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Abstract

We study contextual dynamic pricing, where a decision maker posts personalized prices
based on observable contexts and receives binary purchase feedback indicating whether the
customer’s valuation exceeds the price. Each valuation is modeled as an unknown latent function
of the context, corrupted by independent and identically distributed market noise from an
unknown distribution. Relying only on Lipschitz continuity of the noise distribution and bounded
valuations, we propose a minimax-optimal algorithm. To accommodate the unknown distribution,
our method discretizes the relevant noise range to form a finite set of candidate prices, then applies
layered data partitioning to obtain confidence bounds substantially tighter than those derived via
the elliptical-potential lemma. A key advantage is that estimation bias in the valuation function
cancels when comparing upper confidence bounds, eliminating the need to know the Lipschitz
constant. The framework extends beyond linear models to general function classes through
offline regression oracles. Our regret analysis depends solely on the oracle’s estimation error,
typically governed by the statistical complexity of the class. These techniques yield a regret
upper bound matching the minimax lower bound up to logarithmic factors. Furthermore, we
refine these guarantees under additional structures—e.g., linear valuation models, second-order
smoothness, sparsity, and known noise distribution or observable valuations—and compare our
bounds and assumptions with prior dynamic-pricing methods. Finally, numerical experiments
corroborate the theory and show clear improvements over benchmark methods.

1 Introduction

The dynamic pricing problem, which involves setting real-time prices for products or services,
has received significant attention due to its practical applications and direct impact on revenue
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maximization in industries such as entertainment, e-commerce (Lei et al. 2018), and transportation
(Saharan et al. 2020). For an extensive review of the dynamic pricing literature, we recommend den
Boer (2015). Recent research has increasingly focused on feature-based dynamic pricing models
that leverage observable contexts to understand market value and design effective pricing strategies
(Wang et al. 2014, Cesa-Bianchi et al. 2019, Chen et al. 2024, Fan et al. 2024, Wang and Liu 2025,
Wang et al. 2025). These models capture product heterogeneity and enable personalized pricing.

At each decision time, the seller observes covariates that represent relevant product features and
customer characteristics. These covariates determine the customer’s valuation through an unknown
valuation function and market noise. The customer purchases the product if their valuation exceeds
the posted price. In standard settings where only binary purchase decisions are observed, the
seller receives censored feedback about the customer’s latent valuation. The goal is to set prices
adaptively to maximize revenue while simultaneously learning the unknown valuation function and
noise distribution.

Designing low regret policies in this setting is particularly challenging. The demand curve, often
obscured by market noise, shifts continuously as covariates change, and its shape may not follow
any specific parametric form. As a result, solving the contextual dynamic pricing problem requires
accurate estimation of the demand function over a wide range of price-context combinations, which
depends intimately on the smoothness of the noise distribution or on assumptions regarding the
uniqueness of the optimal price (see Table 1). This is in stark contrast to non-contextual pricing or
nonparametric bandit problems, where estimation around a single optimal price suffices. Without a
pricing policy that is carefully tailored to these complexities, regret can be significantly higher.

Despite extensive research on the contextual dynamic pricing problem, a gap remains in developing
policies that are provably optimal while relying on mild assumptions. Existing approaches often
require strong assumptions about the smoothness of the valuation function or the noise distribution,
which may not hold in practice. For instance, Javanmard and Nazerzadeh (2019) assume a known
noise distribution, Tullii et al. (2024) require that the Lipschitz constant of the noise distribution is
known, and Fan et al. (2024) require the noise distribution to be m-th differentiable.

We tackle these challenges through an episode-based explore-then-UCB framework. In each
episode, our algorithm begins with an exploration phase that collects data to estimate the valuation
function. The algorithm then enters a UCB phase, where we discretize the noise domain into
equal-length intervals; this yields a finite-action linear bandit structure that supports robust upper
confidence bounds capturing both valuation-estimation error and discretization bias. Within each
episode, we control regret using a tighter concentration argument (via Azuma’s inequality), which
requires engineered independence. We ensure this independence through a carefully designed layered
data partitioning scheme that accounts for model misspecification from estimation error. Notably,
the adaptive nature of this technique eliminates the need for prior knowledge of the Lipschitz constant
of the noise distribution, enhancing flexibility and practicality. Finally, by tuning the number of grid
intervals to balance learning and discretization errors, the policy attains minimax-optimal regret.
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1.1 Contributions

