical” cholesterol level is 175 mg/dL.

• A group of men who have died from heart disease within the past year are

identified, and their cholesterol levels are collected.

Parameters: Let µ be the population mean of the cholesterol levels of all men who

have died from heart disease within the past year.

Research Question: Do men who have died from heart disease have higher than the

usual cholesterol level?

Statistical Hypotheses:

H0 : µ = 175 mg/dL versus H1 : µ > 175 mg/dL.
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Decisions of a Hypothesis Test

Once hypotheses have been formulated, we need a method for using the sample data

to determine whether H0 should be rejected or not.

Hypothesis test

A hypothesis test is a rule to decide between two competing statistical hypotheses

using the sample data.

Possible decisions of a hypothesis test

• Reject H0 in favor of H1: This indicates that there is sufficient statistical

evidence to support that something unusual has happened.

• Fail to reject H0 (accept H0): This indicates that there is insufficient statistical

evidence to support that something unusual has happened.
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Types of Errors

In a hypothesis test, the goal is to see if there is sufficient statistical evidence to reject

a presumed null hypothesis in favor of a conjectured alternative hypothesis.

Four possible outcomes of a hypothesis test

Truth

H0 H1

Decision
Fail to reject H0 ✓ Type II error

Reject H0 Type I error ✓

Type I error = Reject H0 when H0 is true.

Type II error = Fail to reject H0 when H1 is true (so H0 is false).
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Inevitable Errors in Hypothesis Testing

Ideally, we want to incur no error at all, but due to experimental randomness, some

error is inevitable.

Example: Webpage Design Assume H0 is true (no

increase in sojourn time).

• Recall that we claim H1 when X̄ − Ȳ < −0.23.

• Thus, a Type I error (incorrectly rejecting H0)

occurs whenever X̄ − Ȳ < −0.23.

• The probability of a Type I error is

P
(
X̄ − Ȳ < −0.23

)
= 0.05.
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No matter how you choose your threshold δ, P
(
X̄ − Ȳ < δ

)
> 0. There is always a

positive chance of making a Type I error!
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Rejection (Critical) Region: Website Example
Critical/Rejection region

In hypothesis testing, the rejection region is the set of test statistic values for which

we reject the null hypothesis H0.

Example: Webpage Design. Hypotheses:

H0 : µx ≥ µy versus H1 : µx < µy.

• We choose a critical value δ = −0.23 so that if X̄ − Ȳ < −0.23, we reject H0.

• The rejection region is

X̄ − Ȳ < −0.23.

• This threshold is selected to control the probability of Type I error at ≤ α = 0.05.

How to design a good rejection region?
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Key quantities

Significance level = α = P(Type I error)

β = P(Type II error)

Power = 1− β = P(Reject H0 | H1 is true)

• Ideally, we want the error rates small and the power high.

• The power is interpreted as the ability to detect the alternative hypothesis and

reject the null hypothesis.

Alternative terminology

Truth

H0 H1

Decision
Fail to reject H0 true negative (prob. = 1− α) false negative (prob. = β)

Reject H0 false positive (prob. = α) true positive (prob. = power)
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Example: Flip a coin 10 times, let Xi denote the outcome of the ith flip.

H0 : p = 0.5.

• Rejection region
∑10

i=1Xi ≤ 2 or ≥ 8. What is α1?

• Rejection region
∑10

i=1Xi ≤ 1 or ≥ 9. What is α2?

• Rejection region
∑10

i=1Xi ≤ 2 or ≥ 8, and H1 : p = 0.25. What is β1 and power?

• Rejection region
∑10

i=1Xi ≤ 1 or ≥ 9, and H1 : p = 0.25. What is β2 and power?

Solution: Under H0, we have X =
∑10

i=1 Xi ∼ Bin(10, 0.5):

α1 = P(X ≤ 2)+P(X ≥ 8) =

(
0

10

)
0.5

0
0.5

1
0+

(
1

10

)
0.5

1
0.5

9
+

(
2

10

)
0.5

2
0.5

8
+

(
8

10

)
0.5

8
0.5

2
+

(
9

10

)
0.5

9
0.5

1
+

(
10

10

)
0.5

10
0.5

0 ≈ 0.1094.

