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Beyond Categorical Comparisons

Limitations of Dichotomous/discrete Grouping

• In earlier topics we learned how to test for differences between two or more

populations

Example: smoking vs. non-smoking and heart-disease risk.

• Such methods (χ2, two-sample t, ANOVA) tell us whether groups differ, but they

reduce rich data to simple “yes/no” or group-labels.

• When we dichotomize a continuous variable (e.g. smoker vs. non-smoker), we

lose information about the intensity or degree of that variable.

• As a result, we cannot make precise predictions for individuals based on the full

range of their measurements.

Looking Ahead: We now introduce regression methods that use continuous predictors

directly, preserving information and enabling individualized prediction.
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Moving Beyond Pairwise Comparisons

• Most methods we’ve seen so far fall into two categories:
• Summarize the data: descriptive statistics, point & interval estimation, one-sample

hypothesis tests.
• Identify connections: two-sample tests, ANOVA, contingency-table (χ2) tests.

• To predict outcomes, we must model how multiple variables relate to each other.

• Example: Prediction Given a person’s years of smoking, estimate their probability

of developing heart disease. ⇒ Connection between two continuous variables.
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Overview

Y – X

Response – Explanatory

Dependent – Independent

Outcome – Predictor

Y X Test Lecture

Categorical Categorical Pearson’s χ2-test

Previous lectures
Continuous

Binary Two-sample t-test

Categorical (One-way) ANOVA

Continuous Continuous
Correlation analysis

This lectures
Simple linear regression

Binary Continuous Logistic regression (Probably) not covered



5/93

Correlation Introduction Least Square Estimators Statistical Inference Multiple Linear Regression Other Considerations

From Correlation to Regression

• In prediction tasks, the accuracy of our predictions depends on the strength of the

relationship between variables.

• To quantify how strongly two variables move together, we use correlation.

• If a strong correlation is found, we then model the precise form of that

relationship—this is called regression.
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Correlation

In studying correlation, we look at samples where each subject has provided values on

two (or more) different variables.

• Example: Test intelligence and manual dexterity for 30 students, yielding 30

pairs of values.

• Example: Compare crime-rate and unemployment-rate for 20 large cities.

In each case, we examine whether larger values on one variable are associated with

larger (or smaller) values on the other.
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Example: Radius vs. Circumference

For a concrete example, consider several circles of different radii.

• For each circle we measure its radius r and its circumference C.

Radius (cm) r = 1 r = 3 r = 5 r = 8 r = 10

Circumference (cm) 6.28 18.85 31.41 50.26 62.83

• The theoretical relationship is

C = 2πr.

• In practice, measurement error means the points won’t lie exactly on this line, but

we still expect a strong positive association: as r increases, C increases.
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Example: Illustrating the Relationship

• We can illustrate the relationship

between two variables using a scatter

plot.

• As expected, the points align very

well along an increasing trend,

showing a very strong relationship.

• Once a strong association is

identified, we can characterize its

precise form: C = 2πr.

• This formula then allows us to make

predictions.
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Example: Trend Indication with a Line

• Often, the relationship is not so clear-cut.

• A scatter plot gives us a first glance at whether

a trend exists.

• We can overlay a line to indicate the trend.

• (More on how to draw this line later.)
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Example: Types of Correlation

• Positive correlation: larger values of one variable accompany larger values of the

other
(
Example: radius vs circumference

)
.

• Negative correlation: larger values of one variable accompany smaller values of the

other
(
Example: age vs running speed

)
.

• Zero correlation: no clear tendency for the two variables to move together(
Example: shoe size vs intelligence

)
.
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Example: Types of Correlation
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Correlation Coefficient

• The scatter plot not only presents you the direction of the correlation, but also a

sense of the strength.

• How do we quantitatively measure the strength?
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Correlation Coefficient

Correlation coefficient is widely used as a measure of the strength and direction of the

linear dependence between two variables X and Y .

Pearson’s product-moment Correlation Coefficient

The population Pearson’s correlation coefficient, denoted as ρ, of two variables X and

Y is

ρ =
Cov(X,Y )√

V ar(X)V ar(Y )
=

E[(X − EX)(Y − EY )]

σXσY
.

The estimated (sample) Pearson’s correlation coefficient, denoted as r, with a sample

((X1, Y1), (X2, Y2), . . . , (Xn, Yn)) is

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
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Understanding Sample Correlation

R =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )√√√√ n∑
i=1

(Xi − X̄)2

√√√√ n∑
i=1

(Yi − Ȳ )2

=
1

n− 1

n∑
i=1

Xi − X̄

SX

Yi − Ȳ

SY
.

• If Y tends to increase when X increases, then (Xi − X̄) and (Yi − Ȳ ) are typically

of the same sign, so
∑

(Xi − X̄)(Yi − Ȳ ) is large and positive, hence R > 0.

• If Y tends to increase when X decreases, then (Xi− X̄) and (Yi− Ȳ ) are typically

of opposite sign, so
∑

(Xi − X̄)(Yi − Ȳ ) is large and negative, hence R < 0.

• The denominator
√∑

(Xi − X̄)2
√∑

(Yi − Ȳ )2 scales the numerator to ensure R

lies in [−1, 1].
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• Linear relationship between two numeric variables.

