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Motivation

Motivation

Queue 1 Queue 2 Queue 3

In service operations management, a decision maker cares about the
performance measures

system throughput ⇒ profit

queue length ⇒ holding cost of the jobs

waiting time, delay probability ⇒ customer satisfaction

system workload ⇒ maintenance cost incurred by surges of workload

An accurate characterization of the performance measure is essential in
any queueing-related applications.
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Motivation

Open Queueing Network

Jackson Networks

Network of M/M/1 queues with Markovian routing

“M” = “Memoryless” = exponential distributions.

Admits close-form formula for the steady-state performance measures.

- The steady-state queue length vector have product-form
distribution with exponential marginal distributions.

However, realistic models deviate significantly from the tractable structure
of the Jackson networks.

Studying the customer arrival flows turned out to be quite useful in
determining/approximating the performance measures.
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Motivation

Performance Measure and the Customer Arrival Flow

Analyzing the customer arrival flow can be very useful in
determining/approximating the performance measures.

As an illustration, the steady-state mean workload in the classical GI/M/1
model is

E [Z ] =
ρ

µ(1− σ)
,

where σ is the unique root in (0, 1) of the equation

f̂ (µ(1− σ)) = σ,

where f̂ is the Laplace transform f̂ (s) =
∫∞

0 e−st f (t)dt of the
interarrival-time pdf f .
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Motivation

Performance Measure and the Customer Arrival Flow

The mean steady-state workload can be re-written as

E [Z ] = ρ/s∗,

where s∗ is the unique root in (0, ρ−1) of V̂ (s) = 2(1−ρ)
ρs3 − 1

s2 , and V̂ is

the Laplace transform of the variance function V (t) = Var(A(t)) of the
arrival flow.

Theorem (Ordering of the mean steady-state workload)

Consider two GI/M/1 queues with rate-1 arrival processes A1 and A2 and
mean service time ρ. If

V1(t) ≥ V2(t), for all t ≥ 0,

then the steady-state workload satisfies

E [Z1,ρ] ≥ E [Z2,ρ], for all ρ ∈ (0, 1).
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Motivation

Performance Measure and the Customer Flows

Going beyond GI/M/1 or M/GI/1, closed-form solution of the system
performance are rarely available.

The customer arrival flow, especially the variance function of it, plays an
decisive role.

This inspires us to explore general customer flows

the departure flows,

the internal arrival flows from one queue to another,

the total arrival flows.

Queue 1 Queue 2 Queue 3
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Motivation

Performance Measure and the Customer Flows

Flows can be useful.

Whitt and You (2018) proposed new Robust Queueing algorithm
that rely on the variance function of the flows to approximate the
steady-state performance in OQN.

However, flows can be complicated.

To make things worse, the RQ algorithm relies on the stationary
version of the customer flows.

How do we approximate the stationary flows in open queueing networks?
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Motivation

Heavy-traffic Approximations

Qρ(t) Z (t)

lim
ρ→1

(1− ρ)Qρ((1− ρ)−2t)

Heavy-traffic limits of open queueing network (OQN)

A major source of approximation.

Feed-forward networks:

- Iglehart and Whitt (1970a,b); Harrison (1973, 1978).

Open queueing networks:

- Reiman (1984); Chen and Mandelbaum (1991a,b).

Reflected Brownian motion (RBM):

- Harrison (1978); Harrison and Reiman (1981); Dai and Harrison
(1992).
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Motivation

Motivation

Qρ(t)

Qρ(∞)

t →∞

Z (t)

Z (∞)

lim
ρ→1

(1− ρ)Qρ((1− ρ)−2t)

t →∞
lim
ρ→1

(1− ρ)Qρ(∞)

Heavy-traffic approximation of the steady-state queue length in OQN

Interchange of limits:

- Gamarnik and Zeevi (2006); Budhiraja and Lee (2009); Braverman
et al. (2017).
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Motivation

Motivation

So far, the heavy-traffic literature has focused on the queue length, busy
time, waiting time and workload processes.