α2 = P(X ≤ 1) + P(X ≥ 9) =

(
0

10

)
0.5

0
0.5

10
+

(
1

10

)
0.5

1
0.5

9
+

(
9

10

)
0.5

9
0.5

1
+

(
10

10

)
0.5

1
00.5

0 ≈ 0.0215.

Under H1, we have X =
∑10

i=1 Xi ∼ Bin(10, 0.25):

β1 = P(2 < X < 8) =
7∑

i=3

(
i

10

)
0.25

i
(1 − 0.25)

10−i ≈ 0.4740 and power = 1 − β1 ≈ 0.5260.

β2 = P(1 < X < 9) =
8∑

i=2

(
i

10

)
0.25

i
(1 − 0.25)

10−i ≈ 0.7559 and power = 1 − β2 ≈ 0.2441.
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Observation from the previous example

• When H1 is not an equality, the power depends on the true parameter, under

which you calculate the probability.

• As the rejection region shrinks, the probability of type I error reduces.
• In a test with small α, rejecting H0 = VERY strong evidence against H0.

• As the rejection region shrinks, the probability of type II error increases, and so
the power decreases.

• However, small α also result in increased risk of type II error.

Ideally, we want the probability of both error to be small at the same time.

Unfortunately, this is not achievable.

There is a trade off between α and β!



22/59

Introduction Concepts Normal Mean with Known Variance One-Sample Tests for Normal Hypothesis Tests and CI

Neyman-Person Paradigm

With the trade off between α and β. What we usually do is:

• Control the type I error rate (significance level, α) by setting a tolerance level.
• We usually target α ≤ 0.1, 0.05 or even 0.01.

• *Minimize type II error rate when possible. (In advanced statistic course.)
• Instead of rigorously find the “most powerful”, we present intuitive ways to construct

good enough tests.

Type I error is usually more serious

The reason for the primary focus to be on controlling the type I error is because we are

more concerned about making a false positive claim (claiming there is an effect when

there isn’t) than making a false negative claim (failing to detect an effect when there is

one).
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Type I and Type II Errors in Different Contexts

What are the type I and type II errors in the following situations?

• “H0 Not Guilty versus H1 Guilty” or “H0 Guilty versus H1 Not Guilty”?

• “H0 Spam versus H1 Not Spam” or “H0 Not Spam versus H1 Spam”?

• “H0 Healthy versus H1 Sick” or “H0 Sick versus H1 Healthy”?

• “H0 Drug is not safe versus safe” or “H0 is safe versus H1 not safe”?
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Type I Error is More Serious Than Type II Error
Example: Criminal Justice: H0: Not Guilty, H1: Guilty.

• Type I Error: Convicting an innocent person (rejecting ”Not Guilty” when it is

true).
• Type II Error: Acquitting a guilty person (failing to reject ”Not Guilty” when it

is false).

Example: Spam Detection: If we set H0: Email is Not Spam and H1: Email is Spam:

• Type I Error: Misclassifying a legitimate email as spam.
• Type II Error: Failing to detect an actual spam email.

Example: Health Diagnosis: If H0: Healthy and H1: Sick:

• Type I Error: Diagnosing a healthy person as sick (false positive).
• Type II Error: Failing to diagnose a sick person (false negative).

Example: Drug Safety: If H0: Drug is Safe and H1: Drug is Not Safe:

• Type I Error: Concluding the drug is unsafe when it is actually safe.
• Type II Error: Concluding the drug is safe when it is actually unsafe.
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A Normal Example

Example: Samples X1, . . . , Xn are generated from N (µ, σ2) with unknown µ and

known σ2. We suspect that the mean is not µ0.

• Hypotheses

H0 : µ = µ0. vs. H1 : µ ̸= µ0.

• Consider the statistic below

Z-statistic

Assume that X is normally distributed with unknown mean µ and known variance σ.

Under H0 : µ = µ0

Z =
X̄ − µ0

σ/
√
n

∼ N(0, 1) and observed value z =
x̄− µ0

σ/
√
n

The Z-statistic quantifies how far x̄ is from µ0 in its standard deviation units.
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When should we reject H0 : µ = µ0?

• Intuitively, if we observe a x̄ that is far smaller or far greater than µ0, we should

to reject H0.

• This is equivalent to observing a

z =
x̄− µ0

σ/
√
n

that is far smaller or far greater than 0.

• The rejection region should be

R = {|z| > c} ,

for critical value c to be determined.
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Suppose the rejection region is R = {|z| > c}.