• The sign indicate the direction of the linear relationship
• Negative ⇒ X increases, Y decreases.
• Positive ⇒ X increases, Y increases.

• The absolute value indicate the strength of the linear relationship
• Larger the absolute value ⇒ stronger linear relationship.
• −1 ⇒ perfectly negative correlation.
• +1 ⇒ perfectly positive correlation.
• 0 ⇒ the variables are not linearly correlated.
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Potential Problems of the Correlation Coefficient

• The correlation coefficient can only detect if a linear relationship exists.

• The value of these coefficients really does not tell us about the exact relationship,

other than an abstract summary such as “Y is some liner function of X.”

⇒ Correlation analysis cannot be used to predict Y with X!
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From Correlation to Regression

The sample correlation coefficient R measures the strength and direction of a linear

association between the explanatory variable X and the response variable Y . However,

it does not tell us the specific form of that relationship or how to make predictions.

• Pearson’s correlation coefficientR is a summary statistic: it quantifies how closely

the data lie along some line, i.e., if a linear relationship between the explanatory

variable X and and the response variable Y .

• However, it does not tell us the specific form of that relationship or how to make

predictions.

• To identify the precise linear relation, we use simple linear regression.
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Introduction – Simple Linear Regression

Linear relationship

Linear relationship can be summarized by two numbers, the intercept α and the slope β:

Y = α+ βX

• The intercept α is the value of Y when the line crosses the y-axis, i.e. Y value when

X = 0.

• The slope β is a measure of the steepness of a line, i.e. the change in Y when X

changes by one unit.
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Example: The raw material used in the production of a certain synthetic fiber is

stored in a location without a humidity control. Measurements of the relative humidity

(X) in the storage location and the moisture content (Y ) of a sample of the raw

material were taken over 15 days with the following data.

• The Pearson’s correlation

coefficient ρ = 0.95.

• Perform T -test for the Pearson’s

correlation coefficient, we have

p ≈ 0.

• There are strong positive linear

relationship!
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If we “fit” a straight line to the scatter

plot, we may have

Y = −2.38 + 0.32X.

• How do we find the “best” line

that fits our data?

• Notice that no matter which line

we choose, there is always error!

• How good does the line

“explain/predict” Y ?
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Simple Linear Regression

To address the error, one choice is to include the error in the model!

Simple linear regression model

We assume that the i-th observation (Yi, Xi) follows

Yi = α+ βXi + εi

(Response) = (Linear Model) + (Error)

Note that α and β are shared across different observations.

Let us answer first the question below:

How do we find the “best” line that fits our data?
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Intuition

For a line α+ βX to fit the data well, we wish that the error

εi = Yi − (α+ βXi)

are “minimized” across all the observed data.

We shall measure the overall error by the sum of squared error (SSE), or residual sum

of squares (RSS):

SSE = RSS =

n∑
i=1

ε2 =

n∑
i=1

(Yi − (α+ βXi))
2

• We want to find the α and β such that the SSE is minimized.
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Ordinary Least Square Estimators

The estimators that can minimize the SSE are called the (ordinary) least square1

(OLS) estimators. The name is self-explanatory.

For a dataset {(Xi, Yi) : i = 1, 2, . . . , n.}, let’s calculate the OLS estimators.

1There is a generalization of this method called the generalized least square (GLS) estimation.
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Example: Ordinary Least Squares (OLS) Estimators

The OLS estimators α̂, β̂ minimize the sum of squared errors

SSE(α, β) =

n∑
i=1

(
Yi − (α+ βXi)

)2
.

Compute the first-order conditions:

∂SSE

∂α
= −2

n∑
i=1

(
Yi − (α+ βXi)

)
= −2nȲ + 2nα+ 2βnX̄ = 0,

∂SSE

∂β
= −2

n∑
i=1

Xi

(
Yi − (α+ βXi)

)
= −2

n∑
i=1

XiYi + 2αnX̄ + 2β

n∑
i=1

X2
i = 0.

Solving these two normal equations simultaneously to derive the OLS estimates.
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Example: Derivation of the Normal Equations
From the normal equations:

−2nȲ + 2nα+ 2β nX̄ = 0 =⇒ α+ β X̄ = Ȳ =⇒ α = Ȳ − β X̄.

−2

n∑
i=1

XiYi + 2αnX̄ + 2β

n∑
i=1

X2
i = 0 =⇒

n∑
i=1

XiYi = αnX̄ + β

n∑
i=1

X2
i .

Substitute α = Ȳ − βX̄:

n∑
i=1

XiYi = (Ȳ − βX̄)nX̄ + β

n∑
i=1

X2
i = nX̄ Ȳ − β nX̄2 + β

n∑
i=1

X2
i

Rearranging gives

β =

∑n
i=1XiYi − nX̄ Ȳ∑n
i=1X

2
i − nX̄2

and α = Ȳ − β X̄.
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Let X̄ and Ȳ be the sample means and (see next slide for the derivation)

Sxx =

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

X2
i − nX̄2, SY Y =

n∑
i=1

(Yi − Ȳ )2 =

n∑
i=1

Y 2
i − nȲ 2

SxY =

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =

n∑
i=1

XiYi − nX̄Ȳ

Least Square Estimators

β̂ =
SxY

Sxx
, α̂ = Ȳ − β̂X̄, SSE =

n∑
i=1

(Yi − α̂− β̂Xi)
2 =

SxxSY Y − S2
xy

Sxx

Here we abused the notation SSE to denote the SSE measured for the best line as

specified by the OLS estimator.
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Example: Sums of Squares Identities
We show the standard shortcuts for centering sums:

Sxx =

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

(
X2

i − 2X̄ Xi + X̄2
)
=

n∑
i=1

X2
i − 2X̄

n∑
i=1

Xi + nX̄2

Since
∑n

i=1 Xi = nX̄, this becomes

Sxx =

n∑
i=1

X2
i − 2 X̄ (nX̄) + nX̄2 =

n∑
i=1

X2
i − nX̄2.

