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Introduction

In the previous topic, we considered hypothesis tests for one population. For example:

• One-sample Z-test and one-sample T -test for the mean of one normal population.

• One-sample χ2-test for the variance of one normal population.

In many applications, we often need to compare multiple populations in terms of their

means or variances.

Example: In medical trials, we need to determine if a certain treatment makes a

difference. A common approach is to assign patients to two groups—the control group

and the treatment group—and compare the mean responses of the two groups. This

practice is sometimes referred to as A/B testing.
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Methods for Comparison Among Multiple Populations

In this topic, we discuss the methods for comparing multiple populations.

• Two Populations:
• Two-sample Z-test: Compare the means of two normal populations (known

variance).
• Two-sample T -test: Compare the means of two normal populations (unknown

variance).
• Two-sample F -test: Compare the variances of two normal populations.

• Categorical Data: Pearson’s chi-squared test.

• Multiple (≥ 3) Populations: Analysis of variance (ANOVA).
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Two-Sample Tests
Suppose that we observe

• X1, . . . , Xnx ∼ N(µx, σ
2
x), i.i.d. random sample;

• Y1, . . . , Yny ∼ N(µy, σ
2
y), i.i.d. random sample.

Example: Comparing one-sample and two-sample hypotheses.

H0 H1

One-sample test µx = µ0 µx ̸= µ0

σx = σ0 σx ̸= σ0
µy = µ0 µy ̸= µ0

σy = σ0 σy ̸= σ0

Two-sample test µx = µy µx ̸= µy

σx = σy σx ̸= σy
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Two-Sample Z-Test – Normal Means with Known Variances
Assumptions

• The two samples {X1, . . . , Xnx} and {Y1, . . . , Yny} are independent.

• The two samples are normal random samples, or nx and ny large enough;

• The variances σ2
x and σ2

y are known, but can be unequal.

Hypotheses

H0 : µx = µy. vs. H1 : µx ̸= µy.

Test statistic

Z =
X̄ − Ȳ√

σ2
x/nx + σ2

y/ny

∼ N(0, 1) under H0

p-value

p = P(|Z| > |z| | H0).

Reject H0 is rejected at significance level α if p ≤ α, or if {|z| ≥ zα/2}.
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One- and two-sided tests

H1 Rejection region p-value

µx ̸= µy |z| > zα/2 P (|Z| > |z| | H0)

µx > µy z > zα P (Z > z | H0)

µx < µy z < −zα P (Z < z | H0)

*Z ∼ N(0, 1), P(Z > zα) = α.

• The test procedure is exactly the same as that of the one-sample Z-test, except

that the definition of Z is different.
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Two-Sample Z-Test – Normal Means with Known Variances

Now, suppose that we want to compare the difference in means to a non-zero value δ.

Hypotheses

H0 : µx − µy = δ. vs. H1 : µx − µy ̸= δ.

Test statistic

Z =
X̄ − Ȳ − δ√
σ2
x/nx + σ2

y/ny

∼ N(0, 1) under H0

The rest of the test procedure is exactly the same:

• p-value: P (|Z| > |z| | H0); or

• Rejection region: |z| > zα/2.
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Two-sample T -Test – Normal Means with Unknown Equal Variance
Hypothesis

H0 : µx − µy = 0.

Assumptions

• The two samples {X1, . . . , Xnx} and {Y1, . . . , Yny} are independent.

• The two samples are normal random samples, or nx and ny large enough;

• The variances σ2
x and σ2

y are unknown, but must be equal.

The pooled estimator for variance. Let S2
x, S

2
y be the sample variances

S2
xy =

(nx − 1)S2
x + (ny − 1)S2

y

nx + ny − 2
=

∑nx
i=1(Xi − X̄)2 +

∑ny

i=1(Yi − Ȳ )2

nx + ny − 2
.

• (nx + ny − 2)S2
xy/σ

2 ∼ χ2
nx+ny−2.
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Test statistic

T =
X̄ − Ȳ

Sxy

√
1/nx + 1/ny

=

X̄−Ȳ√
σ2/nx+σ2/ny

Sxy/σ
(What happens if the variance is unequal?)

