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Beyond Categorical Comparisons

Limitations of Dichotomous/discrete Grouping

® |n earlier topics we learned how to test for differences between two or more
populations
Example: smoking vs. non-smoking and heart-disease risk.

® Such methods (X2, two-sample ¢, ANOVA) tell us whether groups differ, but they
reduce rich data to simple “yes/no” or group-labels.

® When we dichotomize a continuous variable (e.g. smoker vs. non-smoker), we
lose information about the intensity or degree of that variable.

® As a result, we cannot make precise predictions for individuals based on the full
range of their measurements.

Looking Ahead: We now introduce regression methods that use continuous predictors
directly, preserving information and enabling individualized prediction.
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Moving Beyond Pairwise Comparisons

® Most methods we've seen so far fall into two categories:
® Summarize the data: descriptive statistics, point & interval estimation, one-sample

hypothesis tests.
* Identify connections: two-sample tests, ANOVA, contingency-table (x?) tests.

® To predict outcomes, we must model how multiple variables relate to each other.

e Example: Prediction Given a person’s years of smoking, estimate their probability
of developing heart disease. = Connection between two continuous variables.
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Overview
Y - X
Response - Explanatory
Dependent — Independent
Outcome - Predictor
Y X Test Lecture
Categorical | Categorical Pearson’s y>-test
) Binary Two-sample t-test Previous lectures
Continuous -
Categorical (One-way) ANOVA
) ) Correlation analysis )
Continuous | Continuous —— - y - This lectures
Simple linear regression
Binary Continuous Logistic regression (Probably) not covered
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From Correlation to Regression

® |n prediction tasks, the accuracy of our predictions depends on the strength of the
relationship between variables.

® To quantify how strongly two variables move together, we use correlation.

® |f a strong correlation is found, we then model the precise form of that
relationship—this is called regression.
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Correlation

In studying correlation, we look at samples where each subject has provided values on
two (or more) different variables.

e Example: Test intelligence and manual dexterity for 30 students, yielding 30
pairs of values.
e Example: Compare crime-rate and unemployment-rate for 20 large cities.

In each case, we examine whether larger values on one variable are associated with
larger (or smaller) values on the other.
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Example: Radius vs. Circumference

For a concrete example, consider several circles of different radii.

® For each circle we measure its radius 7 and its circumference C.

Radius (cm) ‘rzl r=3 r=5 r=8 r=10

Circumference (cm)‘ 6.28 18.85 31.41 50.26 62.83

® The theoretical relationship is
C = 2mnr.

® |n practice, measurement error means the points won't lie exactly on this line, but
we still expect a strong positive association: as r increases, C' increases.
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Example: lllustrating the Relationship

® We can illustrate the relationship
between two variables using a scatter
plot.

® As expected, the points align very
well along an increasing trend,
showing a very strong relationship.

® Once a strong association is
identified, we can characterize its
precise form: C = 27r.

® This formula then allows us to make
predictions.

)

Multiple Linear Regression

Other Considerations
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Example: Trend Indication with a Line

e Often, the relationship is not so clear-cut.

® A scatter plot gives us a first glance at whether a
a trend exists. I

® \We can overlay a line to indicate the trend. . :

¢ (More on how to draw this line later.) ol

0.0 0.2 0.4 0.6 0.8 1.0
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Example: Types of Correlation

® Positive correlation: larger values of one variable accompany larger values of the
other (Example: radius vs circumference).

® Negative correlation: larger values of one variable accompany smaller values of the
other (Example: age vs running speed).

® Zero correlation: no clear tendency for the two variables to move together

(Example: shoe size vs intelligence).
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Example: Types of Correlation

Positive correlation
[ ]

Statistical Inference

Negative correlation
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Other Considerations

No correlation
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Correlation Coefficient

® The scatter plot not only presents you the direction of the correlation, but also a
sense of the strength.

® How do we quantitatively measure the strength?

Positive correlation Positive correlation

® @
8 1 s ° 10 . °
6 1 F ] [} g

o [ ]
4 T ... [ ] 5 °® . °
1 ® [ ]

2 : % g ®
Oe ° .1 1 1 1 0 e— 1 1 1
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Correlation Coefficient

Correlation coefficient is widely used as a measure of the strength and direction of the
linear dependence between two variables X and Y.

Pearson’s product-moment Correlation Coefficient
The population Pearson’s correlation coefficient, denoted as p, of two variables X and
Y is

Cou(X,Y)  E[(X —EX)(Y — EY)]
\/Var War(Y) ox0y .

The estimated (sample) Pearson’s correlation coefficient, denoted as r, with a sample
((X17 Yi)v (X27 }/2)7 ey (Xn7 Yn)) is

2 (Xi - X)(Y; - Y)
\/Zl 1X X \/Zz 1 )2
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Understanding Sample Correlation

Y (Xi-X)(Yi-Y) . L
- i=1 1 Xi— XY, -Y
B n n n—1 — SX SY
Z(Xz _X)2 Z(Y; _}7)2
i=1 1=1

® If Y tends to increase when X increases, then (X; — X) and (Y; —Y) are typically
of the same sign, so > (X; — X)(Y; —Y) is large and positive, hence R > 0.

® If Y tends to increase when X decreases, then (X; — X) and (Y; —Y)) are typically
of opposite sign, so > (X; — X)(Y; — Y) is large and negative, hence R < 0.