Similarly,

SY Y =

n∑
i=1

(Yi − Ȳ )2 =

n∑
i=1

Y 2
i − nȲ 2,

and for the cross-term,

SxY =

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =

n∑
i=1

(
XiYi − X̄ Yi − Ȳ Xi + X̄ Ȳ

)
=

n∑
i=1

XiYi − nX̄ Ȳ .
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*An Alternative Way to Derive OLS Estimator

We know that the mean minimize the squared error, so for any fixed β, letting

α = α̂(β) = Ȳ − βX̄ minimizes SSE as a function of α

min
α

SSE(α) =

n∑
i=1

((Yi − βXi)− α̂(β))2

=

n∑
i=1

((Yi − βXi)− (Ȳ − βX̄))2

=

n∑
i=1

((Yi − Ȳ )− β(Xi − X̄))2

= SY Y − 2βSxY + β2Sxx

So choosing β = β̂ = SxY
Sxx

minimize the above.
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Coefficient of Determination
Having found the best line to fit the data, we seek to answer the second question:

How good does the line “explain” Y ?

Residual

Residual = Yi − Ŷi = Yi − α̂− β̂Xi

here Ŷi is called the fitted value of the i-th observation.

Taking the sum of squares, we have a characterization of the overall error that remains

after our regression.

Residual sum of squares (also called Error sum of squares)

SSE =

n∑
i=1

(Yi − Ŷi)
2
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Residual (Error) Sum of Square
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We can consider the following

decomposition

(Deviation) = Yi − Y

= (Yi − Ŷi) + (Ŷi − Y )

= (Residual/Error) + (Regression)
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As usual, we shall measure these in terms of the sum of squares.

Decomposition of the Total Sum of Squares (SST )

Total SS = Regression SS+ Residual/Error SS

SST = SSR + SSE

n∑
i=1

(Yi − Y )2 =

n∑
i=1

(Ŷi − Y )2 +

n∑
i=1

(Yi − Ŷi)
2

• The cross term 2
∑n

i=1(Ŷi − Y )(Yi − Ŷi) vanishes. *A brute-force proof is not

entirely straightforward. It is usually proved using linear algebra arguements.
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Coefficient of Determination

R2 =
SST − SSE

SST
=

SSR

SST

Interpretation of R2

• Indicate how well the variation in Y is explained by X.

• Interpreted as the proportion of total variation in the response variable Y that is

“explained” by the regressors X in the model.

• 0 ≤ R2 ≤ 1

• R2 = 1: The data fall exactly on a straight line.

• R2 = 0: No “linear” relationship.
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*Connection with Sample Correlation

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2
=

SxY√
SxxSY Y

Recall that SSE =
∑n

i=1(Yi − α̂− β̂Xi)
2 =

SxxSY Y −S2
xy

Sxx
.

r2 =
S2
xy

SxxSY Y
=

SxxSY Y − SxxSSE

SxxSY Y
=

SST − SSE

SST
= R2

Coefficient of Determination is the square of (Pearson’s) coefficeint of

correlation!
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Up until this point, we have answered two main questions:

• How do we find the “best” line that fits our data?

• How good does the line “explain” Y ?

We will need more probability assumptions in order to answer other statistical

questions such as

• construct confidence interval for the parameters;

• perform statistical hypothesis tests.
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Probabilistic Modeling of the Simple Linear Regression

Assumptions

• Linearity: The data actually exhibit a linear relationship, i.e., Yi = α+ βxi + ε.

• Independency: The error {εi : i = 1, 2, . . . , n} are independent.

• Homoscedasticity (Equal variance): the variance of the error εi should be the

same.

• Normality: each error εi is normally distributed.

The last 3 assumptions can summarized as

εi
i.i.d.∼ N(0, σ2), i = 1, 2, . . . , n.

We usually assume the independent variable xi to be deterministic numbers

rather than random variables. That’s why we shall use lower case.



38/93

Correlation Introduction Least Square Estimators Statistical Inference Multiple Linear Regression Other Considerations

The above assumptions implies that

Yi = α+ βxi + εi ∼ N(α+ βxi, σ
2), i = 1, 2, . . . , n.
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Maximum Likelihood Estimator for α and β

Because of the i.i.d. assumption, the likelihood of the observation is

L(α, β, σ;x, Y ) =
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(Yi − α− βxi)
2

)
.

Take logarithm

l(α, β, σ;x, Y ) = logL(α, β;x, y) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(Yi − α− βxi)
2.