=
N(0, 1)√

χ2
nx+ny−2/(nx + ny − 2)

∼ tnx+ny−2 under H0.

* We omit the proof that Sxy is independent of X̄ − Ȳ , which is needed for us

to have t distribution. (To be covered in advanced statistic course.)

H1 Rejection region p-value

µx ̸= µy |t| > tnx+ny−2,α/2 P (|T | > |t| | H0)

µx > µy t > tnx+ny−2,α P (T > t | H0)

µx < µy t < −tnx+ny−2,α P (T < t | H0)

*T ∼ tnx+ny−2, P(T > tnx+ny−2,α) = α.
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Two-sample T -Test – Normal Means with Unknown Unequal Variance
Hypothesis:

H0 : µx − µy = 0.

Assumptions:

• The two samples {X1, . . . , Xnx} and {Y1, . . . , Yny} are independent.

• The two samples are normal random samples (or nx and ny are sufficiently large).

• The variances σ2
x and σ2

y are unknown and not assumed to be equal.

Test Statistic (Welch’s t-test):

T =
X̄ − Ȳ√

S2
x/nx + S2

y/ny

≈ tdf under H0,

with approximate degrees of freedom given by df ≈

(
S2
x/nx+S2

y/ny

)2

(S2
x/nx)2

nx−1
+

(S2
y/ny)2

ny−1

.
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Two-sample T -Test – Normal Means with Unknown Unequal Variance

Rejection Regions and p-values:

H1 Rejection Region p-value

µx ̸= µy |t| > tdf,α/2 p = P (|T | > |t| |H0)

µx > µy t > tdf,α p = P (T > t |H0)

µx < µy t < −tdf,α p = P (T < t |H0)

*The approximation is valid under moderate departures from normality or with large sample sizes.
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Paired Observations

Recall that in the two-sample T -test, the two samples are assumed to be independent.

What if we observe pairs (X1, Y1), . . . , (Xn, Yn), where Xi and Yi are correlated?

• If measurements are made on the same subject rather than on two different

(independent) individuals.

Example: Measurements before and after treatment of the same subject.

• Paired observations are not necessarily of the same subject, but still can be

correlated.

Example: Pair of siblings or family members.
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Two-sample Paired T -Test

Hypothesis

H0 : µx − µy = 0.

Assumptions

• {(X1, Y1), . . . , (Xn, Yn)} are i.i.d. bivariate normal random vectors.

Test statistic

T =
X̄ − Ȳ

Sx−y/
√
n
∼ tn−1 under H0

where Sx−y is the sample standard deviation of the difference

{X1 − Y1, . . . , Xn − Yn}.

• Essentially, we are performing the one-sample T -test on the difference Xi − Yi of

the observations.
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Example: The following are the average weekly losses of worker-hours due to accidents in 10

industrial plants before and after a certain safety program was put into operation:

Before (X): 45 73 46 124 33 57 83 34 26 17

After (Y ): 36 60 44 119 35 51 77 29 24 11

Use the 0.05 level to test whether the safety program is effective.

• Hypotheses

H0 : µx = µy. vs. H1 : µx > µy.

• Test statistics

T = (X̄ − Ȳ )/(S/
√
10) ∼ t9 under H0

t = (x̄− ȳ)/(s/
√
10) = 4.03

• p-value

p = P (T > 4.03 | H0) = 0.0015 < 0.05 = α.

• Conclusion: Reject the null hypothesis at 0.05 significance level. There is significant

evidence that the safety program improves operation efficiency.
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Comparing Two-Sample T -Test and Paired T -Test

Two-Sample T -test Paired T -test

Number of samples nx and ny can be different paired nx = ny = n

Variance unknown and σ2
x = σ2

y = σ2 unknown, σ2
x and σ2

y can be different

Independence Xi and Yi are independent Xi and Yi can be correlated

Order of observations does not matter matters, must be paired
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Two-sample F -Test – Normal Variance

In the two-sample T -test, we need the assumption that the variance of the two

population are the same. How do we test this hypothesis?

Suppose we observe X1, . . . , Xnx , and Y1, . . . , Yny .