• When the probability of type I error

equals α, we can calculate the critical

value:

α = P (Z ∈ R|H0) = P (|Z| > c)|H0)

Results in c = zα/2.

• The rejection region is then

R =
{
|z| > zα/2

}
=

{
x̄ ≥ µ0 + zα/2σ/

√
n
}
∪
{
x̄ ≤ µ0 − zα/2σ/

√
n
}

Area = 1− α

zα/2

Area=α/2

z1−α/2

Area=α/2

ACCEPT REJECTREJECT

Observations

The type I error rate α can always be reduced by appropriate selection of the critical

values, i.e., zα/2 ↔ α.
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Decision Procedure and Critical Region
In summary, we choose the following form of the critical region:

R =
{
x1, x2, . . . , xn :

x̄− µ0

σ/
√
n

> zα/2

}
= {z : z > zα/2},

• z = x̄−µ0

σ/
√
n
is called the observed test statistic.

• The critical value zα/2 is the cutoff point that defines the boundary of the

rejection region.

• The critical region R has a Type I error probability of exactly α.

Testing Procedure

1 Collect observations x1, x2, . . . , xn and compute observed test statistic z = x̄−µ0

σ/
√
n
.

2 Check if x1, x2, . . . , xn ∈ R, i.e., if |z| > zα/2:
• If |z| > zα/2, reject H0.
• If |z| < zα/2, accept H0.
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Example: Effective Substance in a Medicine
The effective substance in a medicine needs to be 8.5mg per tablet. Suppose you

sample 5 tablets and obtain a sample mean of 8.8mg. Assume that the amount follows

a normal distribution with mean µ and variance 1. We want to test the hypothesis

H0 : µ = 8.5 versus H1 : µ ̸= 8.5,

at a significance level of α = 0.05.

Solution:

• Compute z = x̄−µ0

σ/
√
n
= 8.8−8.5√

1/5
= 0.3√

0.2
≈ 0.671.

• Compare z with z0.025 = 1.96. Since 0.671 < 1.96, we do not reject H0.

• Conclusion: There is insufficient evidence to reject the claim. We accept H0 and

conclude that the effective substance in the medicine meets the standard of

8.5mg per tablet.
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Example: (Cont’d) Effect of Sample Size

• What if the sample mean of 8.8mg is obtained from 100 sampled tablets?

• Compute the observed test statistic:

z =
x̄− µ0

σ/
√
n

=
8.8− 8.5√

1/100
=

0.3

0.1
= 3.

• Compare with the critical value z0.025 = 1.96 we see that z = 3 > 1.96.

• Conclusion: Since z > zα/2, we reject H0 and claim that the effective substance

in the medicine fails to meet the standard of 8.5mg per tablet.

Observations

With the same distance between the sample mean of 8.8mg and the hypothesize value

of 8.5mg, the conclusion of the test may change when sample size changes. A larger

sample size make it easier to reject when observing the same sample mean.
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Some Intuitions

We decide by comparing test statistic z = x̄−µ0

σ/
√
n
with the critical value zα/2.

• Effect of the Sample Mean:

If the sample mean deviates more from µ0, then z becomes larger in absolute

value. Consequently, it is more likely that z will exceed the critical value zα/2,

leading to rejection of H0.

• Effect of the Sample Size:

With all else fixed, a larger sample size n decreases the denominator σ/
√
n. This

increases the absolute value of z, making it easier to reject H0.

• Effect of the Significance Level:

Increasing α makes zα/2 larger, which in turn makes the rejection region larger

and the test less conservative (i.e., easier to reject H0). Conversely, a smaller α

leads to a smaller zα/2, making the test more conservative.
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One-Sided Hypothesis Test for Mean with Known Variance

We wish to test whether the population mean µ exceeds a specified value µ0, i.e.,

H0 : µ = µ0 versus H1 : µ > µ0.

• Intuitively, if the sample mean x̄ is much higher than µ0, we reject H0.

• We define the critical region as

R = {x1, x2, . . . , xn : x̄− µ0 > c}.

• In standardized form, let z = x̄−µ0

σ/
√
n
, then the critical region becomes (one-sided)

R = {z : z > c/(σ/
√
n)}.

• How to determine c in order to control the Type I error at significance level α?
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Similar to the two-sided test, we seek to control the probability of a Type I error

(rejecting H0 when it is true) to be less than the significance level α.