Maximizing the log-likelihood with respect to α and β is equivalent to minimizing the

term
n∑

i=1

(Yi − α− βxi)
2

This is exactly what we did in OLS estimation!
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∂ logL(α, β, σ2)

∂α
=

1

σ2

n∑
i=1

(Yi − α− βxi)

∂ logL(α, β, σ2)

∂β
=

1

σ2

n∑
i=1

(xi)(Yi − α− βxi)

∂ logL(α, β, σ2)

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑
i=1

(Yi − α− βxi)
2

MLE

The maximum likelihood estimators for α, β and σ2 are

β̂MLE =
SxY

Sxx
, α̂MLE = Ȳ − β̂MLEx̄,

σ̂2
MLE =

1

n

n∑
i=1

(Yi − α̂MLE − β̂MLExi)
2 =

SSE

n
=

SxxSY Y − S2
xY

nSxx
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Estimation of the Variance

We have derived the MLE σ̂2
MLE of the variance. However, this estimator is actually

biased. In the setting of simple linear regression, people usually use an unbiased

version of it instead:

σ̂2 = s2y =

∑n
i=1(Yi − Ŷi)

2

n− 2
=

SSE

n− 2
.

Notation simplification

• Since the MLE for α and β coincides with that derived from the OLS method, we

shall omit the subscript and write

α̂ = α̂MLE, β̂ = β̂MLE
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Theorem (Distributions of the Estimators)

α̂, β̂ and σ̂2 have the following distributions

α̂ ∼ N

(
α,

σ2
∑n

i=1 x
2
i

nSxx

)
, β̂ ∼ N(β,

σ2

Sxx
),

(n− 2)σ̂2

σ2
=

SSE

σ2
∼ χ2

n−2

Moreover, Cov(α̂, β̂) = −σ2x̄
Sxx

and σ̂2 is independent of (α̂, β̂).

• α̂ and β̂ are just linear combination of Yi’s, it is straightforward (but tiresome) to

find the marginal and joint distribution.

• The proof for SSE
σ2 is a bit complicated.
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Hypothesis Test for the Slope β
In the simple linear regression model

Y = α+ βx+ ε.

We are interested in testing the hypothesis β = 0. (What does it mean?)

Since β̂ ∼ N(β, σ2

Sxx
), we have

β̂ − β√
σ2/Sxx

∼ N(0, 1)

Since SSE
σ2 = (n−2)σ̂2

σ2 ∼ χ2
n−2, we conclude (by the definition of t-distribution) that

β̂ − β√
σ̂2/Sxx

=
(β̂ − β)/

√
σ2/Sxx√

σ̂2/σ2
=

N(0, 1)√
χ2
n−2/(n− 2)

∼ Tn−2
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Null hypothesis:

H0 : β = 0

Test statistic

T =

√
Sxx

σ̂2
β̂ =

√
(n− 2)Sxx

SSE
β̂ ∼ Tn−2 under H0

H1 Rejection region p-value

β ̸= 0 |t| > tn−2,γ/2 P (|T | > |t| | H0)

β > 0 t > tn−2,γ P (T > t | H0)

β < 0 t < tn−2,γ P (T < t | H0)

*T ∼ tn−2, P(T > tn−2,γ) = γ.
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Example: An individual claims that the fuel consumption of his automobile does not depend

on how fast the car is driven. To test the plausibility of this hypothesis, the car was tested at

various speeds between 45 and 70 miles per hour. The miles per gallon (MPG) attained at

each of these speeds was as the follows:

364 Chapter 9: Regression

Hypothesis Test of H0: β = 0
A significance level γ test of H0 is to

reject H0 if

√
(n − 2)Sxx

SSR
|B| > tγ /2,n−2

accept H0 otherwise

This test can be performed by first computing the value of the test statistic√
(n − 2)Sxx /SSR |B| — call its value v — and then rejecting H0 if the desired significance

level is at least as large as

p-value = P{|Tn−2| > v}
= 2P{Tn−2 > v}

where Tn−2 is a t -random variable with n − 2 degrees of freedom. This latter probability
can be obtained by using Program 5.8.2a.

EXAMPLE 9.4a An individual claims that the fuel consumption of his automobile does
not depend on how fast the car is driven. To test the plausibility of this hypothesis, the
car was tested at various speeds between 45 and 70 miles per hour. The miles per gallon
attained at each of these speeds was determined, with the following data resulting:

Speed Miles per Gallon

45 24.2
50 25.0
55 23.3
60 22.0
65 21.5
70 20.6
75 19.8

Do these data refute the claim that the mileage per gallon of gas is unaffected by the speed
at which the car is being driven?

SOLUTION Suppose that a simple linear regression model

Y = α + βx + e

relates Y, the miles per gallon of the car, to x, the speed at which it is being driven. Now,
the claim being made is that the regression coefficient β is equal to 0. To see if the data
are strong enough to refute this claim, we need to see if it leads to a rejection of the null
hypothesis when testing

H0 : β = 0 versus H1 : β #= 0

Let Y denote MPG and x denote the speed. Suppose a simple linear model

Y = α+ βx+ ε.

We want to test H0 : β = 0 v.s. H1 : β ̸= 0.