A novel algorithm with mild assumptions. We propose a minimax optimal algorithm for
contextual dynamic pricing that operates under rather mild assumptions—specifically, bounded
valuations and Lipschitz-continuous noise distributions. These conditions are standard in the
literature (Javanmard and Nazerzadeh 2019, Chen and Gallego 2021, Choi et al. 2023, Fan et al.
2024, Luo et al. 2024). In contrast to prior work that relies on stronger assumptions such as known
Lipschitz constants, known noise distributions, second-order smoothness of revenue functions, or
uniqueness of the optimal price, our method dispenses with all of these, marking a substantial
advancement in generality and applicability. Our algorithm achieves a regret upper bound1 of
Õ
(
ρ

1
3
V (δ)T 2

3
)

, where ρV(δ) captures the statistical complexity of the valuation function space. This
bound matches the lower bound up to logarithmic factors, closing the gap in the literature. As
a by-product, we extend existing lower bounds for dynamic pricing problems to cover smoother
distributions beyond mere Lipschitz continuity (see Theorem 2).

Improved regret bounds for linear valuation models. When applied to linear valuation
models with d0-dimensional covariates, our results yield Õ

(
d

1
3
0 T

2
3
)

regret as ρV(δ) = O
(
d0 ln(d0/δ)

)
.

This improves significantly upon prior works, such as Õ
(
d2

0T
2
3
)

(with additional second-order
smoothness assumption) and Õ

(
d0T

3
4
)

(without it) in Luo et al. (2024). Moreover, compared to
Fan et al. (2024), who obtain Õ

(
d

5
7
0 T

5
7
)

regret upper bound, our approach achieves a lower order in
T while relaxing assumptions. In Table 1, we provide a comprehensive comparison with existing
methods under linear valuation models, highlighting the improvements achieved by our approach in
terms of reduced regret bounds and relaxed assumptions.

Table 1: Comparison of Existing Methods for Linear Valuation Models with d0 Dimensional Features.

Method Regret* Additional Assumptions†

Luo et al. (2022, 2024)
d0T

3
4 N/A

d2
0T

2
3 Second-order smoothness (Assumption 5)

d2
0T

2
3 ∨ d

1
2
0 T 1− α

2 Availability of a classification oracle (Assumption 7)

Fan et al. (2024)
(d0T ) 3

4 Uniqueness of the optimal price
(d0T )

2m+1
4m−1 m-th differentiable, uniqueness of the optimal price

Tullii et al. (2024) (d0T ) 2
3 Known Lipschitz constant L in Assumption 3

Ours (corollary 1) d
1
3
0 T

2
3 N/A

Note:

* The regrets listed above omit constant factors, poly(ln(d0)) and poly(ln(T )) terms.
† All methods require realizability (Assumption 1), boundedness of the valuation function

(Assumption 2) and Lipschitz continuity (Assumption 3), which are therefore omitted in the
table.

Generalization beyond linear models. Our method is flexible as it naturally extends beyond
1The notation Õ hides the constant factors and logarithmic terms in T and ρV(δ).
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linear models by considering general function spaces and leveraging general offline regression oracles.
This enables us to handle a broad range of models, including sparse linear models and advanced
frameworks such as reproducing kernel Hilbert spaces (RKHS) for the valuation function space. In
contrast, many existing methods assume that the valuation function is linear (Luo et al. 2022, Fan
et al. 2024, Javanmard and Nazerzadeh 2019), which limits their applicability to more complex
settings. For example, Xu and Wang (2022) perform component-wise discretization of the parameter
space, which is intrinsically tied to linearity assumption, and hence it is unclear how it may be
extended to non-linear valuation structures. Cohen et al. (2020) employ ellipsoid-based shallow
cuts to refine parameter uncertainty, so their geometric approach fundamentally relies on linearity.
Recent work by Chen et al. (2024) relaxes linearity by proposing a nonparametric nearest-neighbor
estimator for general valuation functions, which is a special offline regression oracle.