® The denominator /> (X; — X)2v/>_(Y; — V)2 scales the numerator to ensure R
lies in [—1,1].
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1
® Linear relationship between two numeric variables.

® The sign indicate the direction of the linear relationship

® Negative = X increases, Y decreases.
® Positive = X increases, Y increases.
® The absolute value indicate the strength of the linear relationship
® |arger the absolute value = stronger linear relationship.
® —1 = perfectly negative correlation.

® 41 = perfectly positive correlation.
® ( = the variables are not linearly correlated.
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Potential Problems of the Correlation Coefficient

® The correlation coefficient can only detect if a linear relationship exists.

® The value of these coefficients really does not tell us about the exact relationship,
other than an abstract summary such as “Y is some liner function of X."”

= Correlation analysis cannot be used to predict Y with X!
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From Correlation to Regression

The sample correlation coefficient R measures the strength and direction of a linear
association between the explanatory variable X and the response variable Y. However,
it does not tell us the specific form of that relationship or how to make predictions.

® Pearson's correlation coefficientRR is a summary statistic: it quantifies how closely
the data lie along some line, i.e., if a linear relationship between the explanatory
variable X and and the response variable Y.

® However, it does not tell us the specific form of that relationship or how to make
predictions.

® To identify the precise linear relation, we use simple linear regression.
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Introduction — Simple Linear Regression

Linear relationship

Linear relationship can be summarized by two numbers, the intercept o and the slope 3:

Y =a+ X

® The intercept « is the value of Y when the line crosses the y-axis, i.e. Y value when
X =0.

® The slope (3 is a measure of the steepness of a line, i.e. the change in Y when X
changes by one unit.




Correlation

Introduction
00 00800

Example:

Least Square Estimators ~ Statistical Inference

Multiple Linear Regression

Other Considerations

The raw material used in the production of a certain synthetic fiber is

stored in a location without a humidity control. Measurements of the relative humidity
(X) in the storage location and the moisture content (Y') of a sample of the raw

material were taken over 15 days with the following data.

® The Pearson’s correlation
coefficient p = 0.95.

® Perform T-test for the Pearson’s
correlation coefficient, we have
p = 0.

® There are strong positive linear
relationship!

Moisture content

18

16

14

12 A

104

30

35

40

45
Relative humidity

50

55

60
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Other Considerations
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If we “fit" a straight line to the scatter
plot, we may have

18 4
Y =—-2.38+0.32X. 161
. . £ 141
® How do we find the “best” line £
that fits our data? £ 121
® Notice that no matter which line 2 104
we choose, there is always error!
N
®* How good does the line
“explain/predict” Y? , : ’

30 35 40 45 50 55 60
Relative humidity
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Simple Linear Regression

To address the error, one choice is to include the error in the model!

Simple linear regression model
We assume that the i-th observation (Y;, X;) follows

Y; a+ BX; = &
(Response) = (Linear Model)  +  (Error)

Note that o and 3 are shared across different observations.

Let us answer first the question below:

How do we find the “best” line that fits our data?
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Intuition

For a line a + BX to fit the data well, we wish that the error
g =Y; — (a+ BX;)

are “minimized” across all the observed data.

We shall measure the overall error by the sum of squared error (SSEg), or residual sum
of squares (RSS):

n

555 = RSS =3 e = 3 (¥  (a + BX))°

i=1 i=1

® We want to find the a and 3 such that the SSg is minimized.
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Ordinary Least Square Estimators

The estimators that can minimize the SSg are called the (ordinary) least square!

(OLS) estimators. The name is self-explanatory.

For a dataset {(X;,Y;):i=1,2,...,n.}, let's calculate the OLS estimators.

!There is a generalization of this method called the generalized least square (GLS) estimation.
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Example: Ordinary Least Squares (OLS) Estimators

The OLS estimators &, B minimize the sum of squared errors

= 2
SSp(e, B) =Y _(Yi — (a + BX;))".
i=1
Compute the first-order conditions:
aSSE _ _9 Z (a+ BX;)) = —2nY + 2na +24nX =0,
6SSE = . =\ 2
:—22){ —(a+8X;)) = -2 XY +2unX +28> X7 =

i=1 =1

Solving these two normal equations simultaneously to derive the OLS estimates.
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Example: Derivation of the Normal Equations

From the normal equations:

—2Y +2na+28nX =0 — a+BX=Y — a=Y-BX.

—QZH:XiK+2anX+26§:Xf =0 = Zn:XiYi :anX—l—ﬂin.
i=1 i=1 i=1 i=1

Substitute « = Y — X

n n n
Y XiYi=(Y -pX)nX +B8> X} =nXY - BnX>+5> X}
=1 =1 =1

Rearranging gives

XY, —nXY _ _
ﬂzzfnl X2 %2 and a=Y -3X.
i=14%
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Let X and Y be the sample means and (see next slide for the derivation)

Sxx:Z(Xi—X)2:ZXi2—TLX2’ SYY:Z(Yi—Y)Q:ZYf—nYQ
i=1 i=1 i—1 P
Sy = > (Xi = X)(Yi = V) = > X;¥; —nXY
=1 i=1
Least Square Estimators
= Sy oo s - s 5 SwSvy — 8%

i=1

Here we abused the notation SSg to denote the SSE measured for the best line as
specified by the OLS estimator.
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Example: Sums of Squares ldentities