Little is known regarding the HT limit of the customer flows.
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Motivation

In This Talk

We establish the existence of unique stationary flows in generalized
Jackson networks and the convergence to it as time increases.

We establish heavy-traffc limits for the stationary flows, allowing an
arbitrary subset of the queues to be critically loaded.

We demonstrate the approximation of the flows with numerical
examples.
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Stationary Flows

The OQN Model

Consider a queueing network with K single-server stations with unlimited
waiting space and the first-come first-served (FCFS) discipline.

A0,i (t): external arrival point process at station i .

Si (t): (uninterrupted) service point (counting) process

Si (t) = max
n≥0

{
n∑

l=1

V l
i ≤ t

}
, t ≥ 0,

where {V l
i : l ≥ 1} is the sequence of service times at station i .

Di (t): departure flow from station i

- Di (t) = Si (Bi (t)), where Bi (t) is the cumulative busy time of
server i up to time t.
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Stationary Flows

The OQN Model

Θi ,j(n): number of customers routed to j from i among the first n-th
departure from queue i .

Ai ,j : internal arrival flows

Ai ,j(t) = Θi ,j(Di (t)).

Ai (t): total arrival process at station i

Ai (t) = A0,i (t) +
K∑
j=1

Aj ,i (t)

Qi (t): queue length process

Qi (t) = Qi (0) + Ai (t)− Di (t))
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Stationary Flows

Assumption 1

Assumption (Generalized Jackson Network)

1 The external arrival process at station i is a renewal processes with
finite rates λi . The interarrival times have finite squared coefficient of
variation (scv) c2

a0,i
.

2 The service times are i.i.d. random variables with means 1/µi and
finite scv c2

si
.

3 The routing is Markovian with routing matrix P = (pi ,j)1≤i ,j≤K such

that pi ,j ≥ 0, pi ,0 ≡ 1−
∑K

j=1 pi ,j ≥ 0 and I − P ′ is invertible;.

4 The arrival, service and routing processes are mutually independent.
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Stationary Flows

Markov Representation

Let U(t) denote the vector of residual external arrival times at time t.

Let V (t) be the vector of residual service times at time t, set to 0
when the server is idle.

Let the system-state process be

S(t) ≡ (Q(t),U(t),V (t)), t ≥ 0.

One can show with Davis (1984) that

Theorem

For GJN, the system state process S is a strong Markov process.

Because S is a piece-wise deterministic Markov process.
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Stationary Flows

Assumption 2

λ: effective arrival rate

λ = (I − P ′)−1λ0,

where λ0 is the external arrival rate.

ρi = λi/µi : traffic intensity

Assumption

The traffic intensities satisfy maxi ρi < 1.
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Stationary Flows

Assumption 3

We make the key assumption to obtain the Harris recurrence as in Sigman
(1988, 1990), Dai (1995) and Ch. VII of Asmussen (2003).

Assumption

Each external interarrival-time distribution is unbounded above and
spread out.

Spread out: for a distribution F , there exist a integer i > 0 such that
the i-fold convolution F ∗i has an absolutely continuous component
(has a density) with respect to the Lebesgue measure.

- In applied context, spread out is practically the same as
non-lattice.
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Stationary Flows

Existence, Uniqueness and Convergence

Theorem (System-state process)

Under Assumptions 1-3, the system state stochastic process S is a positive
Harris recurrent Markov process. There exists a unique stationary
distribution π and for every initial condition and the distribution of S(t)
converges to π as t →∞.

Theorem 2 of Gamarnik and Zeevi (2006) or Theorem 5.1 of Dai
(1995) or Theorem 6.2 of Dai and Meyn (1995), which extend earlier
work on stability for OQNs in Borovkov (1986), Sigman (1990) and
Foss (1991).
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Stationary Flows

Existence, Uniqueness and Convergence

For the system state processes,

let Qs(t) = Q(s + t),Us(t) = U(s + t) and Vs(t) = V (s + t);
so that Ss ≡ (Qs ,Us ,Vs) is the system state process start at time t.