Improved regret bounds under additional information. Our framework is flexible and
can incorporate additional structural information to further tighten regret bounds. We highlight
three illustrative scenarios: (i) Under censored observations and access to a classification oracle
(Assumption 7), our method improves upon the Õ(T 2

3 ∨(1− α
2 )) bound in Luo et al. (2024), achieving

a sharper rate of Õ(T 3
5 ∨(1− α

2 )), where α characterizes the oracle’s estimation accuracy. (ii) When
the noise distribution is known, our algorithm matches the regret guarantees of Javanmard and
Nazerzadeh (2019) (which focus on linear models) while extending to more general, potentially
nonlinear function classes. (iii) In settings where full customer valuations (rather than binary
purchase feedback) are available, and the revenue function satisfies a second-order smoothness
condition, we attain a tighter regret bound of Õ(T 3

5 ).
Layered data partitioning technique for dynamic pricing. To the best of our knowledge,

this work is the first to introduce the layered data partitioning technique in the context of dynamic
pricing. This method partitions the data into temporally decoupled layers, ensuring statistical
independence across layers and allows for sharp confidence bounds via Azuma’s inequality. Leveraging
this technique, our algorithm achieves a regret of Õ(d

1
3
0 T

2
3 ) improving upon the previous best-known

bound of Õ(d0T
3
4 ). Importantly, our method is parameter-free: it does not require prior knowledge

of problem-specific constants (e.g., the Lipschitz constant), in contrast to approaches such as Tullii
et al. (2024). This advantage arises from the observation that the estimation bias in the valuation
function is common across arms and thus cancels when comparing upper confidence bounds, making
our framework readily deployable in real-world settings.

1.2 Related Work

Dynamic pricing. Dynamic pricing is an active area of research, driven by advancements in data
technology and the increasing availability of customer information. Initial research focused on non-
contextual dynamic pricing (Besbes and Zeevi 2015, Cesa-Bianchi et al. 2019). For example, Wang
et al. (2021) employed the UCB approach with local-bin approximations, achieving an Õ(T

m+1
2m+1 )

regret for m-th smooth demand functions and establishing a matching lower bound. However, these
approaches do not incorporate covariates into pricing policies.
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In the domain of dynamic pricing with covariates, the linear customer valuation model has been
widely adopted. Javanmard and Nazerzadeh (2019) studied this model assuming a known and
log-concave noise distribution. In contrast, Golrezaei et al. (2019) considered an ambiguity set for
the noise distribution, achieving a regret of Õ(T 2

3 ) compared to a robust benchmark, although their
approach struggles when the ambiguity set encompasses an infinite number of distributions. Our
model addresses the general case of an unknown noise distribution and establishes regret bounds
by comparing against the true optimal policy instead of a robust benchmark. Chen and Gallego
(2021) explored nonparametric aspects of the unknown demand function using adaptive binning
of the covariate space to achieve a regret of Õ

(
T

d0+2
d0+4

)
. Notably, our method outperforms theirs

when d0 ≥ 2. Under the Cox proportional hazards (PH) model, Choi et al. (2023) introduced the
CoxCP algorithm, which achieved a regret of Õ(T 2

3 ). Their approach relies on the separability of
the unknown linear structure and noise distribution in the PH model, making it unsuitable for our
setting where these components are entangled. Xu and Wang (2022) proposed an adaptive pricing
policy with Õ(T 3

4 ) regret for adversarial contexts and bounded noise distributions. Our method
improves this to Õ(T 2

3 ) under Lipschitz noise distributions, while also maintaining computational
efficiency compared to the exponential computations required by the EXP4-based policy in Xu and
Wang (2022). Recently, Wang and Chen (2025) established a minimax-optimal regret bound of
Õ(T 3/5) under twice-differentiability and additional structural conditions (e.g., strong unimodality
of the revenue function). Their analysis focuses on a linear valuation model with unknown price
elasticity and leverages active learning for parameter estimation. In contrast, our approach requires
substantially weaker assumptions and provides a parameter-free algorithm.