We show the standard shortcuts for centering sums:

n

= Zn:(Xi — X)) =) (X7 -2X X, + X°) = Zn:Xz? - QXZH:XZ- +nX?
=1 1=1 =1

=1

Since >, X; = nX, this becomes

ZXQ—ZX(nX ) +nX?= ZXQ

=1

Similarly,
n

Syy = Z(Y; — Y)Q = Zn:Y;Q — ’H,Y2
i=1

i=1
and for the cross-term,
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*An Alternative Way to Derive OLS Estimator

We know that the mean minimize the squared error, so for any fixed 3, letting
a=a(B) =Y — BX minimizes SSg as a function of «

mcin SSp(a) = Z((Yz - BX;) — 5[(B))2
=1
=3 ((¥i - BX;) — (V - BX))?
=1
= > (%= Y) - BX, - X))?
=1

= SYY - 2/BSJZ‘Y + /8259036

So choosing = = gf—y minimize the above.
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Coefficient of Determination
Having found the best line to fit the data, we seek to answer the second question:

How good does the line “explain” Y?

Residual
Residualei—)/}i:Y;—&—BXi

here 171 is called the fitted value of the i-th observation.

Taking the sum of squares, we have a characterization of the overall error that remains
after our regression.

Residual sum of squares (also called Error sum of squares)

SSp = zn:(Yi =)

i=1
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Residual (Error) Sum of Square

A A - SSg
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We can consider the following 87 «
decomposition o
- 7
(Deviation) =Y; — T
A~ A~ — \\‘/
= (-Y)+(%-Y)
= (Residual/Error) + (Regression) ¥




Correlation Introduction  Least Square Estimators

Multi
O 00000 0000000000800 0 000 0OO0C

siderations
Yelo)

As usual, we shall measure these in terms of the sum of squares.

Decomposition of the Total Sum of Squares (SSr)

Total SS = Regression SS + Residual /Error SS
SSt =85Sr+ SSEg

n n

S W-T2=3 -+ (- P

=1 =1 =1

® The cross term 2 Z?:l(?z -Y)(Y; — 171) vanishes. *A brute-force proof is not
entirely straightforward. It is usually proved using linear algebra arguements.
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A A - SSg

y v 1w

Well explained Poorly explained
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Coefficient of Determination
,  SSr—SSp  SSg

R SSt SSt

Interpretation of R?

Indicate how well the variation in Y is explained by X.

Interpreted as the proportion of total variation in the response variable Y that is
“explained” by the regressors X in the model.

0<R?<1

R? = 1: The data fall exactly on a straight line.

R? = 0: No “linear” relationship.
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*Connection with Sample Correlation

i (Xi = X)(Yi - Y) Szy

Lo XLy Vs

2
_ S:vz SYY 7Szy ]

Recall that SSp = Y7, (Yi — @ — B X;)? = 2220

oS3 SwSyy — SwSSy _ SSr—SSp

- — - — R2
Sm:rSYY SxxSYY SST

T

Coefficient of Determination is the square of (Pearson’s) coefficeint of
correlation!
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Up until this point, we have answered two main questions:

® How do we find the “best” line that fits our data?

®* How good does the line “explain” Y?

We will need more probability assumptions in order to answer other statistical
questions such as

® construct confidence interval for the parameters;

® perform statistical hypothesis tests.
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Probabilistic Modeling of the Simple Linear Regression
Assumptions

® Linearity: The data actually exhibit a linear relationship, i.e., Y; = a + Bx; + ¢.
¢ Independency: The error {¢; : i =1,2,...,n} are independent.

® Homoscedasticity (Equal variance): the variance of the error ¢; should be the
same.

® Normality: each error ¢; is normally distributed.

The last 3 assumptions can summarized as
i.0.d. 2 .
g; ~ N(0,0%), i=1,2,...,n.

We usually assume the independent variable x; to be deterministic numbers
rather than random variables. That’'s why we shall use lower case.
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The above assumptions implies that

Y;=a+ fzi+e ~ N(a+ Bz, 0%), i=1,2,...,n.

E(Y) = piz + fo

N (B3 + Bo, 0'2)
N(Brw2 + fo,0%)

N(Brz1 + Bo, 0?)
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Maximum Likelihood Estimator for o and 3

Because of the i.i.d. assumption, the likelihood of the observation is

1 1 —
L(Oz,ﬁ,a;x,Y) = Wexp <—%‘2 Z(Y; — o — sz)2> .
=1

Take logarithm

n

n 1
o, B,032,Y) = log L{a, B3 3,y) = = log(2m0®) — —5 3 (Yi — o = Bi)”.
i=1

Maximizing the log-likelihood with respect to « and [ is equivalent to minimizing the

term
n

> (Vi — o — ;)

i=1

This is exactly what we did in OLS estimation!
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Oa

Dlog L(, fi0?) 1
0B o2 ‘
dlog L(c, 3,02) n 1
gt = g8 T gy i o= )’
i=1

dlog L(a, 3,02) 1 &
SRR = e pa

3

(x3)(Y; — a — Bay)

Il
-

MLE

The maximum likelihood estimators for o, 8 and &2 are

S

i~ zY ~ = = _
BMLE = g OME= Y — BumLEZ,
T

~ 1 ~ ~ SSE S Syy — S2

2 2 T xY
_ § : Yi )2 = _

OMLE = ( QMLE BMLEQj ) — - - Smx

=1

Other Considerations
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Estimation of the Variance

We have derived the MLE 8,%,”_E of the variance. However, this estimator is actually

biased. In the setting of simple linear regression, people usually use an unbiased
version of it instead:

o o Xin(Yi-Y)? S8
n—2 n—2

Notation simplification

® Since the MLE for o and /3 coincides with that derived from the OLS method, we
shall omit the subscript and write

~

a=ame, B=P5PuvLE
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Theorem (Distributions of the Estimators)

a, B and 6% have the following distributions

N o2 S a2 ~ o2 n—2)g2 S8
o (w2 ERA) a2 BB

nSza S o2 o2
Moreover, Cov(@, B) = _SZ? and 52 is independent of (@, j3).