46/93

Correlation Introduction Least Square Estimators Statistical Inference Multiple Linear Regression Other Considerations

Calculate

sxx = 700, SY Y = 21.757, SxY = −119

According to the formulas

ssE = [sxxSY Y − s2xY ]/sxx = [700(21.757)− (−119)2]/700 = 1.527

β̂ = SxY /sxx = −119/700 = −0.17

So

t =

√
(7− 2)sxx

ssE
β̂ = −8.139

The p-value= 2P{Tn−2 > |t|} = 0.00045. Reject H0 for all α > 0.00045.
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OLS Regression Results

==============================================================================

Dep. Variable: mpg R-squared: 0.930

Model: OLS Adj. R-squared: 0.916

Method: Least Squares F-statistic: 66.23

Date: Prob (F-statistic): 0.000455

Time: Log-Likelihood: -4.6038

No. Observations: 7 AIC: 13.21

Df Residuals: 5 BIC: 13.10

Df Model: 1

Covariance Type: nonrobust

==============================================================================

coef std err t P>|t| [0.025 0.975]

------------------------------------------------------------------------------

const 32.5429 1.271 25.612 0.000 29.277 35.809

speed -0.1700 0.021 -8.138 0.000 -0.224 -0.116

==============================================================================

Omnibus: nan Durbin-Watson: 2.472

Prob(Omnibus): nan Jarque-Bera (JB): 0.604

Skew: 0.708 Prob(JB): 0.739

Kurtosis: 3.253 Cond. No. 370.

==============================================================================
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ANOVA Table for Simple Linear Regression
Null and Alternative Hypotheses:

H0 : β = 0, H1 : β ̸= 0

ANOVA table

Source df SS MS

Regression 1
∑n

i=1(Ŷi − Y )2 SSR/1

Error n− 2
∑n

i=1(Yi − Ŷi)
2 SSE/(n− 2)

Total n− 1
∑n

i=1(Yi − Y )2

Test Statistics:

F =
MSR

MSE
∼ F1,n−2 under H0

Reject H0 if the observed statistic f > F1,n−2,α where P(F > F1,n−2,α) = α
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Connection Between ANOVA Table and T -Test

Recall the T -statistic for testing β:

T 2 =

(√
Sxx

σ̂2
β̂

)2

=
Sxx

SSE/(n− 2)

S2
xY

S2
xx

=
S2
xY /Sxx

SSE/(n− 2)
=

SSR

SSE/(n− 2)
= F

Above follows from SSE =
SxxSY Y −S2

xY
Sxx

= SY Y − S2
xY /Sxx = SST − S2

xY /Sxx, so

MSR = SSR/1 = S2
xY /Sxx.

In the ANOVA test and (two-sided) T -test for the significance of linear regression

• The F -statistic and T -statistic is connected by T 2 = F .

• The two tests are equivalent.
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Derivation of the Error Sum of Squares
Recall the definitions

Sxx =

n∑
i=1

(Xi − X̄)2, SY Y =

n∑
i=1

(Yi − Ȳ )2, SxY =

n∑
i=1

(Xi − X̄)(Yi − Ȳ ),

and the OLS slope

β̂ =
SxY

Sxx
.

Substitute α̂:

Yi − α̂− β̂Xi = Yi − (Ȳ − β̂ X̄)− β̂Xi = (Yi − Ȳ )− β̂ (Xi − X̄).

Hence

SSE =
n∑

i=1

[
(Yi − Ȳ )− β̂ (Xi − X̄)

]2
=
∑

(Yi − Ȳ )2 − 2 β̂
∑

(Yi − Ȳ )(Xi − X̄) + β̂2
∑

(Xi − X̄)2

= Syy − 2 β̂ Sxy + β̂2 Sxx.
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Derivation of the Error Sum of Squares

Substituting β̂ = SxY /Sxx yields

SSE = SY Y − SxY

Sxx
SxY = SY Y −

S2
xY

Sxx
=

Sxx SY Y − S2
xY

Sxx
.
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Confidence Interval for β
The (1− γ)× 100% confidence interval for β can be constructed as before using the

sample distribution of β̂ as before. We can write

P

(
−tn−2,γ/2 ≤

β̂ − β√
σ̂2/Sxx

≤ tn−2,γ/2

)
= P(−tn−2,γ/2 ≤ T ≤ tn−2,γ/2) = γ.

Rearrange terms and we obtain the two-sided CI

β ∈
[
β̂ − tn−2,γ/2σ̂

√
1

Sxx
, β̂ + tn−2,γ/2σ̂

√
1

Sxx

]
.

Similarly, we can develop one-sided CIs

β ∈
(
−∞, β̂ + tn−2,γ σ̂

√
1

Sxx

]
, β ∈

[
β̂ − tn−2,γ σ̂

√
1

Sxx
,+∞

)
.
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Hypothesis Tests for α

Reacall that

α̂ ∼ N

(
α,

σ2
∑n

i=1 x
2
i

nSxx

)
We have

α̂− α

σ

√∑n
i=1 x

2
i

nSxx

∼ N(0, 1),
α̂− α

σ̂

√∑n
i=1 x

2
i

nSxx

∼ Tn−2.
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Null hypothesis:

H0 : α = 0.