• Under the null hypothesis, the test

statistic is

Z =
X̄ − µ0

σ/
√
n

∼ N(0, 1).

• Therefore, the probability of a Type I

error is

P
(
X̄−µ0 > c

)
= P

(X̄ − µ0

σ/
√
n

>
c

σ/
√
n

)
= P

(
Z >

c

σ/
√
n

)
.

Area = 1− α

Cutoff zα

Area=α

ACCEPT REJECT

To ensure this probability equals α, we set

c

σ/
√
n
= zα =⇒ c = zα

σ√
n
.



34/59

Introduction Concepts Normal Mean with Known Variance One-Sample Tests for Normal Hypothesis Tests and CI

Decision Procedure and Critical Region (One-Sided Test, Right-tailed)
In testing H0 : µ = µ0 versus H1 : µ > µ0, we choose the following critical region:

R =
{
x1, x2, . . . , xn :

x̄− µ0

σ/
√
n

> zα

}
= {z : z > zα}.

• z = x̄−µ0

σ/
√
n
is called the observed test statistic.

• The critical region C is chosen such that the probability of a Type I error

(rejecting H0 when it is true) is exactly α.

Testing Procedure

1 Collect observations x1, x2, . . . , xn and compute observed test statistic z = x̄−µ0

σ/
√
n
.

2 Check whether the computed z falls in the critical region R, i.e., if z > zα:
• If z > zα, reject H0.
• If z ≤ zα, fail to reject (accept) H0.
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Decision Procedure and Critical Region (One-Sided Test, Left-tailed)
In testing H0 : µ = µ0 versus H1 : µ < µ0, we choose the following critical region:

R =
{
x1, x2, . . . , xn :

x̄− µ0

σ/
√
n

< −zα

}
= {z : z < −zα}.

• z = x̄−µ0

σ/
√
n
is called the observed test statistic.

• The critical region C is chosen such that the probability of a Type I error

(rejecting H0 when it is true) is exactly α.

Testing Procedure

1 Collect observations x1, x2, . . . , xn and compute observed test statistic z = x̄−µ0

σ/
√
n
.

2 Check whether the computed z falls in the critical region R, i.e., if z < −zα:
• If z < −zα, reject H0.
• If z ≥ −zα, fail to reject (accept) H0.
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Measuring Evidence Against H0

Example: Speeding Offense: Decide whether a driver commits a speeding offense:

H0 : s = s0 (not speeding) versus H1 : s > s0 (speeding),

where s0 = 40 km/h is the speed limit.

• Assume driving speed follows a normal distribution: S ∼ N (40, 25).

• For a driver with speed 55 km/h, standardize:

Z =
S − 40

5
∼ N (0, 1) ⇒ P(S ≥ 55) = P

(
Z ≥ 15

5

)
= P(Z ≥ 3) ≈ 0.0013.

• Only 0.13% of drivers would be faster than 55 km/h.

• ⇒ Strong evidence against not speeding.

• Conclusion: With such strong evidence against H0, a speeding ticket is

warranted.
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p-Value

Area = 1− p = 0.9987

Cutoff s = 55

p = P(S > 55)

s = 55

• For a driver traveling at 55 km/h, the p-value is given by

p = P(S ≥ 55) = P
(S − 40

5
≥ 15

5

)
= P(Z ≥ 3) ≈ 0.0013.

• This means that only 0.13% of all drivers would be driving “more

extreme(faster)” than the driver at question.

• This probability p is called the p-value.
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Area = 1− p = 0.8413

Cutoff

p = P(S > 45) = 0.1587

s = 45

Consider another driver traveling at 45 km/h:

• The p-value is

p = P(S ≥ 45) = P
(S − 40

5
≥ 45− 40

5

)
= P(Z ≥ 1) ≈ 0.1587.

• With a p-value of 0.1587, about 15.87% of all drivers would drive more

extremely.
• If this driver is ticketed, then we would ticket at least 15.87% of all drivers –

clearly too many.
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p-Value

p-value

Given an observed t (e.g. s in speeding example), the evidence against H0 can be

measured by the p-value, defined as the probability of observing a more extreme

(unlikely) value of the test statistic T (e.g. S in speeding example) outcome than t,

under the null hypothesis H0 : µ = µ0.

• The p-value depends on the observed sample t.