* o and B are just linear combination of Y;'s, it is straightforward (but tiresome) to
find the marginal and joint distribution.

® The proof for % is a bit complicated.
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Hypothesis Test for the Slope 3

In the simple linear regression model
Y =a+pz+e.

We are interested in testing the hypothesis 5 = 0. (What does it mean?)
Since EN N(B, 571) we have

=)

— B

2P N1
02/Szs (0.1)

SSE _ (n— 2)

~ x2_,, we conclude (by the definition of t-distribution) that

B=B _(B=B)/\o /S N1
\/32/53790 Va2 [o? W/Xn 2/n—2
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H[) : ﬁ =0
Test statistic
Sez = n—2)Sy »
T = %B = (SS])Emﬁ ~ T,,—9 under Hy
H, Rejection region p-value
B#0  |t| >ty o,  P(T]> [t | Ho)
68>0 t>tn_27,y P(T>t‘H0)
B8<0 7f<7fn_277 P(T<t‘H0)

*T ~ tn—2, P(T > tn_gﬁ) =.
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Example: An individual claims that the fuel consumption of his automobile does not depend
on how fast the car is driven. To test the plausibility of this hypothesis, the car was tested at
various speeds between 45 and 70 miles per hour. The miles per gallon (MPG) attained at
each of these speeds was as the follows:

Speed Miles per Gallon

45 24.2
50 25.0
55 23.3
60 22.0
65 21.5
70 20.6
75 19.8

Let Y denote MPG and = denote the speed. Suppose a simple linear model
Y=a+ Bz +e.

We want to test Hy: 6 =0 v.s. Hy:[p #0.
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Calculate
Sge = 700, Syy =21.757, Spy =—119

According to the formulas

855 = [822Syy — 82y]/Sze = [700(21.757) — (—119)?]/700 = 1.527
B = Spy/$se = —119/700 = —0.17

So

-2 xx
= T =2saw B=-8.139

SSE

The p-value= 2P{T,,_5 > |t|} = 0.00045. Reject Hy for all a > 0.00045.
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OLS Regression Results

Dep. Variable: mpg  R-squared: 0.930
Model: OLS  Adj. R-squared: 0.916
Method: Least Squares F-statistic: 66.23
Date: Prob (F-statistic): 0.000455
Time: Log-Likelihood: -4.6038
No. Observations: 7  AIC: 13.21
Df Residuals: 5 BIC: 13.10
Df Model: 1
Covariance Type: nonrobust

std err t P>|t] [0.025 0.975]
const 32.5429 1.271 25.612 0.000 29.277 35.809
speed -0.1700 0.021 -8.138 0.000 -0.224 -0.116
Omnibus: nan Durbin-Watson: 2.472
Prob(Omnibus) : nan  Jarque-Bera (JB): 0.604
Skew: 0.708  Prob(JB): 0.739
Kurtosis: 3.263 Cond. No. 370.




Correlation Introduction  Least Square Estimators ~ Statistical Inference Multiple Linear Re
I 0 00000 0000 000G DOOC

slefe 000000000000 e0000000 OO0

ANOVA Table for Simple Linear Regression
Null and Alternative Hypotheses:

Ho:3=0, H :8#0

ANOVA table

Source df SS MS
Regression 1 S (Y —Y)? SSr/1
Eror  n—2 Y (Yi-Y)? SSg/(n—2)
Total n—1 Y, (Y;i-Y)?

Test Statistics:
_ MSg

 MSg
Reject Hy if the observed statistic f > F} ;2o Where P(F' > Fy ,_2,) =«

F

~ FLn_Q under HO
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Connection Between ANOVA Table and T-Test

Recall the T-statistic for testing 5:

52

2
o () L S S SSe s,
N T SSp/(n—2) 82,  SSp/(n—2) SSp/(n-2)

SzzSYstgy —

Above follows from SSp = Z*=—=0" = Syy — §%, /Sy, = SST — 82y /Sia, 5O
MSp = SSp/1 = 5% /Sas.

In the ANOVA test and (two-sided) T-test for the significance of linear regression
® The F-statistic and T-statistic is connected by 72 = F.