Many papers investigate sparsity with high-dimensional covariates (Ren and Zhou 2024, Ban
and Keskin 2021, Javanmard and Nazerzadeh 2019). Ren and Zhou (2024) study linear contextual
bandits, and Ban and Keskin (2021) examine generalized linear demand models, proposing minimax-
optimal policies for both known and unknown sparsity levels. However, sparsity has been largely
under-explored in semiparametric contextual pricing. Javanmard and Nazerzadeh (2019) consider a
related setting but require a known noise distribution. In contrast, our method extends naturally to
sparse parameter vectors while accommodating an unknown noise distribution.

Other related studies (Luo et al. 2022, 2024, Fan et al. 2024) share similarities with our work in
terms of settings, but differ in their assumptions about the smoothness of the noise distribution. For
example, Luo et al. (2022) proposed an episode-based algorithm with regret bounds of Õ(d2

0T
2
3 ) and

Õ(d0T
3
4 ) under different smoothness assumptions. Fan et al. (2024) considered m-th differentiable

distributions and achieved a regret of Õ
(
(d0T )

2m+1
4m−1

)
using the Nadaraya-Watson kernel regression

estimator. In comparison, our method achieves Õ(d
1
3
0 T

2
3 ) regrets when applied to linear valuation

models, demonstrating minimax optimality while relying only on Lipschitz assumption.
Contextual bandits. Our pricing policy is closely related to bandit algorithms (Lattimore and

Szepesvári 2020, Foster and Rakhlin 2020, Abbasi-Yadkori et al. 2011, Takemura et al. 2021, Auer
2002) that balance exploration and exploitation in decision-making. In particular, our approach
connects to misspecified linear bandits (Auer 2002, Takemura et al. 2021). Unlike traditional bandit
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algorithms, dynamic pricing must account for both the variance of estimation and the bias arising
from parameter perturbations. We show that the unique structure of the dynamic pricing problem,
when cast as a misspecified linear bandit, permits a more precise concentration bound, leading to
improved regret bounds compared to the naive application of standard misspecified linear bandit
algorithms. This improvement stems from the fact that the number of candidate prices is finite
in each round. Our results highlight the importance of leveraging the distinctive structure of the
pricing context to achieve optimal performance.

1.3 Notation and organization

Throughout the paper, we use the following notations. For any positive integer n, we denote the
list {1, 2, · · · , n} as [n]. The cardinality of a set A is denoted by |A|. We use IE to represent the
indicator function of an event E. We denote by ∥ · ∥p, for 1 ≤ p ≤ ∞, the ℓp norm. Throughout the
analysis, the notation Õ hides dependence on absolute constants and logarithmic terms.

In Section 2, we introduce the contextual dynamic pricing problem and present key assumptions
of our approach. Section 3 presents the details of our algorithmic framework, with discussions
of essential techniques and methodologies. Section 4 provides a theoretical analysis of the regret
bounds for the proposed algorithm. Building on this framework, we discuss several special cases and
extensions of our method in Section 5. In Section 6, we present numerical experiments comparing our
methods with existing approaches. While the core ideas behind the proofs are sketched throughout
the paper, complete and rigorous proofs are deferred to the Appendix for clarity and completeness.

2 Problem Formulation

In the contextual dynamic pricing setting, a potential customer arrives on the platform in each
round t ∈ [T ], and the seller observes a covariate vector xt ∈ X ⊂ Rd0 that captures relevant
product features and customer characteristics. We assume that the covariates {xt} are drawn i.i.d.
from an unknown distribution supported on X . After observing xt, the customer’s valuation for the
product is given by vt = v∗(xt) + ϵt, where v∗(xt) is an unknown valuation function, and the noise
terms {ϵt}t∈[T ] are independent and identically distributed according to an unknown cumulative
distribution function F , have zero mean, and are independent of everything else.

If the random valuation vt exceeds the posted price pt, a sale occurs and the seller earns revenue
pt. Otherwise, if vt < pt, no sale is made and the revenue is zero. We denote the sale outcome by
yt = I {vt ≥ pt} , so that yt follows a Bernoulli distribution with parameter 1− F (pt − v∗(xt)). The
revenue at time t is therefore rt = ptyt. Thus, the triplet (xt, pt, yt) encapsulates the key information
observed in the pricing process at round t.