• It measures, for an observation, the strength of evidence against H0.

• The smaller the p-value, the stronger the evidence against H0. (Because fewer

people would be expected to act “more extremely”.)
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Meaning of “More Extreme” Depends on H1

If H0 : µ = µ0 versus H1 : µ > µ0:

• When z is large, x̄ is much larger than µ0. This suggests that µ is more likely to

be larger than µ0, providing evidence in support of H1.

• The p-value is p = P(Z > z), Z ∼ N(0, 1).

If H0 : µ = µ0 versus H1 : µ < µ0:

• When z is small, x̄ is much smaller than µ0. This suggests that µ is more likely to

be smaller than µ0, providing evidence in support of H1.

• The p-value is p = P(Z < z), Z ∼ N(0, 1).

If H0 : µ = µ0 versus H1 : µ ̸= µ0:

• When |z| =
∣∣∣ x̄−µ0

σ/
√
n

∣∣∣ is large, |x̄− µ0| is large, indicating that µ is likely to differ

from µ0. Hence, a large |z| is considered more “extreme.”

• The p-value is p = P (|Z| > |z|) , Z ∼ N(0, 1).
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Connection to the Rejection Region
Consider the one-sided test as an example:

H0 : µ = µ0 versus H1 : µ > µ0.

• The p-value is defined as p = P
(
Z > z

)
, Z ∼ N(0, 1), where z = x̄−µ0

σ/
√
n
is the

observed test statistic.

• The rejection region is given by

R = {z : z > zα}.

• Notice that p ≤ α is equivalent to z > zα.

Decision rule using p-values

• If p ≤ α (i.e., z ∈ C), reject H0.

• If p > α, fail to reject (accept) H0.



42/59

Introduction Concepts Normal Mean with Known Variance One-Sample Tests for Normal Hypothesis Tests and CI

Equivalence of rejection rule and p-value decision rule

• If p ≤ α if and only if z ∈ C, then we reject H0.

• If p > α if and only if z /∈ C, then we fail to reject (accept) H0.

Rejection cutoff zα

p ≤ αArea= α

Observed z2

p ≤ α implies rejection of H0

Rejection cutoff zα

p > α Area= α

Observed z1

p > α implies failure to reject H0
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Exercise: Verification of Rejection Rules

1. One-Sided Test: H0 : µ = µ0 versus H1 : µ < µ0

• The test statistic is

z =
x̄− µ0

σ/
√
n
.

• The p-value is defined as

p = P(Z < z), Z ∼ N(0, 1).

• To reject H0 at significance level α, we require p ≤ α.

• Since P(Z < −zα) = α, the condition p ≤ α is equivalent to

z < −zα.

• Hence, rejecting H0 when z < −zα is equivalent to p ≤ α.
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Exercise: Verification of Rejection Rules

2. Two-Sided Test: H0 : µ = µ0 versus H1 : µ ̸= µ0

• The test statistic is

z =
x̄− µ0

σ/
√
n
.

• The p-value is defined as

p = P(|Z| > |z|), Z ∼ N(0, 1).

• To reject H0 at significance level α, we require p ≤ α.

• Since P(|Z| > zα/2) = α, the condition p ≤ α is equivalent to

|z| > zα/2.

• Thus, rejecting H0 when |z| > zα/2 is equivalent to p ≤ α.
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Hypothesis Testing using p-values

Procedure:

1 Collect observations x1, x2, . . . , xn and compute z = x̄−µ0

σ/
√
n
.

2 Compute the p-value associated with the observed z:
• p = P(Z > z), Z ∼ N(0, 1), if H1 : µ > µ0.
• p = P(Z < z), Z ∼ N(0, 1), if H1 : µ < µ0.
• p = P(|Z| > |z|), Z ∼ N(0, 1), if H1 : µ ̸= µ0.

3 Decision: For a prespecified significance level α:
• If p ≤ α, reject the null hypothesis H0.
• If p > α, accept (fail to reject) H0.

Alternatively, use rejection regions:
• If z > zα, reject the null hypothesis H0 for H1 : µ > µ0.
• If z < −zα, reject the null hypothesis H0 for H1 : µ < µ0.
• If |z| > zα/2, reject the null hypothesis H0 for H1 : µ ̸= µ0.
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Two Equivalent Procedures for Rejection

Two equivalent procedures for rejection

1 Specified a rejection region with significance level α, observe the data, and reject

if the data falls in the rejection region.