® The two tests are equivalent.
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Derivation of the Error Sum of Squares

Recall the definitions
Spa = zn:(Xz‘ - X)%, Syy= En:(yi —Y)?, Sy = En:(XZ— -X)(Y;-Y),
i=1 i=1 i=1
and the OLS slope g
A Y
P e

Substitute &:

Hence

=) (Vi-Y)?-28) (Yi-V)(X;— X)+ 5> (X; - X)?
= Syy — 28 Sey + 2 S
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Derivation of the Error Sum of Squares

Substituting B = S,y /Szy yields

Say S, SieSyy — 52
SSp = Syy — o Spy = Syy — =X = 29
K YY S, zY YY S S
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Confidence Interval for 8

The (1 —«) x 100% confidence interval for 5 can be constructed as before using the
sample distribution of 3 as before. We can write

3-8

Pl ~th2y/2 < —= <tpnoqp | =P(—th_oyp <T <ty _2,2) =7
02/ Sz

Rearrange terms and we obtain the two-sided Cl

. 1 - 1
p e |:/8 - tn—2,'y/20 vaﬁ+tn—2,y/20 Sxa::| .

Similarly, we can develop one-sided Cls

~ N ~ N 1
B c <—oo,ﬁ + tn72,'yo' 5 S [/3 - tnf2,'yo' o +OO> .
Sex

1
S:E:E ’



Other Considerations

Correlation Introduction  Least Square Estimators ~ Statistical Inference Multiple Linear Regression
000000000000000 00000 0000000000000 00000000000000000e00 OOOOOOO0000000000000000000000

Hypothesis Tests for «

Reacall that

We have




Statistical Inference
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Null hypothesis:

H() ta=0.
Test statistic R
T = . n—o under Hy
= 1 T
nSyx
H Rejection region p-value
a#0  [t|>t,o4p  P(T|>[t|| Ho)
a>0 t>th_oy P(T > t| Hy)
a<0 t<tn—2, P(T < t| Hy)

*T ~ tn—2, P(T > tn_gﬁ) =.
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Confidence Interval for «

Two-sided

One-sided
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Motivation

We have talked about how to find linear relationship between the dependent variable Y
and a single predictor X:

Y=a+pX +e.

e |If we have multiple predictors that may help to predict Y, how can we generalize

the model above to incorporate all of the variables in a linear model?

Example: We want to model/predict the sales Y of a product, and we have data of
the advertisement budget spent in multiple ways: from TV X7, and on the newspapers
X9 and from the radio X3.
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® \We can plot a scatter plot for
the data of sales versus the

1400
two ads. 1200
1000
® We can clearly see an 800
. . . 600
increasing trend for sales with 400

. 200

respect to the increase of ad 0

50

budget in both media
formats. Can we fit a linear
function to it?

We may want to use the following
Sales = By + 51 X TV + 2 x Newspaper + (3 X Radio + €.

The interpretation of §; is, if the budget spent on media 7 is increased by one unit,
while everything else is fixed, then on average sales is increased by ; units.
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Multiple Linear Regression

Given

e A single dependent/target variable Y.
® Let Y; denote the dependent variable for the i-th observation.
® Several independent/explanatory variables z1, x2, ..., z.
® Let x;; denote the j-the dependent variable for the i-th observation.

Assuming a general linear regression model: fori =1,...,n

Yi= 0o+ frzir + -+ Bpzip + &

o g W N(0,0?) is the random error of the i-th observation.
Want
® Estimation: the parameters fy,. .., 3, that best describe this linear dependence,

and the variance o of the error.
® Inference: confidence interval, hypothesis testing for the parameters.
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Ordinary Least Square Estimator

To esitimate (3;, minimize the RSS

A~

(Y; - Y;)?

NE

RSS = SSE =
1

<.
Il

(Yi — o — rwg — - — /Bpxip)2

I
NE

1

-
Il

This can be done through Python:

® sklearn.linear model.LinearRegression

® statsmodels.regression.linear model.0OLS
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0000000000000 0

Statistical Inference Multiple Linear Regression Other Considerations
00000000000000000000 0O00e000000000000000000000000 COOO00000

import statsmodels.formula.api as smf

import numpy as np
import pandas as pd

# load data

datas_url = ’https://www.statlearning.com/s/Advertising.csv’
df = pd.read_csv(datas_url).drop(’Unnamed: 0’,axis=1)

df .head ()

# fit linear regression model

res = smf.ols(’sales

res.summary ()

~ TV + radio + newspaper’, data=df).fit()
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OLS Regression Results
Dep. Variable: sales R-squared: 0.897
Model: OoLS Adj. R-squared: 0.896
Method: Least Squares F-statistic: 570.3
Date: Wed, 07 May 2025 Prob (F-statistic): 1.58e-96
Time: 12:50:53 Log-Likelihood: -386.18
No. Observations: 200 AIC: 780.4
Df Residuals: 196 BIC: 793.6
Df Model: 3
Covariance Type: nonrobust
coef stderr t P>Jt] [0.025
Intercept 29389 0.312 9.422 0.000 2.324
TV 0.0458 0.001 32.809 0.000 0.043
radio 0.1885 0.009 21893 0.000 0.172
newspaper -0.0010 0.006 -0.177 0.860 -0.013
Omnibus: 60.414 Durbin-Watson: 2.084
Prob(Omnibus): 0.000 Jargque-Bera (JB): 151.241
Skew: -1.327 Prob(JB): 1.44e-33
Kurtosis:  6.332 Cond. No. 454,
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® The Coefficient of Determination

 SSr—SSk
L

R? = (0.842.