Corollary (Weak convergence of the system state process)

Under Assumptions 1-3, there exist stationary processes (Qe ,Ue ,Ve) such
that

Ss ⇒ Se ≡ (Qe ,Ue ,Ve), as s →∞,

where ⇒ denote weak convergence.

Proved using a generalized version of Theorem 12.6 in Billingsley
(1999): the system-state process live in a subset of D3 with nice
sample path, where convergence on a countable dense subset of time
implies convergence in SJ1 topology.
Convergence of the finite-dimensional distribution via strong Markov
property.
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Stationary Flows

Existence, Uniqueness and Convergence

Now, we turn to the stationary flows.

Define the customer flows F by

F(t) ≡ (A0(t),S(t),Aint(t),A(t),D(t)) .

- We use Fs(t) to denote the flows that starts at time s.

Theorem (Existence of and convergence to the stationary flows)

Under Assumptions 1-3, there exists unique stationary and ergodic
cumulative process Fe such that

(Ss ,Fs)⇒ (Se ,Fe) ≡ (Qe ,Ue ,Ve ,A0,e ,Se ,Aint,e ,Ae ,De), as s →∞,

where ⇒ denote weak convergence.
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Stationary Flows

Existence, Uniqueness and Convergence

Proof sketch

A0,s and Ss are vectors of delayed renewal process with first interval
distributed as Us(0) and Vs(0), respectively.

(Aint(t),A(t),D(t)) are piece-wise constant with unit jumps. The
jumps corresponds to the jumps in Ss .

Consider the sequence of jump times and jump types in Ss , it is a
continuous function of Ss .

Recover the flows from the jumps of Ss using inverse map, which is
continuous.
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Heavy-Traffic Limits

HT Limits of the Stationary Flows

Having established the existence and convergence of stationary flows, we
turn to the heavy-traffic limit of the stationary flows.

We now assume that the system is in stationarity.

- Suppress the subscript e to simplify the notation.

H ⊂ {1, 2, . . . ,K}: an arbitrary pre-selected subset of bottleneck
queues.

- So that ρi ↑ 1 for i ∈ H and ρi < 1− ε for i /∈ H.

Whitt and You (CU and HKUST) Stationary Network Flows Dec. 17, 2019 24 / 37



Heavy-Traffic Limits

Notation Via an Equivalent Network

Consider an alternative network, where non-bottleneck queues i ∈ Hc act as
instantaneous switches.

Let PI,J collect the routing probabilities from stations in I to the ones in J .

- Define PH,Hc ,PHc ,H and PH ≡ PH,H,PHc ≡ PHc ,Hc

The new routing matrix for the bottleneck stations, denoted by P̂H, is

P̂H = PH + PH,Hc (IHc − PHc )−1 PHc .

Let P̂Hc ,H denote the probabilities that the first visit to a bottleneck queue
of an external arrival at a non-bottleneck queue i ∈ Hc is at j ∈ H, then we
have

P̂Hc ,H = (IHc − PHc )−1 PHc ,H.

The new external arrival rate λ̂0,H is

λ̂0,H = λ0,H + P̂ ′Hc ,Hλ0,Hc ,

The new total arrival rates remain unchanged

λ̂H = (I − P̂ ′H)−1λ̂0,H = λH.
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Heavy-Traffic Limits

We consider the usual HT scaling:

Scale time by (1− ρ)−2, scale space by (1− ρ).