2 [The usual way] Observe the data, calculate the p-value, and reject if the p ≤ α.

H1 Rejection region p-value

µ ̸= µ0 |z| > zα/2 P(|Z| > |z| | H0 true)

µ > µ0 z > zα P(Z > z | H0 true)

µ < µ0 z < zα P(Z < z | H0 true)

*Z ∼ N(0, 1)
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One-Sample Tests for Normal

• One-sample t-Test for normal mean with unknown variance.

• One-sample χ2-test for normal variance and standard deviation
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One-Sample t-Test – Normal Mean with Unknown Variance

Consider a normal random sample where µ is unknown and σ is unknown.

Recall from Confidence Interval (Slide 38) that we introduced the t-distribution as the

distribution of standardized sample mean when the variance is unknown.

T -statistic

Assume that X is normally distributed with unknown mean µ and unknown variance

σ2. Under H0 : µ = µ0,

T =
X̄ − µ0

S/
√
n

=
(X̄ − µ0)/(σ/

√
n)

S/σ
=

N(0, 1)√
χ2
n−1/(n− 1)

∼ tn−1

where tdf denotes a t-distribution with degree of freedom df .
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One-Sample t-Test – Normal Mean with Unknown Variance

Cutoff −tn−1,α Cutoff −tn−1,α

Area=α/2 Area=α/2

ACCEPTREJECT

Two-sided t-test rejection region

Cutoff −tn−1,α

Area=α

ACCEPTREJECT

One-sided (left) t-test rejection region

Cutoff tn−1,α

Area=α

ACCEPT REJECT

One-sided (right) t-test rejection region

observed −|t| observed |t|

Area=p/2 Area=p/2

Two-sided t-test p-value

observed t

Area=p

One-sided (left) t-test p-value

observed t

Area=p

One-sided (right) t-test p-value

H1 Rejection region p-value

µ ̸= µ0 |t| > tn−1,α/2 P(|T | > |t| | H0)

µ > µ0 t > tn−1,α P(T > t | H0)

µ < µ0 t < −tn−1,α P(T < t | H0)

*T ∼ tn−1, P(T > tn−1,α) = α.
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Example – One-Sample t-Test (One-Sided)
Example: In the smart student example, assume that the standard deviation of population IQ

is unknown. From the random sample of 9 students, we can calculate x̄ = 112.8 and s = 12.7.

• Null and alternative hypothesis

H0 : µ = 100. vs. H1 : µ > 100.

• Test statistic

T =
X̄ − µ0

S/
√
n

∼ tn−1 under H0, n = 9

t =
x̄− µ0

s/
√
n

=
112.8− 100

12.7/
√
9

≈ 3.02.

• p-value

p = P(T > 3.02 | H0) = 0.0083 < 0.05 = α.

• Conclusion: Reject the H0 at significance level 0.05.

• Alternatively, find the rejection region {t : t > tn−1,α = 1.8595}.
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Example – One-Sample t-Test (Two-Sided)

Example: An insurance company is reviewing its current policy rates. When

originally setting the rates, they believed that the average claim amount was $1,800.
They are concerned that the true mean is actually different from this:

• If the mean is much higher than $1,800, they lose money because of the claims.

• If the mean is much lower than $1,800, they lose clients because they may be

charging too much for the insurance.

We assume the claim follows a normal distribution with a unknown variance.

They randomly select 100 claims, and calculate a sample mean of $1,650 and sample

standard deviation of $700.

Question: Consider a test at significance level α = 0.05 to see if the insurance

company should be concerned.
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• Null and alternative hypothesis

H0 : µ = 1800. vs. H1 : µ ̸= 1800.

• Test statistic

T =
X̄ − µ0

S/
√
n

∼ tn−1 under H0, n = 100,

t =
x̄− µ0

s/
√
n

=
1650− 1800

700/
√
100

≈ −2.14.

• p-value:

p = P(|T | > | − 2.14| | H0) = 0.0348 < 0.05 = α.

• Conclusion: Reject the H0 at significance level 0.05. There are significant

evidence that the mean of the claims is not $1,800.
• Alternatively, find the rejection region {t : t > t100−1,0.05 ≈ z0.05 = 1.96}. Since

| − 2.14| > 1.96 reject H0 at significance level 0.05.
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One-sample χ2-test – Normal Variance and Standard Deviation

Now, we want to test hypotheses regarding the variance of a normal population.