1400

1200
1000

® The larger R is, the better the
model fits the data.
® The F-statistic = 259.1.
® The larger F' is, the more

significant the model is in
compare with simple model with

o2

o

o
Sales

600
400

only a intercept.
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Null and Alternative Hypotheses

Hy:p1=p2="---= B, =0wvs. Hy:at least one j3; is not 0
ANOVA Table
Source df SS MS
Regression p S (Y —Y)? SSr/p
Residual n—(p+1) YL, (Y;-Y)? SSg/(n—(p+1))
Total n—1 S (Y —Y)?
Test Statisti
est Statistics NSy
F= sy~ Fyn—(p+1) under Hy

Reject Ho if f > F, (1), Where P(F > F,,_(,11),) =«
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Regression Diagnostics

Recall that linear regression model have assumptions:

® Linearity: The data actually exhibit a linear relationship.
® Independency: Observations should be independent.
® Homoscedasticity: The variance of the errors € should be constant across all

levels of the independent variables.

For all our statistical analysis to be valid, these assumptions must be met by the data.
We need diagnostic plots to validate these assumptions.
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Diagnose Plots for Linear Regression

Plot residuals against fitted value: Check the assumption of linear model.

Residuals

Multiple Linear Regression

Residuals vs Fitted

-2 ® L ] Q?pg °
3 e o0 ® o ®
L °
—4 A [ ] O’L?%
]
_6_
_B_
&30

T T T
5.0 7.5 10.0 12.5 15.0
Fitted values

T T T
17.5 20.0 225

Other Considerations

000000000000 OOOOOOOO 00000000000 00O000O0000000000 OOOOOOOOO
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Q-Q plot for the residuals: Check the assumption of normality.

Normal Q-Q

Standardized Residuals

Theoretical Quantiles
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Scale-location plot: plot the scale (standard deviation) of the residual against the
location (fitted value of Y'). Check the assumption of equal variance.

residual

studendized residual = -
sample std. dev. of residual

Scale-Location
30

2.0

154

1.0 4

|standardized Residuals|

0.5 4

0.0 4

Fitted values



Correlation

Introduction

000000000000 0O00 00000

Least Square Estimators
0000000000000

Statistical Inference Multiple Linear Regression

Other Considerations

000000000000 OOOOOOOO 0000000000000 00000000000000 OOOOOOOOO

Leverage plot: Check the outliers.

Residuals vs Leverage

Standardized Residuals

% e L --= Cook's distance

-
-
e

-

d30 -

T
0.00 0.02

T T T
0.04 0.06 0.08
Leverage
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Non-Linear Relationship

If the relationship between Y and X1, X»,..., X, is nonlinear, can we find a way to

still use linear models to model the relationship?

Residuals vs Fitted

Residuals

30

5.0 7.5 10.0 125 15.0 17.5 20.0 225
Fitted values

Radio
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Modeling Synergy via Interaction Terms

In our advertising example the simple additive model

9 = Bo + B1 TV + 2 Radio + /33 Newspaper

systematically overestimates when one medium dominates and underestimates when
the budget is split—indicating synergy between channels.

® To capture this, introduce interaction terms:
9 = Bo + B1 TV + B2 Radio + 12 (TV x Radio) + 13 (TV x Newspaper) + - - -

® Here 315 measures the extra lift when TV and Radio spend are both high.

® You can also include higher-order terms (e.g.TV?) or other interactions to model
more complex nonlinearity.

e Estimation proceeds as before (ordinary least squares).
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Example:

Y; = B + 1 TV; + B2 Newspaper; + 33 Radio;
+ B4 (TV; x Radio;) + (5 (TV; x Newspaper;) + s (Newspaper; x Radio;) + ¢;

coef  std err t P(T|>|t]) [0.025 0.975]
Intercept 6.4602 0.318 20.342 0.000 5.834 7.087
TV 0.0203 0.002 12.633 0.000 0.017 0.024
radio 0.0229 0.011  2.009 0.046 0.000 0.045
newspaper 0.0170 0.010 1.691 0.092 -0.003 0.037
TR 0.0011 5.72e-05 19.930 0.000 0.001 0.001
TN -7.971e-05 3.58e-05 -2.227 0.027 -0.000 -9.12e-06

RN -0.0001 0.000 -0.464 0.643 -0.001 0.000
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® The Coefficient of Determination R? = % = 0.969.

® Compare with the model without cross-term, where R? = 0.897 < 0.969.
® The model fits the data better.

® The F-statistic = 993.3.
® We also see that the residual-versus-fitted plot is more linear than the one without

cross-term. Though still not perfect.

Correlation
000000000000 0O00 00000

Residuals vs Fitted

Residuals

@30
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Example: The effect of (newspsper) and (radio)x (newspaper) is not significant at
5% significance level. We should consider removing them for interpretability and model

simplicity.
Y; = Bo + f1 TV; + B2 Radio;
+ B3 (TV; x Radio;) + B4 (TV; x Newspaper;) + ¢;

coef std err t  P(T| > [t]) [0.025 0.975]
Intercept 6.7491 0.248 27.195 0.000 6.260 7.239
TV 0.0194 0.002 12.494 0.000 0.016 0.022
radio 0.0288 0.009  3.225 0.001 0.011 0.046
TR 0.0011 5.34e-05 20.481 0.000 0.001 0.001
TN -1.335e-05 1.82¢-05 -0.733 0.465 -4.93e-05 2.26e-05

* R2=0.968.

°* F =1469.
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Example: The effect of (TV)x(newspaper) is not significant at 5% significance level.
We should consider removing them for interpretability and model simplicity.