Given the covariate xt, setting a price p yields expected revenue

Revt(p) = p
(
1− F (p− v∗(xt))

)
.

6



The optimal price maximizes this expected revenue:

p∗
t ∈ argmax

p≥0
Revt(p).

The regret at time t is defined as the difference between the expected revenue of the optimal price
p∗

t and that of the chosen price pt. Over a horizon of T rounds, the cumulative regret is

Reg(T ) =
T∑

t=1

(
Revt(p∗

t )− Revt(pt)
)

=
T∑

t=1

[
p∗

t

(
1− F (p∗

t − v∗(xt))
)
− pt

(
1− F (pt − v∗(xt))

)]
.

The goal in contextual dynamic pricing is to select a price pt for each observed covariate xt, using
historical data {(xs, ps, ys)}s∈[t−1], in order to learn the unknown valuation function v∗ and noise
distribution F , while minimizing the cumulative regret Reg(T ).

We now outline the key assumptions used in this work. To begin, we make realizability and
boundedness assumptions.

Assumption 1 (Realizability). The valuation function v∗ belongs to a known function class V.

Assumption 2 (Bounded Valuation). There exist positive, finite constants Bϵ and B such that the
market noise is uniformly bounded: |ϵt| ≤ Bϵ for all t, the valuation function is bounded away from
the extremes: v∗(x) ∈ [Bϵ, B −Bϵ] for all x ∈ X .

Assumption 2 imposes a known upper bound on customer valuations, which is a natural and
practical assumption for real-world products. Since v∗(x) is bounded above by B −Bϵ, the optimal
price is also bounded above by a universal constant B.

Next, we impose a Lipschitz-continuity condition on the noise distribution F , a standard yet
relatively mild assumption in the dynamic-pricing literature (Luo et al. 2022, 2024, Chen et al.
2024). Notably, this requirement is weaker than those adopted in many prior works. For instance,
Chen et al. (2024), Fan et al. (2024), Javanmard and Nazerzadeh (2019) assume that F admits a
bounded derivative, and Luo et al. (2022), Fan et al. (2024), Javanmard and Nazerzadeh (2019),
Wang and Chen (2025) additionally require the optimal price to be unique. We require neither
assumption in our work. Moreover, we do not impose any concavity conditions on F or on the
revenue function. In Section 5, we discuss how stronger assumptions lead to improved results.

Assumption 3 (Lipschitz Continuity). The noise distribution F is Lipschitz continuous with a
positive constant L, i.e., |F (x)− F (y)| ≤ L|x− y|, ∀x, y ∈ R.

Assumptions 2 and 3 are satisfied by a broad range of distributions, such as uniform and
truncated normal distributions.

3 The Algorithm

At each round t the seller sequentially observes the covariate xt and sets a price pt based on
the history {x1, p1, y1, . . . ,xt−1, pt−1, yt−1,xt}, which inherently requires balancing exploration
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(gathering informative samples to improve estimates of the unknown v∗ and F ) with exploitation
(leveraging current estimates to maximize immediate revenue). In this section, we propose a
distribution-free pricing policy (Algorithm 1) for contextual dynamic pricing with unknown valuation
function v∗ and noise distribution F , without requiring restrictive assumptions about these functions.

Our algorithm tackles the exploration-exploitation trade-off by decoupling the learning compo-
nents: it allocates controlled exploration to collect informative price-outcome pairs for estimating v∗,
then applies confidence-bound mechanisms to optimize revenue based on these estimates. Specifically,
the algorithm operates in episodes, each consisting of an exploration phase, an estimation phase,
and a UCB phase (see Algorithm 2). These three phases must be carefully balanced with respect to
the time horizon T in order to achieve minimax-optimal regret. When T is unknown, we employ
the standard doubling trick, partitioning the time horizon into exponentially growing episodes of
length ℓk = 2k−1. The schematic of the algorithm for a single episode is shown in Figure 1.

x1 x2 x3 xT e
k

random price
p2 ∼ Unif(0, B)

Exploration Phase
length T e

k =
⌈
ℓ

2
3
k ρ

1
3
V (δ)