Hypotheses

H0 : σ
2
x = σ2

y ⇔ σ2
x

σ2
y

= 1 vs. H1 : σ
2
x ̸= σ2

y ⇔ σ2
x

σ2
y

̸= 1

Assumptions

• Normal random samples or large samples

Test statistic: Naturally, one would expect that the ratio F = S2
x/S

2
y can tell

something about H0.
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F distribution
The F -distribution with parameters d1 and d2 arises as the ratio of two appropriately scaled

independent chi-squared random variables χ2
d1

and χ2
d2

with degrees of freedom of d1 and d2,

respectively.

F =
χ2
d1
/d1

χ2
d2
/d2

∼ Fd1,d2 .

• It becomes relevant when we try to calculate the ratio of sample variances of normally

distributed statistics.

Test statistic:

F =
S2
x

S2
y

=
S2
x/σ

2
x

S2
y/σ

2
y

=

(nx−1)S2
x

σ2
x

/(nx − 1)

(ny−1)S2
y

σ2
y

/(ny − 1)
∼ Fnx−1,ny−1 under H0

• The distribution is skewed to the right, and the F -values can only be positive.

• Useful facts: F1,d2
= t2d2

, Fd1,∞ = χ2
d1
/d1
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H1 Rejection region p-value

σ2
x ̸= σ2

y f > Fnx−1,ny−1,α/2 or f < Fnx−1,ny−1,1−α/2 2×min{P (F > f | H0), P (F < f | H0)}
σ2
x > σ2

y f > Fnx−1,ny−1,α P (F > f | H0)

σ2
x < σ2

y f < Fnx−1,ny−1,1−α P (F < f | H0)

*F ∼ Fnx−1,ny−1, P(F > Fnx−1,ny−1,α) = α.
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Example: Want to check whether there is less variability in the silver plating done by

company 1 than company 2. If independent random samples of size n1 = n2 = 12 of

the two companies’ work yield s1 = 0.035 and s2 = 0.062, test the null hypothesis

H0 : σ
2
1 = σ2

2 against H1 : σ
2
1 < σ2

2 at the 0.05 level.

• Test statistics

F = S2
1/S

2
2 ∼ Fn1−1,n2−1 under H0.

f = s21/s
2
2 = 0.318.

• p-value

p = P (F < f | H0) = P (F < 0.318 | H0) = 0.0352,

where F ∼ F11,11 under H0.

• Conclusion: Reject H0 because p < α = 0.05. There is significant statistical

evidence in favor of the claim that company 1 has better silver plating quality.

• Alternatively, reject because 0.318 < f11,11,0.95 = 0.355.
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Categorical Data

Recall that an important type of variable is the categorial variable, where the values

it takes are discrete and unordered.

• These variables cannot be considered as normally distributed and hence the

previous tests such as two-sample t-test and ANOVA cannot be applied.

• New method is needed.

Example: Let us study how smoking affects cardiovascular health. Suppose we

sampled a group of people and collect information on whether they smoke or not and

whether they suffer from heart disease or not. The data classified by two different

variables, each of which has only two possible outcomes.

• Is the subject smoking: “yes” and “no”.

• Does the subject have heart disease: “yes” and “no”.
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Categorical Data

Example: Let us study how smoking affects cardiovascular health. Suppose we

collected the following data

• The data classified by two different
variables, each of which has only two
possible outcomes.

• Is the subject smoking: “yes” and

“no”.
• Does the subject have heart disease:

“yes” and “no”.

Smoking
Heart disease

Total
Yes No

Yes O11 O12 n1·
No O21 O22 n2·

Total n·1 n·2 n

* “O” stands for “observed”

Question: Does smoking change the population proportions of subjects with heart

disease? In other words, is smoking independent of the risk of getting heart disease?
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2× 2 Contingency Table

In general, this table is called a 2× 2 contingency table.

X
Y

Total
Yes No

Yes O11 O12 n1·
No O21 O22 n2·

Total n·1 n·2 n

* “O” stands for “observed”

Hypotheses

H0 : X and Y are independent. vs H1 : X and Y are correlated.
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Example:
Say, we observe the following data.