Test statistic

T =
α̂

σ̂

√∑n
i=1 x

2
i

nSxx

∼ Tn−2 under H0

H1 Rejection region p-value

α ̸= 0 |t| > tn−2,γ/2 P (|T | > |t| | H0)

α > 0 t > tn−2,γ P (T > t | H0)

α < 0 t < tn−2,γ P (T < t | H0)

*T ∼ tn−2, P(T > tn−2,γ) = γ.
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Confidence Interval for α

Two-sided

α ∈

α̂− tn−2,γ/2σ̂

√∑n
i=1 x

2
i

nSxx
, α̂+ tn−2,γ/2σ̂

√∑n
i=1 x

2
i

nSxx

 .

One-sided

α ∈

−∞, α̂+ tn−2,γ σ̂

√∑n
i=1 x

2
i

nSxx

 , α ∈

α̂− tn−2,γ σ̂

√∑n
i=1 x

2
i

nSxx
,+∞

 .
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Motivation

We have talked about how to find linear relationship between the dependent variable Y

and a single predictor X:

Y = α+ βX + ε.

• If we have multiple predictors that may help to predict Y , how can we generalize

the model above to incorporate all of the variables in a linear model?

Example: We want to model/predict the sales Y of a product, and we have data of

the advertisement budget spent in multiple ways: from TV X1, and on the newspapers

X2 and from the radio X3.
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• We can plot a scatter plot for

the data of sales versus the

two ads.

• We can clearly see an

increasing trend for sales with

respect to the increase of ad

budget in both media

formats. Can we fit a linear

function to it?

We may want to use the following

Sales = β0 + β1 × TV+ β2 × Newspaper+ β3 × Radio+ ϵ.

The interpretation of βi is, if the budget spent on media i is increased by one unit,

while everything else is fixed, then on average sales is increased by βi units.
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Multiple Linear Regression
Given

• A single dependent/target variable Y .
• Let Yi denote the dependent variable for the i-th observation.

• Several independent/explanatory variables x1, x2, . . . , xp.
• Let xij denote the j-the dependent variable for the i-th observation.

Assuming a general linear regression model: for i = 1, . . . , n

Yi = β0 + β1xi1 + · · ·+ βpxip + εi

• εi
iid∼ N(0, σ2) is the random error of the i-th observation.

Want

• Estimation: the parameters β0, . . . , βp that best describe this linear dependence,

and the variance σ2 of the error.

• Inference: confidence interval, hypothesis testing for the parameters.
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Ordinary Least Square Estimator

To esitimate βi, minimize the RSS

RSS = SSE =

n∑
i=1

(Yi − Ŷi)
2

=

n∑
i=1

(Yi − β̂0 − β̂1xi1 − · · · − β̂pxip)
2

This can be done through Python:

• sklearn.linear model.LinearRegression

• statsmodels.regression.linear model.OLS
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Example:

import statsmodels.formula.api as smf

import numpy as np

import pandas as pd

# load data

datas_url = ’https://www.statlearning.com/s/Advertising.csv’

df = pd.read_csv(datas_url).drop(’Unnamed: 0’,axis=1)

df.head()

# fit linear regression model

res = smf.ols(’sales ~ TV + radio + newspaper’, data=df).fit()

res.summary()
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Sales = 2.9 + 0.46TV− 0.001× newspaper+ 1.9timesRadio+ ϵ.
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• The Coefficient of Determination

R2 =
SST − SSE

SST
= 0.842.

• The larger R is, the better the

model fits the data.

• The F -statistic = 259.1.
• The larger F is, the more

significant the model is in

compare with simple model with

only a intercept.
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Null and Alternative Hypotheses

H0 : β1 = β2 = · · · = βp = 0 vs. H1 : at least one βi is not 0

ANOVA Table

Source df SS MS

Regression p
∑n

i=1(Ŷi − Y )2 SSR/p

Residual n− (p+ 1)
∑n

i=1(Yi − Ŷi)
2 SSE/(n− (p+ 1))

Total n− 1
∑n

i=1(Yi − Y )2

Test Statistics

F =
MSR

MSE
∼ Fp,n−(p+1) under H0

Reject H0 if f > Fp,n−(p+1),α where P(F > Fp,n−(p+1),α) = α
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Regression Diagnostics

Recall that linear regression model have assumptions:

• Linearity: The data actually exhibit a linear relationship.

• Independency: Observations should be independent.

• Homoscedasticity: The variance of the errors ε should be constant across all

levels of the independent variables.

For all our statistical analysis to be valid, these assumptions must be met by the data.

We need diagnostic plots to validate these assumptions.
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Diagnose Plots for Linear Regression
Plot residuals against fitted value: Check the assumption of linear model.



66/93

Correlation Introduction Least Square Estimators Statistical Inference Multiple Linear Regression Other Considerations

Q-Q plot for the residuals: Check the assumption of normality.
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Scale-location plot: plot the scale (standard deviation) of the residual against the

location (fitted value of Y ). Check the assumption of equal variance.

studendized residual =
residual

sample std. dev. of residual
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Leverage plot: Check the outliers.
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Non-Linear Relationship

If the relationship between Y and X1, X2, . . . , Xp is nonlinear, can we find a way to

still use linear models to model the relationship?
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Modeling Synergy via Interaction Terms
In our advertising example the simple additive model

ŷ = β0 + β1 TV+ β2 Radio+ β3Newspaper

systematically overestimates when one medium dominates and underestimates when

the budget is split—indicating synergy between channels.