Y, = Bo + £1 TV, + B2 Radio; + 33 (TVZ‘ X Radioi) + &

coef  std err t P(T|>|t]) [0.025 0.975]
Intercept  6.7502 0.248 27.233 0.000 6.261 7.239
TV 0.0191 0.002 12.699 0.000 0.016  0.022
radio 0.0289 0.009 3.241 0.001 0.011 0.046
TR 0.0011 0.000 20.727 0.000 0.001 0.001
* R? =0.968.
°® ['=1963.

® Now all variables are significant at 5% significance level.
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Variable Selection

Select the “best” subset of predictors to explain the response with maximal
predictive power.

Exclude unnecessary predictors that add noise and reduce estimation accuracy.

Prevent collinearity by avoiding redundant variables that capture the same signal.

Simplify the model to save on data-collection costs and improve interpretability.

Aim for the simplest model that retains strong predictive power.
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Backward Elimination

What we just illustrated using the advertising data is a backward elimination
approach to variable selection.

@ Start with the full model containing all candidate predictors.
® Identify the predictor with the largest p-value.
® |f that p-value > ayemove, remove this predictor.

© Refit the reduced model.

O Repeat steps 2-3 until every remaining predictor has p-value < remove-
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Comparing models

Coefficient of
determination

OLS Regression Results

Bep. Variable: Sales Adjusted Coefficient "™ |
Model: OLS | Adj.R-squared:  0.896 of determination: Model: Ad. “'sq"f”’“‘ 0967
Method:  Least Squares Fostatistic: 5703 Method:  Least Squares F-statistic: 1963.
Date: Fri, 04 Nov2022 Prob (F-statistic): 1.58¢-96 The closer to 1 the Date: Fri, 04 Nov.2022 Prob (F-statistic): 6.68e-146
Time: 11441 Log-Likelihood:  -386.18 better. Time: 12:48:24 elihood:  -270.14
No. Observations: 200 No. Observations: 200
Df Residuals: 196 F-Statistic: The Df Residuals: 196
Df Model: 3 larger the Df Model:
Covariance Type: nonrobust better. Tests if Covariance Type: Tonrobust
coef stderr t Psjt| [0.025 0.975] all ,81- =0. coef  stderr t P>t| [0.025 0.975]
Intercept  2.9389 0312 9.422 0000 2324 3554 . . . 31 7.239
TV 0.0458 0.001 32.809 0.000 0.043 0.049 Informatlon crlterlonS: 16 0.022
Newspaper -0.0010 0.006 -0.177 0.860 -0.013 0.011 The Sma"er the better 1 0.046
Radio 01885 0009 21803 0000 o1z oz  ~ Model accuracy+penalty for model complexity. y o001
Omnibus: 60.414 Durbin-Watson: 2.084 In selecting the models’ we Omnibus: 128.132 Durbin-Watson: 2224
Prob(Omnibus):  0.000 Jarque-Bera (JB):  151.241 choose the model with the ProbOmnibus): 0000 Jarque-Bera (JB): 1183719
Skejﬂ: 1327 Prob(JB): 144e-33 smallest AIC/BIC Skew: -2.323 Prob(JB): 9.09e-258
Kurtosis:  6.332 Cond. No. 454. Kurtosis:  13.975 Cond. No.  1.80e+04

# Fitting linear model
res = smf.ols(formula=
res. summary ()|

“Sales ~ TV + Newspaper + Radio", data=df).fit()

# Fitting linear model
res = smf.ols(formula= "Sales ~ TV
res.summary ()

+ Radio + TR", data=df).fit()
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Let's check the diagnostic plots again for the refined model:

Resi vs Fitted Normal Q-Q
24
%) 04
"
]
b=t
° H
L)
g -2 2 Ll
3 °§ =1
3 ¢ g o
_3 B
& -3 5
El
55 5 -4
g 5 155
_s5 |
—6 1
64
430 13¢
75 100 125 150 175 200 225 250 275 -6 -4 -2 [ 2
Fitted values Theoretical Quantiles

Non-linearity exists!
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Visualize the non-linearity

® The raw scatter of Sales vs. TV ad
spend shows a nonlinear curve.

If we plot Sales against log(TV), the
relationship appears approximately
linear:

Sales =~ 3y + (1 log(TV).

® This suggests using log(TV) as the
predictor in our regression model.
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Linearity Check

Interpretation of the log transform
log(:BQ) = 2 log(z).
Thus, multiplying the TV budget by a factor of 2 increases log(TV) by
log(2z) — log(x) = log(2),

which corresponds to a fixed additive increment in predicted sales. In the original scale,
this means diminishing marginal returns: each additional dollar spent on TV yields a

smaller increment in sales the larger the budget already is.
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Regression with log TV, Radio, and TR

Y, =060+ 5 log(TVi) + B2 Radio; + 3 (TVi X Radioi) +&;

coef  std err t P(T|>|t|) [0.025 0.975]
Intercept 0.1886 0.168 1.125 0.262 -0.142 0.519
log TV 1.9670 0.034 57.041 0.000 1.899 2.035
radio 0.0458 0.003 17.410 0.000 0.041 0.051
TR 0.0010 1.41e-05 72.756 0.000 0.001 0.001

e R?2=0.997, F =1952.

® The intercept is not significant at the 5% level.