X
Y

Total
Yes No

Yes 20 80 100

No 15 135 150

Total 35 215 250

• Would you believe there is a significant difference in the proportion?
• 20% in the smoking group versus 10% in the non-smoking group.
• Is it purely by randomness? Is it reliable difference?

• We’ll start, as always, by formulating the null hypothesis H0.

H0 : Smoking and heart disease are independent

• What would we expect to see under H0?
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Example:

What is the expected number of smoking with heart disease?

• The overall proportion of heart disease is 35
250 = 0.14.

• If the proportion are the same for the smoking and non-smoking groups, then we

should expect the number of smoking people with heart disease to be around
35
250 × 100 = 14.

• Similarly, we the expected number of
• smoking people without heart disease is 215

250 × 100 = 86.
• non-smoking people with heart disease is 35

250 × 150 = 21.
• non-smoking people without heart disease is 215

250 × 150 = 129.
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Example:

Now, we can compare what we expect (under the null hypothesis)with what we

actually observe, and see how much they differ—If the difference is large, then we

should not believe in H0 : the proportion is the same.

Expected:

X
Y

Total
Yes No

Yes 14 86 100

No 21 129 150

Total 35 215 250

Observed:

X
Y

Total
Yes No

Yes 20 80 100

No 15 135 150

Total 35 215 250

How to formulate this comparison with a mathematical expression?
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χ2-Test for 2× 2 Contingency Table

Under H0, i.e. the independence of X and Y , we have

P({X = “Y”} ∩ {Y = “Y”}) = P({X = “Y”})× P ({Y = “Y”}) .

It is natural to consider the estimations

P({X = “Y”}) ≈ n1·
n

P({Y = “Y”}) ≈ n·1
n

O11

n
≈ P({X = “Y”} ∩ {Y = “Y”}) ≈ n1·

n
× n·1

n

Note that nP({X = “Y”} ∩ {Y = “Y”}) is the expected number observation of

E11 ≜ {X = “Y”} ∩ {Y = “Y”} ⇒ O11 ≈ E11.
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Example:
We call O11 the observed number of observations for smokers with heart disease and

E11 =
n1·
n × n·1

n the expected number of observations for smokers with heart disease

under the null hypothesis H0.

• The expected number should match the observed number if H0 were to be true.

• We can repeat this for the other three groups of people:
• O10 ≈ E10: smoker without heart disease
• O01 ≈ E01: non-smoker with heart disease
• O00 ≈ E00: non-smoker without heart disease

In summary, we should expect Oi,j ≈ Ei,j for all i, j = 0, 1.

• How do we measure the discrepancy between Oi,j and Ei,j?

• We can use the sum of squares of the difference between Oi,j and Ei,j .

• The larger the difference, the more evidence against H0.
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Pearson’s Chi-Squared Test of Independence

• Test statistic

X2 =

2∑
i=1

2∑
j=1

(Oij − Eij)
2

Eij
≈ χ2

1 under H0

• The approximation is good if every entry has at least 5 observations.
• The proof for it is beyond the scope of this course.

If H0 is not true, then Oij is not likely to be close to Eij , and the test statistic

X2 tends to be large.

• p-value for the observed value x2

p = P(X2 > x2 | H0), where X2 ∼ χ2
1.

• Rejection region [χ2
1,α,∞).
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R× C Contingency Table

More generally, each of the two categorical variable may have more than 2 possible

values (0,1 in the previous case).

Example: Let X denote the previous working experience, with possible value of “¡5

years”, “5-10 years” or “¿10 years.” Let Y denote the job rank offered to the

candidate, e.g., “Analyst”, “Head of Business”, “Partner.”

• We aim to check if the previous working experience is correlated to the rank

offered.

H0 : X and Y are independent. vs H1 : X and Y are correlated.

• In general, X may take R possible values and Y may take C possible values. How

should we test this hypothesis?
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R× C Contingency Table

In general, we can consider the R× C contingency table.

X
Y

Total
1 2 · · · C

1 O11 O12 · · · O1C n1·
2 O21 O22 · · · O1C n2·
...

...
...

. . .
...

...