A∗0,i ,ρ(t) ≡ (1− ρ)[A0,i ((1− ρ)−2t)− (1− ρ)−2λ0,i t],

S∗i ,ρ(t) ≡ (1− ρ)[Si ,ρ((1− ρ)−2t)− (1− ρ)−2µi ,ρt],

Θ∗i ,j ,ρ(t) ≡ (1− ρ)
[
Θi ,j ,ρ

(
b(1− ρ)−2tc

)
− pi ,j(1− ρ)−2t

]
,

A∗i ,j ,ρ(t) ≡ (1− ρ)[Ai ,j ,ρ((1− ρ)−2t)− (1− ρ)−2λipi ,j t],

A∗i ,ρ(t) ≡ (1− ρ)[Ai ,ρ((1− ρ)−2t)− (1− ρ)−2λi t],

D∗i ,ρ(t) ≡ (1− ρ)[Di ,ρ((1− ρ)−2t)− (1− ρ)−2λi t],

Q∗i ,ρ(t) ≡ (1− ρ)Qi ,ρ((1− ρ)−2t),

Z ∗i ,ρ(t) ≡ (1− ρ)Zi ,ρ((1− ρ)2t).

Furthermore, let F∗ρ collects all the flows, defined as

F∗ρ (t) ≡ (A∗0,ρ(t),S∗ρ (t),A∗int,ρ(t),A∗ρ(t),D∗ρ(t)).
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Heavy-Traffic Limits

Theorem (Heavy-Traffic FCLT)

Under Assumption 1-3,

(Q∗ρ ,Z
∗
ρ ,Θ

∗
ρ,F∗ρ )⇒ (Q∗,Z∗,Θ∗,F∗), ρ ↑ 1.

1 A∗0,i ,S
∗
i and Θ∗ = (Θ∗i : 1 ≤ i ≤ K) are mutually independent BMs.

2 Q∗Hc ≡ 0 and Q∗H is a stationary |H|-dimensional RBM

Q∗H ≡ ψI−P̂H

(
X̂∗H

)
,

X̂∗H = Q∗H(0) +
(
e′H + P̂′Hc ,He′Hc

) (
A∗0 + (Θ∗)′ 1

)
− (I − P̂H)S∗H − λ̂0,He.

3 The total arrival process A∗, the internal arrival process A∗i,j and the departure process D∗

A∗ = (I − P′)−1
(
A∗0 + (Θ∗)′ 1

)
+ P′(I − P′)−1 (Q∗(0)− Q∗) ,

D∗ = (I − P′)−1
(
Q∗(0)− Q∗ + A∗0 + (Θ∗)′ 1

)
,

A∗i,j = pi,jD
∗
i + Θ∗i,j ◦ λie, for 1 ≤ i , j ≤ K .

4 Z∗i = λ−1
i Q∗i .
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Heavy-Traffic Limits

Remarks

The queue length process

X̂ ∗H = Q∗H(0) +
(
e ′H + P̂ ′Hc ,He

′
Hc

) (
A∗0 + (Θ∗)′ 1

)
− (I − P̂H)S∗H − λ̂0,He.

A∗0 corresponds to the external arrival process, whereas (Θ∗)′ 1 is
there because of the Markovian routing.

e ′H + P̂ ′Hc ,He
′
Hc collects (1) the arrivals directly to the bottleneck

queues and (2) the arrival to non-bottleneck queues and the directed
to bottleneck queues.

The service at bottleneck queues are adjusted by I − P̂H to account
for immediate feedback to themselves.
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Heavy-Traffic Limits

Remarks

Proof sketch

A key step is to show

(Q∗H,ρ(0),Q∗Hc ,ρ(0))⇒ (Q∗H(0),Q∗Hc (0)) as ρ ↑ 1,

which follows from Budhiraja and Lee (2009) with a slight
generalization to cover networks with non-bottleneck queueus.

The convergence of Q∗H,ρ,A
∗,D∗ then follows from the system

equation for the scaled processes.

The convergence of internal arrival processes A∗int follows from the
functional cental limit theorem for the splitting operation.