⌉

Estimation Phase
estimate v̂k from {(xt, yt)}t∈[T e

k
]

xT e
k

+1 xT e
k

+2 xT e
k

+3 xT e
k

+4 xt xℓk

UCB Phase
length Tk = ℓk − T e

k

Timestamps Ψ1
t

Timestamps Ψ2
t

Timestamps Ψ3
t

check statistical precision

Algorithm 2 at time t

Algorithm 1 in episode k

check statistical precision

Action Set At,1

Action Set At,2 ⊂ At,1

Action Set At,3 ⊂ At,2

calculate UCB

calculate UCB

Fail: return any under-explored price
and terminate layer traversal.

record timestamp

Pass: eliminate sub-optimal
prices, proceed to the next layer.

record timestamp

Fail: return any under-explored price
and terminate layer traversal.

Pass: eliminate sub-optimal
prices, proceed to the next layer.

record timestamp

Last layer (exploit):
return price with highest UCB.

Search
p

t by
A

lgorithm
2

Figure 1: Schematic diagram of Algorithm 1 (dashed box) of episode k with length ℓk = 2k−1, and
Algorithm 2 at time t (dash-dotted box) with Sk =

⌈
1
2 log2 (Tk)

⌉
layers (Sk = 3 for illustration purpose).
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Overview of Algorithm Design. Algorithm 1 leverages a novel combination of techniques to
address the challenges of dynamic pricing under uncertainty.

1. Exploration and Estimation Phases. Estimating the valuation function v∗ is inherently
entangled with both the pricing policy and the unknown noise distribution F . To disentangle
these elements, we adopt the approach of Javanmard and Nazerzadeh (2019) by introducing a
dedicated exploration phase of predetermined length. During this phase, we sample prices
uniformly at random from a bounded set of candidate values, ensuring thorough coverage of
the covariate-price space. This design yields a clean regression structure that separates the
task of estimating v∗ from the influence of F , enabling an offline regression oracle to recover
v∗ accurately in the subsequent estimation phase.

2. UCB-Phase (Algorithm 2). Our core innovations are realized here:

• Sharper concentration bounds. Under only a Lipschitz-continuity assumption on F ,
we discretize the noise distribution and cast the problem as a perturbed linear bandit (Luo
et al. 2024). Unlike prior works, by capping the number of candidate actions per episode,
we replace the conventional elliptical potential lemma with a tighter component-wise
concentration bound based on Azuma’s inequality.

• Modified layered data partitioning. The use of Azuma’s inequality is made pos-
sible by enforcing statistical independence through a layered data partitioning (LDP)
technique (Auer 2002, Li et al. 2019), which partitions samples into disjoint subsets so
that all confidence intervals are constructed from independent data. Whereas classical
LDP assumes exact knowledge of the reward function, we develop a novel variant that
accommodates the regression oracle’s estimation error in v∗, preserving the required
independence structure while controlling error propagation in the valuation estimates.

Collectively, these innovations yield a minimax-optimal regret bound under only mild Lipschitz-
continuity assumptions. In what follows, we present a detailed exposition of the algorithm’s
design.

3.1 Decouple the Estimation of the Valuation Function v∗

The seller collects binary feedback yt, which depends jointly on the posted price pt, the valuation
v∗(xt), and the unknown noise distribution F . This coupling complicates direct estimation of v∗, as
traditional methods would require simultaneous identification of F .

To decouple these components, we adopt a strategy inspired by Javanmard and Nazerzadeh
(2019). Specifically, during the Exploration Phase of each episode (Step 6 of Algorithm 1), the seller
posts prices sampled uniformly from [0, B]. This leads to the following relationship:

E[Byt | xt] = BE
[
E[I {pt ≤ v∗(xt) + ϵt} |xt, ϵt]

∣∣ xt
]

= BE
[

v∗(xt) + ϵt

B

∣∣∣xt

]
= v∗(xt),
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where the noise term ϵt vanishes due to its zero-mean property. This enables consistent estimation
of v∗ through offline regression (Step 9 of Algorithm 1) on exploration-phase data, independent of
F . For linear valuation models, standard least squares suffices.

More generally, we rely on an offline regression oracle that satisfies Assumption 4. This abstraction
separates the statistical estimation of the valuation function v∗ from the exploration-exploitation
trade-off in pricing.