R OR1 OR2 · · · ORC nR·

Total n·1 n·2 · · · n·C n

Hypotheses

H0 : X and Y are independent. vs H1 : X and Y are correlated.
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Similarly, Eij estimates the expected number of observations in the ij-th entry, where

Eij =
ni· × n·j

n
, i = 1, 2, . . . , R and j = 1, 2, . . . , C.

• Test statistic

X2 =

R∑
i=1

C∑
j=1

(Oij − Eij)
2

Eij
≈ χ2

(R−1)(C−1) under H0

The approximation is good if
• (1) no more than 1/5 of the cells have expected values < 5; and
• (2) no cell has expected value < 1.

• If H0 is not true, then Oij is not likely to be close to Eij , and the test statistic

X2 tends to be large.

• p-value for the observed value x2

p = P(X2 > x2 | H0), where X2 ∼ χ2
(R−1)(C−1).

• Rejection region [χ2
(R−1)(C−1),α,∞).
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Example: Samples of three kinds of materials, subjected to extreme temperature

changes, produced the results shown below:

Material
Under extreme heat

Total
Crumbled Intact

A 41 79 120

B 27 53 80

C 22 78 100

Total 90 210 300

Use the 0.05 level to test whether the probability of crumbling is the same for the

three kinds of materials.
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Hypothesis

H0 : Crumbling prob. is independent of the matrials.

Test statistic

X2 =

3∑
i=1

2∑
j=1

(Oij − Eij)
2

Eij
∼ χ2

(3−1)(2−1) under H0

x2 =
(41− 120× 90/300)2

120× 90/300
+

(79− 120× 210/300)2

120× 210/300
+ · · · = 4.575.

p-value

p = P(X2 > x2 | H0) = P(X2 > 4.575 | H0) = 0.1015 > 0.05 = α,

where X2 ∼ χ2
2.

Conclusion: Fail to reject H0, there is no evidence showing that these materials show different

crumbling probabilities.

Alternatively, since χ2 = 4.575 < 5.991 = χ2
2,0.05, fail to reject reject the null.
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Comparing more than two populations

Previously, we saw several ways to compare samples from multiple populations.

• Two groups of normal populations ⇒ Two-sample t-test
• Variances are known
• Variances are unknown but equal
• Variances are unknown but unequal1

• Two or more groups of categorical data
• 2× 2 contingency table
• R× C contingency table

1Use the F -test to check whether variances are equal.
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Comparing more than two populations

Question: How do we compare multiple normal populations?

Example: How does three brands of fertilizer affects the growth of plants (e.g.

weight of the potatos)?

• The weight of the potato can be regarded as a continuous variable.

• The brands of the fertilizer can be regarded as a categorical variable (Brand A,

Brand B, Brand C).

Question: Is there significant difference in the effectiveness of the fertilizers?

H0 : µA = µB = µC . v.s. H1 : µi ̸= µj for some i ̸= j.

Essentially, we are asking: how does a continuous variable depend on a

categorical variable?
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Example: Suppose that we are comparing the mean weight of the potatos, applied

with 10 brands of fertilizers.

• A straight forward choice is to apply two-sample T test to very pair of fertilizers.

• If H0 in at least one test is rejected, we say that there is a significant difference.

• There are
(
10
2

)
= 10×9

2 = 45 different pairs ⇒ 45 tests to be done!

Problem with performing multiple two-sample T tests

• Inefficient: number of tests needed grows very fast as number of brands grows.

• Large Type-I error:
• If α = 0.05 for each comparison, there is a 5% chance of making a Type-I error: a

pair of samples falsely regarded as significantly different.
• For 10 independent pairs, the probability of making a Type I error at least once is

1− 0.9510 = 0.40!

Is there a smarter way to compare multiple populations?
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Overview

Y – X

Response – Explanatory

Dependent – Independent

Outcome – Predictor

Y X Test Lecture

Categorical Categorical Pearson’s χ2-test
Previous lecture

Continuous
Binary Two-sample t-test

Categorical (One-way) ANOVA This lecture

Continuous Continuous Simple linear regression Next lecture(s)

Binary Continuous Logistic regression (Probably) not covered
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ANOVA

ANalysis Of VAriance (ANOVA) is a collection of statistical models used to compare

means for multiple (≥ 3) independent populations.