Assumptions

• Normal random sample or large sample.

• Both mean µ and the variance σ2 are unknown.

Hypotheses

H0 : σ
2 = σ2

0. vs. H1 : σ
2 ̸= σ2

0.

Test statistic

X2 =
(n− 1)S2

σ2
0

∼ χ2
n−1 under H0.

where χ2
df denotes a χ2-distribution with degree of freedom df .
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Cutoff χ2
n−1,1−α/2

Cutoff χ2
n−1,α/2

Area=α/2 Area=α/2

ACCEPTREJECT REJECT

Two-sided χ2-test rejection region

Cutoff χ2
n−1,1−α

Area=α

ACCEPTREJECT

One-sided (left) χ2-test rejection region

Cutoff χ2
n−1,α

Area=α

ACCEPT REJECT

One-sided (right) χ2-test rejection region

observed χ2 observed χ2

Area=p/2 Area=p/2

Two-sided χ2-test p-value

observed χ2

Area=p

One-sided (left) χ2-test p-value

observed χ2

Area=p

One-sided (right) χ2-test p-value

H1 Rejection region p-value

σ2 ̸= σ2
0 x2 > χ2

n−1,α/2 or x2 < χ2
n−1,1−α/2 2×min{P(X > x2 | H0),P(X2 < x2 | H0)}

σ2 > σ2
0 x2 > χ2

n−1,α P(X2 > x2 | H0)

σ2 < σ2
0 x2 < χ2

n−1,1−α P(X2 < x2 | H0)

*X2 ∼ χ2
n−1, P(X2 > χ2

n−1,α) = α.
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Example – One-Sample χ2-Test for Normal Standard Deviation

Example: The lapping process is used to grind certain silicon wafers to the proper

thickness. It is acceptable only if σ, the population standard deviation is at most 0.5

mil (thousandth of an inch). Suppose we have a sample of size 15 and observed a

sample standard deviation of 0.64 mil.

Question: Set α = 0.05, is the sample significant enough to support the claim that

the population variance σ > 0.5?
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• Null and alternative hypotheses

H0 : σ = σ0 = 0.5. vs. H1 : σ > 0.5.

• Test statistic

X2 = (n− 1)S2/σ2
0 ∼ χ2

n−1 under H0, n = 15

x2 = (n− 1)s2/σ2
0 = (15− 1)× 0.642/0.52 ≈ 22.94.

• p-value

p = P(X2 > x2 | H0) = P(X2 > 22.94 | H0) = 0.061 > 0.05 = α.

• Conclusion: We fail to reject the null hypothesis “no difference” at significance

level 0.05.

• Alternatively, find the rejection region: {x2 : x2 > χ2
n−1,α = 23.68}. Note that

22.94 < 23.68, fail to reject H0.
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Connection Between Confidence Intervals and Hypothesis Tests

Confidence intervals and hypothesis tests are two sides of the same coin.

• Confidence intervals provide a range of plausible values for a population

parameter.

• Hypothesis tests offer a formal procedure to decide whether to accept or reject a

specific claim about that parameter.

• In many cases, the results of a hypothesis test at a given significance level α can

be directly interpreted through the corresponding 100(1−α)% confidence interval.
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Connection Between Confidence Intervals and Hypothesis Tests

Example:

1 For testing H0 : µ = µ0 versus H1 : µ ̸= µ0 at level α
• We construct a two-sided 100(1− α)% confidence interval for µ.
• If the interval contains µ0, we do not reject H0.

2 For testing H0 : µ = µ0 versus H1 : µ > µ0 at level α
• We construct a one-sided 100(1− α)% confidence lower bound for µ.
• If the bound contains µ0, we do not reject H0.

3 For testing H0 : µ = µ0 versus H1 : µ < µ0 at level α,
• We construct a one-sided 100(1− α)% confidence upper bound for µ.
• If the bound contains µ0, we do not reject H0.
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Hypothesis Testing and Confidence Interval

Connections
• Typically, conclusion from a hypothesis test can be reached using a CI.

• If the observed (1− α)× 100% CI does not contain the hypothesized value

specified in the null hypothesis, we reject H0 in favor of a two-sided H1 at

significance level α.
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