Assumption 4 (Offline Regression Oracle). Under Assumption 1, let {(xt, yt)}t∈[n] be i.i.d. samples
from a fixed but unknown distribution, satisfying E[Byt | xt] = v∗(xt). Given these samples and any
confidence level δ > 0, an offline regression oracle returns a predictor v̂ ∈ V such that

∥v̂ − v∗∥∞ ≤
√

ρV(δ)/n with probability at least 1− δ.

This assumption quantifies the estimation accuracy inherent to statistical learning. The term
ρV(δ) captures the intrinsic complexity of learning the function class V as the confidence parameter
δ decreases. Under the realizability (Assumption 1), the quantity

√
ρV(δ)/n bounds the ℓ∞ error

between v∗ and its estimator v̂. Deriving sharp bounds on this error, and designing efficient
algorithms that achieve them, are fundamental objectives in statistical learning. We provide
examples of appropriate oracle constructions in Appendix A.

To ensure minimax optimality in terms of T , we set the length of the exploration phase in the
episode k as T e

k ≜
⌈
ℓ

2
3
k ρ

1
3
V (δ)

⌉
, balancing estimation precision with the episode duration ℓk. Early

episodes with k ≤ k∗ ≜
⌈
log2(ρV(δ))

⌉
use pure uniform pricing, in which case we cap T e

k by ℓk.

Algorithm 1 Distribution-Free Dynamic Pricing Algorithm with Offline Regression Oracle
Input: price bound B and statistical complexity ρV(δ)

1: for round t = 1, 2, · · · , 2k∗−1 do ▷ Warm up
2: Observe context xt, set a price pt ∼ Unif(0, B), and observe the feedback yt

3: end for
4: for episode k = k∗, k∗ + 1, · · · do
5: Set the length of the k-th episode as ℓk = 2k−1 and its exploration phase as T e

k =
⌈
ℓ

2
3
k ρ

1
3
V (δ)

⌉
6: for round t = 2k−1 + 1, · · · , 2k−1 + T e

k do ▷ Exploration Phase
7: Observe context xt, set a price pt ∼ Unif(0, B), and observe the feedback yt

8: end for
9: Call Offline Regression Oracle on {(xt, yt)}

2k−1+T e
k

t=2k−1+1 to get v̂k ▷ Estimation Phase

10: Set the length Tk = ℓk − T e
k and the discretization number Nk =

⌈
T

1
3

k / ln 1
3 (Tk/δ)

⌉
11: for t = 2k−1 + T e

k + 1, · · · , 2k do ▷ UCB Phase
12: Apply UCB-LDP (Algorithm 2) to incoming contexts xt with the estimator v̂k, the

discretization number Nk, the length Tk, the bound B and the confidence parameter δ

13: end for
14: end for
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Remark 1. In Algorithm 1, the valuation function v∗ is estimated using only the samples from
the current episode k. While it is possible to leverage all prior exploration data, doing so does not
improve the final regret bound, as each exploration phase provides a sample size of O

(
ℓ

2
3
k ρ

1
3
V (δ)

)
, so

the sample size of the current episode dominates. To simplify the algorithm’s presentation, we use
only the current episode’s data to estimate v̂k.

3.2 Discretization for Noise Distribution F

For notational simplicity and clarity, we omit the episode subscript k whenever it is unambiguous.
Specifically, quantities originating from Algorithm 1 retain the subscript k (e.g., v̂k) to indicate
episode affiliation. For auxiliary quantities introduced in Algorithm 2 and used in derivations or
proofs within a single episode, we drop the subscript for brevity; the relevant episode is clear from
context, so no ambiguity arises.

The regression estimate v̂k is used to guide the UCB phase of each episode, which balances
F -learning with revenue maximization (see Algorithm 2). We restrict F -learning to the interval
[−∥v̂k∥∞, B+∥v̂k∥∞] by discretizing it into Nk subintervals with midpoints {mj}j∈[Nk]. Consequently,
at round t, the candidate price set is {mj + v̂k(xt)}Nk

j=1. This discretization is crucial for the UCB
phase, as it induces a linear bandit structure. Specifically, at each round t we define the parameter
vector

ξt = (1− F (m1 + v̂k(xt)− v∗(xt)), · · · , 1− F (mNk
+ v̂k(xt)− v∗(xt))) .