We only focus on the simplest case of ANOVA

• Assume that we have k independent, normally distributed groups

with equal variance

X1 ∼ N(µ1, σ
2), X2 ∼ N(µ2, σ

2), . . . , Xk ∼ N(µk, σ
2)

• We wish to determine if there is a significant difference among the

population means of these groups, i.e.

H0 : µ1 = µ2 = · · · = µk. v.s. H1 : µi ̸= µj for some i ̸= j.
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H0 : µ1 = µ2 = µ3. v.s. H1 : At least one mean is significantly different from others.
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Assumptions

X11, X12, . . . , X1n1

i.i.d.∼ N(µ1, σ
2)

X21, X22, . . . , X2n2

i.i.d.∼ N(µ2, σ
2)

...

Xk1, Xk2, . . . , Xknk

i.i.d.∼ N(µk, σ
2)

• The k samples are mutually independent.

• Each sample {Xi1, Xi2, . . . , Xini} is a normal random sample - we check this

condition with histograms and Q-Q plots.

• The population variance is the same across all k groups - we check this condition

by comparing sample standard deviations.
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Checking the ANOVA Assumptions

To check whether a sample comes from a normally distributed population, we have two

main choice:

• Histogram

• Q-Q plot

We now demonstrate both approaches using the old-faithful data.
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Checking the ANOVA Assumptions

Example: Old Faithful is a cone geyser in Yellowstone

National Park. It erupts every 40-100 mins, and each

eruption lasts for 1-5 mins.

We observe the eruptions and record the following two

variables:

• The duration in minutes of the eruption.

• The duration in minutes until the next eruption.
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Checking the Normality Assumptions – Histogram
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Checking the Normality Assumptions – Histogram
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Checking the Normality Assumptions – Q-Q Plot

Quantile-quantile plot

In statistics, a Q-Q (quantile-quantile) plot is a graphical method for comparing two

probability distributions by plotting their quantiles against each other.

We use the Q-Q plot to check if the data can be regarded as a normal random sample.

• Step 1: Given a sample {x1, . . . , xn}, normalized the data by subtracting the

sample mean x̄ and dividing the sample standard deviation s. So x̃i = (xi − x̄)/s.

• Step 2: Sort the (normalized) sample in increasing order {x̃(1), . . . , x̃(n)}, then
x̃(i) is (approximately) the i

n -th sample quantile.

• Step 3: For each x̃(i), calculate zi, the
i
n -th population quantile of the standard

normal distribution. Then plot the point (zi, x̃(i)).

Decision: If zi ≈ x̃(i) for all i, then the sample is approximately normally distributed.
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Checking the Normality Assumptions – Q-Q Plot

The sample is approximately normally

distributed, if

• zi ≈ x̃(i) for all i; or equivalently

• if the points lines-up in a 45◦ line

(the red line).

For the Old Faithful waiting time,

we cannot assume normality.
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Checking the Normality Assumptions – Q-Q plot

Can assume normality for long/short eruptions considered separately.
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Visual check of the Homogeneity of Variance – Boxplot
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*Checking the Homogeneity of Variance – Bartlett’s Test

Recall that we also need to assume equal variance across different samples.

• To test equal variance for k = 2 populations ⇒ two-sample F -test.

What about k ≥ 3 populations?

• Pair-wise comparison.

• A smarter way: Bartlett’s Test. Here is the Python code:

from scipy.stats import bartlett

T, p = bartlett(sample1, sample2, sample3,...)

Here T is the value of the test statistic and p is the p-value.

Example: Old Faithful – short vs. long eruptions. We have p = 0.77, so we fail

to reject H0 and can assume equal variance at any significance level α < 0.77.
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One-Way ANOVA: Comparing k Normal Means

Model: For i = 1, . . . , k and j = 1, . . . , ni,

Xij = µi + εij , εij ∼ N (0, σ2),

where µi is the mean of the i-th group and all εij are independent.

Hypotheses:

H0 : µ1 = µ2 = · · · = µk versus H1 : not all µi are equal.