• To capture this, introduce interaction terms:

ŷ = β0 + β1 TV+ β2 Radio+ β12 (TV× Radio) + β13 (TV× Newspaper) + · · ·

• Here β12 measures the extra lift when TV and Radio spend are both high.

• You can also include higher-order terms (e.g.TV2) or other interactions to model

more complex nonlinearity.

• Estimation proceeds as before (ordinary least squares).



71/93

Correlation Introduction Least Square Estimators Statistical Inference Multiple Linear Regression Other Considerations

Example:

Yi = β0 + β1 TVi + β2Newspaperi + β3 Radioi

+ β4 (TVi × Radioi) + β5 (TVi × Newspaperi) + β6 (Newspaperi × Radioi) + εi

coef std err t P(|T | > |t|) [0.025 0.975]

Intercept 6.4602 0.318 20.342 0.000 5.834 7.087

TV 0.0203 0.002 12.633 0.000 0.017 0.024

radio 0.0229 0.011 2.009 0.046 0.000 0.045

newspaper 0.0170 0.010 1.691 0.092 -0.003 0.037

TR 0.0011 5.72e-05 19.930 0.000 0.001 0.001

TN -7.971e-05 3.58e-05 -2.227 0.027 -0.000 -9.12e-06

RN -0.0001 0.000 -0.464 0.643 -0.001 0.000
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• The Coefficient of Determination R2 = SST−SSE
SST

= 0.969.
• Compare with the model without cross-term, where R2 = 0.897 < 0.969.
• The model fits the data better.

• The F -statistic = 993.3.
• We also see that the residual-versus-fitted plot is more linear than the one without

cross-term. Though still not perfect.
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Example: The effect of (newspsper) and (radio)×(newspaper) is not significant at

5% significance level. We should consider removing them for interpretability and model

simplicity.

Yi = β0 + β1 TVi + β2 Radioi

+ β3 (TVi × Radioi) + β4 (TVi × Newspaperi) + εi

coef std err t P(|T | > |t|) [0.025 0.975]

Intercept 6.7491 0.248 27.195 0.000 6.260 7.239

TV 0.0194 0.002 12.494 0.000 0.016 0.022

radio 0.0288 0.009 3.225 0.001 0.011 0.046

TR 0.0011 5.34e-05 20.481 0.000 0.001 0.001

TN -1.335e-05 1.82e-05 -0.733 0.465 -4.93e-05 2.26e-05

• R2 = 0.968.

• F = 1469.
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Example: The effect of (TV)×(newspaper) is not significant at 5% significance level.

We should consider removing them for interpretability and model simplicity.

Yi = β0 + β1 TVi + β2 Radioi + β3 (TVi × Radioi) + εi

coef std err t P(|T | > |t|) [0.025 0.975]

Intercept 6.7502 0.248 27.233 0.000 6.261 7.239

TV 0.0191 0.002 12.699 0.000 0.016 0.022

radio 0.0289 0.009 3.241 0.001 0.011 0.046

TR 0.0011 0.000 20.727 0.000 0.001 0.001

• R2 = 0.968.

• F = 1963.

• Now all variables are significant at 5% significance level.
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Variable Selection

• Select the “best” subset of predictors to explain the response with maximal

predictive power.

• Exclude unnecessary predictors that add noise and reduce estimation accuracy.

• Prevent collinearity by avoiding redundant variables that capture the same signal.

• Simplify the model to save on data-collection costs and improve interpretability.

• Aim for the simplest model that retains strong predictive power.
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Backward Elimination

What we just illustrated using the advertising data is a backward elimination

approach to variable selection.

1 Start with the full model containing all candidate predictors.

2 Identify the predictor with the largest p-value.
• If that p-value > αremove, remove this predictor.

3 Refit the reduced model.

4 Repeat steps 2-3 until every remaining predictor has p-value ≤ αremove.
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Comparing models
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Let’s check the diagnostic plots again for the refined model:

Non-linearity exists!
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Visualize the non-linearity

• The raw scatter of Sales vs. TV ad

spend shows a nonlinear curve.

• If we plot Sales against log(TV), the

relationship appears approximately

linear:

Sales ≈ β0 + β1 log(TV).

• This suggests using log(TV) as the

predictor in our regression model.
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Linearity Check

Interpretation of the log transform

log
(
x2
)
= 2 log(x).

Thus, multiplying the TV budget by a factor of 2 increases log(TV) by

log(2x)− log(x) = log(2),

which corresponds to a fixed additive increment in predicted sales. In the original scale,

this means diminishing marginal returns: each additional dollar spent on TV yields a

smaller increment in sales the larger the budget already is.
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Regression with log TV, Radio, and TR

Yi = β0 + β1 log(TVi) + β2 Radioi + β3 (TVi × Radioi) + εi

coef std err t P(|T | > |t|) [0.025 0.975]

Intercept 0.1886 0.168 1.125 0.262 -0.142 0.519

log TV 1.9670 0.034 57.041 0.000 1.899 2.035

radio 0.0458 0.003 17.410 0.000 0.041 0.051

TR 0.0010 1.41e-05 72.756 0.000 0.001 0.001

• R2 = 0.997, F = 1952.