Multiple Linear Regression

D00 000000000000 O0OOOOOOOO0OO000Oe0D0 OOOC

Regression with log TV, Radio, and TR and no intercept

Removing the non-significant intercept, we get the following model:

Y, =5 log(TVi) + B2 Radio; + 33 (TVZ' X Radioi) +¢&;

coef  std err t P(T]>t]) [0.025 0.975]
log_ TV 2.0047 0.008 243.507 0.000 1.988 2.021
radio 0.0480 0.002  27.691 0.000 0.045 0.051
TR 0.0010 9.09e-06 111.447 0.000 0.001 0.001

* R?=1.000, F =16150.
e All predictors are significant at the 5% level.

® The model is now interpretable and parsimonious.

derations
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The diagnostic plots of the final model

All four plots look almost perfect.

3 Normal a-Q Residuals vs Leverage
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Visualize the final model
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The More the Better?

If we have a lot of variables, it is tempting to include them all and conduct regression analysis for a complex
model.

Y; = Bo + b1 10g(TVZ’) + B2TV; + B3 newspaper,; + 34 Radio; + 5 (TV X Radio)
+ 86 (TV x newspaper) + B7 (Radio X newspaper) + ¢;

coef std err t P(T| > |t]) [0.025 0.975]
Intercept 0.2427 0.186 1.307 0.193 -0.123 0.609
log(TV) 1.9377 0.048 40.344 0.000 1.843 2.032
TV 0.0007 0.001 1.001 0.318 -0.001 0.002
newspaper 0.0009 0.003 0.258 0.797 -0.006 0.007
radio 0.0448 0.004 11.916 0.000 0.037 0.052
TR 0.0010 1.88e-05 54.400 0.000 0.001 0.001
TN -0.779e-06  1.18e-05  -0.830 0.408 -3.30e-05 1.35e-05
RN 2.825e-05  7.70e-05 0.367 0.714 -0.000 0.000

e R2 =0.997 < 1.000. F = 8260 < 16150.
® AJIC =101.2 > 94.05, BIC = 127.6 > 103.9. These two metrics are the smaller the better.
® Not all variables are significant at 5% significance level.
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The More the Better?

If we have a lot of variables, it is tempting to include them all and conduct regression
analysis for a complex model.

18 A

16 A

14 -

Moisture content

30 35 40 45 50 55 60
Relative humidity



Complex model: R? = 0.98
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coef std err t p-value [0.025 0.975]
Intercept  -561.7124 2941.883 -0.191 0.853 -7345.707 6222.282
X 117.4390  418.101 0.281 0.786  -846.704 1081.582
X2 -9.2739 24447 -0379 0.714  -65.649  47.101
X3 0.3662 0.753 0.486 0.640 -1.370 2.103
X4 -0.0077 0.013 -0.599 0.566 -0.037 0.022
X7 8.315e-05 0.000 0.715 0.495 -0.000 0.000
X6 -3.596e-07 4.32e-07 -0.832 0.430 -1.36e-06 6.37e-07
Simple model: R? = 0.90

coef std err t p-value [0.025 0.975]

Intercept -1.6877  1.322 -1.277 0.224 -4544 1.168

X 0.3096 0.028 10.975 0.000 0.249 0.371
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Overfitting

High R? is not always the only objective

® Too many “useless” variables = overfitting = less accurate prediction.

® Unnecessary predictors can add noise to the estimation of other important
quantities, and make them unstable (having extremely large parameters with
extremely large std. err.)

e Waste time and/or money to measure redundant predictors.

General rule of thumb:
Find the simplest model with satisfactory prediction accuracy.

Never use more than you need.
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Estimating the Prediction Accuracy

What we really care is how we can predict the dependent variable Y; for a future
observation, i.e. the prediction error on a sample completely independent of the data
we used to train/fit the model.

Is the M Sp = SSg/(n—p—1) a good estimation?

SSp=>)» (V; =Y’

=1

® No! In estimation of the parameters, we minimized SSg, which makes it a
optimistically biased assessment of the prediction error.

® This biased estimate is called the in-sample estimate of the fit.
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Estimating the Prediction Accuracy — Cross-Validation

We can use cross-validation to obtain a out-of-sample estimate of the prediction error.

Key idea

® Put aside a subset of the observations (called “testing set”).
® Fit the model using the rest of the observations (called “training set”).

® So the testing set is independent of the training set.
® Calculate the mean squared errors on the testing set.
In practice, people usually repeat the above for different partitioning of training and

testing sets. Then use the average mean squared errors as a out-of-sample estimate of
the prediction error.
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Model Selection

Backward elimination

Step 1 Start with all the predictors in the model. (full model)
Step 2 Remove a predictor with highest p-value greater than . emove-
Step 3 Refit the model and go to Step 2.

Step 4 Stop when all p-values are less than oy emove-
Forward selection

Step 1 Start with no variables in the model.

Step 2 For all predictors not in the model, check their p-values if they are added to the
model. Choose the one with lowest p-value less than agpter.

Step 3 Repeat Step 2 until no new predictors can be added.
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Stepwise selection

® Combination of backward elimination and forward selection.
® At each stage, a variable is added or removed.
® Stepwise procedures are relatively cheap computationally.

® |n practice, we can choose Qiemove aNd Qenter at around 15 — 20%.
Methods for model selection

® (Cross-validation
® Others: AIC, BIC, Mallow's C,...
® Shrinkage methods: LASSO...
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