Assumptions:

• Each group is a random sample from a N (µi, σ
2) population.

• All groups share the same variance σ2.

• Observations are independent both within and between groups.
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Intuition – Variation Between/Within Groups

Consider H0 : µ1 = · · · = µk ≡ µ versus H1 : µi ̸= µj , for some i ̸= j.

If H0 is true, (variation in the entire data) ≈ (variation within each group).
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Intuition – Quantifying the Variation

To quantify the variation between/within groups

• Let X̄i· be the sample mean of the ith group.

• Let X̄ be the sample mean of all observations.

For variation in a single observation, we write

Xij − X̄︸ ︷︷ ︸
Deviation from mean

= (X̄i· − X̄)︸ ︷︷ ︸
between groups

+ (Xij − X̄i·)︸ ︷︷ ︸
within group

We then aggregate the above to obtain variation in all the samples:

SST =
k∑

i=1

ni∑
j=1

(Xij − X̄)2 =
k∑

i=1

ni∑
j=1

((X̄i· − X̄) + (Xij − X̄i·))
2



53/63

Two-Sample Tests Pearson’s Chi-Squared Test Motivation of ANOVA Assumptions ANOVA Multiple Comparison

Measuring Variation in One-Way ANOVA

Within-Group Variation: Each group’s variability is measured by its sum of squared

deviations from its own mean:

SSW =

k∑
i=1

ni∑
j=1

(
Xij − X̄i·

)2
, X̄i· =

1

ni

ni∑
j=1

Xij .

Between-Group Variation: The variability of the group means around the overall

mean is

SSB =

k∑
i=1

ni

(
X̄i· − X̄

)2
, X̄ =

1

n

k∑
i=1

ni∑
j=1

Xij , n =
k∑

i=1

ni.
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Sum of Squares and ANOVA Intuition
Sums of Squares

• SST =
∑k

i=1

∑ni
j=1(Xij − X̄)2 is called the total sum of squares.

• SSW =
∑k

i=1

∑ni
j=1

(
Xij − X̄i·

)2
is called the sum of squares within groups.

• SSB = SSB =
∑k

i=1 ni

(
X̄i· − X̄

)2
is called the sum of squares between

groups.

Intuition:

• If the population means µ1, . . . , µk are all equal (H0 true), then the group means

X̄i· will vary only due to within-group noise.

• Thus, we expect

SST ≈ SSW ⇐⇒ SSB ≪ SSW.

• A very small ratio SSB/SSW suggests H0 is likely true.
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ANOVA F -Test
F-Statistic:

F =
SSB/(k − 1)

SSW/(N − k)
=

MSB

MSW
∼ F k−1,N−k under H0.

• N =
∑k

i=1 ni is the total sample size.

• MSB = SSB/(k − 1) is the mean square between groups.

• MSW = SSW/(N − k) is the mean square within groups.

• Large values of F indicate that MSB is large relative to MSW, suggesting

significant differences among group means.

Decision Rule

Reject H0 at level α if

F > Fk−1, N−k,α.
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One-Way ANOVA
Hypotheses

H0 : µ1 = · · · = µk ≡ µ versus H1 : µi ̸= µj , for some i ̸= j.

ANOVA table

Source df Sum of squares Mean squares F -statistic

Between k − 1 SSB =
∑k

i=1 ni(X̄i· − X̄)2 MSB = SSB/(k − 1) F = MSB

MSW

Within N − k SSW =
∑k

i=1

∑ni

j=1(Xij − X̄i·)
2 MSW = SSW /(N − k)

Total N − 1 SST =
∑k

i=1

∑ni

j=1(Xij − X̄)2

Test Statistics:

F =
MSB

MSW
∼ Fk−1,N−k under H0,

f =
msB
msW

.
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ANOVA p-Value

How to we determin the p-value?

• The p-value is the probability that the test statistic is more “extreme” than the

observed value.

• Recall that

F =
MSB

MSW
∼ Fk−1,N−k under H0,

If the variation between groups (MSB) is sufficiently large, in compare with the

variation within groups (MSW ), then H0 is not likely to be true.

• Hence, p = P(F>f | H0) where F ∼ Fk−1,N−k.