• The intercept is not significant at the 5% level.
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Regression with log TV, Radio, and TR and no intercept

Removing the non-significant intercept, we get the following model:

Yi = β1 log(TVi) + β2 Radioi + β3 (TVi × Radioi) + εi

coef std err t P(|T | > |t|) [0.025 0.975]

log TV 2.0047 0.008 243.507 0.000 1.988 2.021

radio 0.0480 0.002 27.691 0.000 0.045 0.051

TR 0.0010 9.09e-06 111.447 0.000 0.001 0.001

• R2 = 1.000, F = 16150.

• All predictors are significant at the 5% level.

• The model is now interpretable and parsimonious.
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The diagnostic plots of the final model

All four plots look almost perfect.
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Visualize the final model
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The More the Better?
If we have a lot of variables, it is tempting to include them all and conduct regression analysis for a complex

model.

Yi = β0 + β1 log(TVi) + β2TVi + β3 newspaperi + β4 Radioi + β5 (TV× Radio)

+ β6 (TV× newspaper) + β7 (Radio× newspaper) + εi

coef std err t P(|T | > |t|) [0.025 0.975]

Intercept 0.2427 0.186 1.307 0.193 -0.123 0.609

log(TV) 1.9377 0.048 40.344 0.000 1.843 2.032

TV 0.0007 0.001 1.001 0.318 -0.001 0.002

newspaper 0.0009 0.003 0.258 0.797 -0.006 0.007

radio 0.0448 0.004 11.916 0.000 0.037 0.052

TR 0.0010 1.88e-05 54.400 0.000 0.001 0.001

TN -9.779e-06 1.18e-05 -0.830 0.408 -3.30e-05 1.35e-05

RN 2.825e-05 7.70e-05 0.367 0.714 -0.000 0.000

• R2 = 0.997 < 1.000. F = 8260 < 16150.
• AIC = 101.2 > 94.05, BIC = 127.6 > 103.9. These two metrics are the smaller the better.
• Not all variables are significant at 5% significance level.



86/93

Correlation Introduction Least Square Estimators Statistical Inference Multiple Linear Regression Other Considerations

The More the Better?
If we have a lot of variables, it is tempting to include them all and conduct regression

analysis for a complex model.
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Complex model: R2 = 0.98

coef std err t p-value [0.025 0.975]

Intercept -561.7124 2941.883 -0.191 0.853 -7345.707 6222.282

X 117.4390 418.101 0.281 0.786 -846.704 1081.582

X2 -9.2739 24.447 -0.379 0.714 -65.649 47.101

X3 0.3662 0.753 0.486 0.640 -1.370 2.103

X4 -0.0077 0.013 -0.599 0.566 -0.037 0.022

X5 8.315e-05 0.000 0.715 0.495 -0.000 0.000

X6 -3.596e-07 4.32e-07 -0.832 0.430 -1.36e-06 6.37e-07

Simple model: R2 = 0.90

coef std err t p-value [0.025 0.975]

Intercept -1.6877 1.322 -1.277 0.224 -4.544 1.168

X 0.3096 0.028 10.975 0.000 0.249 0.371



88/93

Correlation Introduction Least Square Estimators Statistical Inference Multiple Linear Regression Other Considerations

Overfitting

High R2 is not always the only objective

• Too many “useless” variables ⇒ overfitting ⇒ less accurate prediction.

• Unnecessary predictors can add noise to the estimation of other important

quantities, and make them unstable (having extremely large parameters with

extremely large std. err.)

• Waste time and/or money to measure redundant predictors.

General rule of thumb:

Find the simplest model with satisfactory prediction accuracy.

Never use more than you need.
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Estimating the Prediction Accuracy

What we really care is how we can predict the dependent variable Yi for a future

observation, i.e. the prediction error on a sample completely independent of the data

we used to train/fit the model.

Is the MSE = SSE/(n− p− 1) a good estimation?

SSE =

n∑
i=1

(Yi − Ŷi)
2

• No! In estimation of the parameters, we minimized SSE , which makes it a

optimistically biased assessment of the prediction error.

• This biased estimate is called the in-sample estimate of the fit.
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Estimating the Prediction Accuracy – Cross-Validation

We can use cross-validation to obtain a out-of-sample estimate of the prediction error.

Key idea

• Put aside a subset of the observations (called “testing set”).

• Fit the model using the rest of the observations (called “training set”).
• So the testing set is independent of the training set.

• Calculate the mean squared errors on the testing set.

In practice, people usually repeat the above for different partitioning of training and

testing sets. Then use the average mean squared errors as a out-of-sample estimate of

the prediction error.
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k-Fold Cross-Validation
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Model Selection

Backward elimination

Step 1 Start with all the predictors in the model. (full model)

Step 2 Remove a predictor with highest p-value greater than αremove.

Step 3 Refit the model and go to Step 2.

Step 4 Stop when all p-values are less than αremove.

Forward selection

Step 1 Start with no variables in the model.

Step 2 For all predictors not in the model, check their p-values if they are added to the

model. Choose the one with lowest p-value less than αenter.

Step 3 Repeat Step 2 until no new predictors can be added.
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Stepwise selection

• Combination of backward elimination and forward selection.

• At each stage, a variable is added or removed.

• Stepwise procedures are relatively cheap computationally.

• In practice, we can choose αremove and αenter at around 15− 20%.

Methods for model selection

• Cross-validation

• Others: AIC, BIC, Mallow’s Cp...

• Shrinkage methods: LASSO...
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