Whitt and You (CU and HKUST) Stationary Network Flows Dec. 17, 2019 29 / 37



Applications

Approximation of the Variability in the Flows

We now illustrate how the HT limits for the stationary flows can be
applied in queueing approximations.

For convenience, we work with the Index of Dispersion for Counts (IDC)

Ia(t) ≡ Var(A(t))/E [A(t)], t ≥ 0,

Simply a scaled version of the variance-time curve.

Robust Queueing algorithm produces approximation of the
performance measures using IDC.

Thus, we focus only on the approximation of the IDC of the
stationary customer flows here.
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Applications

Heavy-Traffic Limit for the Variance Functions

Define the HT-scaled variance function of the stationary departure process

V ∗d ,ρ(t) ≡ Var(D∗ρ(t)).

Theorem (HT limit for the departure variance)

Under uniform integrability conditions, V ∗d ,ρ(t) converges to

V ∗d (t) ≡ w∗
(
λt/c2

x

)
c2
aλt +

(
1− w∗

(
λt/c2

x

))
c2
s λt, as ρ ↑ 1

where c2
x = c2

a + c2
s ,

w∗(t) =
1

2t

((
t2 + 2t − 1

) (
2Φ(
√
t)− 1

)
+ 2
√
tφ(
√
t) (1 + t)− t2

)
and φ,Φ are the standard normal pdf and cdf, respectively.
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Applications

Approximation for Departure IDC

The HT theorem for variance supports the following approximation

Id(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(ρt), (Dep)

where
wρ(t) = w∗((1− ρ)2λt/(ρc2

x )),
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Applications

Example: Dependent Superposition

Let us look at another simple example.

A(t) p1
Queue 1

D2(t)

Queue 3

Queue 2

p2 D2(t)

Figure: A re-combining after splitting example.

To approximate the IDC of the total arrival process at queue 3, we write

Ia,3,ρ(t) ≡ Var(A3,ρ(t))

E [A3,ρ(t)]
=

Var (D1,ρ(t) + D2,ρ(t))

E [A3,ρ(t)]

=
Var (D1,ρ(t))

E [A3,ρ(t)]
+

Var (D2,ρ(t))

E [A3,ρ(t)]
+ cov (D1,ρ(t),D2,ρ(t)) /E [A3,ρ(t)]

= p1Id ,1,ρ(t) + p2Id ,2,ρ(t) + βρ(t).
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Applications

Example: Dependent Superposition

In general, exact characterization of βρ is not readily available. We
propose the following approximation

βρ(t) ≈ 2cov
(
D∗1 ((1− ρ)2t),D∗2 ((1− ρ)2t)

)
/(λ(1− ρ)2t)

= 2p1(1− p1)(c2
a0
− 1)w∗((1− ρ)2p1λt/c

2
x1

))

Let β∗ρ(t) = βρ
(
(1− ρ)−2t

)
be the HT-scaled correction term.

Corollary

Under mild conditions, we have

β∗ρ(t)→ 2p1(1− p1)(c2
a0
− 1)w∗

(
p1λt/c

2
x1

)
uniformly on bounded intervals.
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Applications

Example: Dependent Superposition
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Figure: Approximation of the IDC of the total arrival process at station 3. The
external arrival process is hyperexponential and the service distribution is Erlang.
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Applications

The IDC Equations

In fact, we can derive a set of IDC equations

Id ,i (t) = wi (t)Ia,i (t) + (1− wi (t))Is,i (ρt), (Dep)

Ia,i ,j(t) = pi ,j Id ,i (t) + (1− pi ,j) + αi ,j(t), (Spl)

Ia,i (t) =
K∑
j=0

(λj ,i/λi )Ia,j ,i (t) + βi (t). (Sup)

A system of linear equations for each fixed t;

The IDC equations have a unique solution if every customer
eventually leave the system.
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Applications

Example: Dependent Splitting
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References

Thank You!
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