Conclusion: reject if p < α. Alternatively, reject if f > Fk−1,N−k,α.
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*Remark: Decomposition of Total Sum of Squares
Partitioning the Total Sum of Squares

SST = SSB + SSW .

k∑
i=1

ni∑
j=1

(Xij − X̄)2 =

k∑
i=1

ni∑
j=1

((X̄i· − X̄) + (Xij − X̄i·))
2

=

k∑
i=1

ni∑
j=1

(X̄i· − X̄)2 + 2

k∑
i=1

ni∑
j=1

(X̄i· − X̄)(Xij − X̄i·) +

k∑
i=1

ni∑
j=1

(Xij − X̄i·)
2

=

k∑
i=1

ni∑
j=1

(X̄i· − X̄)2 + 2

k∑
i=1

(X̄i· − X̄)

ni∑
j=1

(Xij − X̄i·)︸ ︷︷ ︸
=0

+

k∑
i=1

ni∑
j=1

(Xij − X̄i·)
2

=
k∑

i=1

ni(X̄i· − X̄)2 +
k∑

i=1

ni∑
j=1

(Xij − X̄i·)
2
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Example
A group of researchers conducted a clinical trial to determine the effectiveness of 3

pain relievers.

• 3 experimental groups (Advil, Tylenol, Aleve) and 1 placebo group

• 4 people in each group

• Each participant completed a pain self-assessment on a scale of 0 (no pain) - 10

(extreme pain).

A: Advil B: Tylenol C: Alevel D: placebo

3 2 1 6

4 1 2 9

2 0 1 7

1 9 2 10
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Example
Hypotheses:

H0 : µA = µB = µC = µD

Calculation:

x̄1· = 2.5, x̄2· = 3, x̄3· = 1.5, x̄4· = 8, x̄ = 3.75

s1 = 1.29, s2 = 4.08, s3 = 0.58, s4 = 1.83

ssB =

4∑
i=1

(xi· − x̄)2 = 4((2.5− 3.75)2 + (3− 3.75)2 + (1.5− 3.75)2 + (8− 3.75)2) = 101

ssW =

4∑
i=1

4∑
j=1

(xij − x̄i·)
2 =

4∑
i=1

(n1 − 1)s2i =

4∑
i=1

3s2i = 3(1.292 + 4.082 + 0.582 + 1.832) = 65.9874

msB = 101/(4− 1) = 33.67

msW = 65.9874/(16− 4) = 5.50
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Test Statistics

F ∼ F3,12 under H0

f =
msB
msW

=
33.67

5.5
≈ 6.12

ANOVA table

Source Degree of freedom Sum of squares Mean squares F -statistic

Between 4− 1 = 3 101 33.67 6.12

Within 16− 4 = 12 65.9874 5.50

Total 16− 1 = 15 166.9874

Conclusion: Set the significant level α = 0.05. Reject H0 since

f = 6.12 > 3.49 = F3,12,0.05. We can conclude that at least one pair of the groups has

significantly different mean pain scores.
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ANOVA: Possible Outcomes and Next Steps

We tested

H0 : µ1 = µ2 = · · · = µk versus H1 : not all µi are equal.

• Fail to reject H0: No significant difference among the group means.

Example: For example, if vital-sign measurements across different dosage

groups are statistically the same, then the drug shows no effect.

• Reject H0: At least one group mean differs significantly from the others.

Example: This indicates that dosage has an effect on the vital signs.

Next Question: “Where do the differences lie?”
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Tukey’s HSD Post-Hoc Test

We will now introduce post-hoc multiple comparison procedures to pinpoint which

group(s) differ.

• Tukey’s Honestly Significant Difference (HSD) test performs all pairwise

comparisons among group means while controlling the family-wise error rate.

• For each pair (i, j), it:
• Tests H0 : µi = µj versus H1 : µi ̸= µj .
• Constructs a simultaneous (1− α)× 100% confidence interval for µi − µj .

• Equal sample sizes required: The standard Tukey HSD assumes

n1 = n2 = · · · = nk.

• The test statistic is based on the studentized range distribution; derivation is

beyond the scope of this course.
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