We represent arm j by the vector aj ∈ RNk with pj := mj + v̂k(xt) at its j-th component
and zero at all other components. Posting price pj at time t (i.e., pulling arm j) then yields
expected revenue ξ⊤

t aj . This corresponds to a perturbed linear bandit with nominal parameter
ξ∗ = (1 − F (m1), 1 − F (m2), . . . , 1 − F (mNk

)). Although each ξt deviates from ξ∗, Lipschitz
continuity (Assumption 3) together with the oracle’s error bound (Assumption 4) guarantee that
these deviations remain small.

Remark 2 (Connection with the Literature). Prior work by Chen et al. (2024) and Fan et al.
(2024) estimate the full CDF F using a Nadaraya-Watson kernel estimator. In contrast, our
method targets only a finite set of F -values, sidestepping the complexity of nonparametrically
estimating F (or its density F ′) over the entire domain. Focusing on discrete points allows us to
obtain tighter concentration bounds at each location, which in turn yields stronger regret guarantees.
Meanwhile, Luo et al. (2024) also formulate the problem as a perturbed linear bandit but relies on the
elliptical potential lemma to derive its UCB, leading to suboptimal regret. Importantly, our algorithm
guarantees that episode k involves at most Nk actions per round. In this finite-arm setting, the
linear contextual-bandit literature (e.g., Auer 2002, Li et al. 2019) shows that one can bypass the
elliptical potential lemma. These works instead employ a layered data partitioning scheme, which
yields stronger regret guarantees under linear bandit models.

Remark 3 (Challenges in Applying Layered Data Partitioning). It is challenging to attain minimax-
optimality in our dynamic-pricing framework due to the following reasons.
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1. Parameter Normalization. The standard LDP procedure rescales the parameter ξ∗ by its
ℓ2 norm. However, since ∥ξ∗∥2 = O(

√
Nk), this normalization would introduce an extra

√
Nk

factor into the regret bound. Because Nk typically grows polynomially in T , such a term leads
to suboptimal regret scaling. We address this by exploiting the fact that each action vector
has only one non-zero entry and satisfies

∣∣(mj + v̂k(xt))(1 − F (mj))
∣∣ ≤ B. Consequently,

rather than normalizing ξ∗ in ℓ2, we derive UCBs using the ℓ∞ estimation error. By enforcing
statistical independence through a layered data partitioning scheme (Auer 2002, Chu et al.
2011), we can apply a tighter Azuma’s inequality to obtain the required concentration bounds.

2. Parameter Perturbation. A second complication arises from perturbations of the nominal
parameter ξ∗, which introduce misspecification into the linear-bandit model. Concretely, if at
time t we observe covariate xt and post price pt = mj + v̂k(xt), then

E[yt | xt, pt] = 1− F (mj + v̂k(xt)− v∗(xt)).

This is a perturbation of the ground truth parameter ξ∗
j = 1− F (mj). By Lipschitz continuity

(Assumption 3) and the oracle’s error guarantee (Assumption 4), the perturbation scales with
the accuracy of the estimator. When v̂k is exact, the problem reduces to a standard linear
bandit, and classical LDP methods (Auer 2002, Li et al. 2019) apply directly. Larger estimation
errors, however, amplify misspecification and can degrade regret (see Theorem 1), motivating
our refined LDP scheme that explicitly handles model misspecification and error propagation.

3.3 Layered Data Partitioning

We now present the UCB-LDP algorithm (Algorithm 2), which directly addresses the challenges
identified in Remark 3. Fix an episode k, LDP organizes past data into layers s ∈ [Sk], where
Sk =

⌈1
2 log2 (Tk)

⌉
and Tk = ℓk − T e

k = 2k−1 −
⌈
ℓ

2
3
k ρ

1
3
V (δ)

⌉
is the length of the UCB phase. At each

time t, each layer s maintains its own dataset Ψs
t , containing rounds prior to time t that made their

pricing decisions at layer s. The central idea of LDP is the partitioning of historical data [t− 1] into
disjoint layers {Ψs

t : s ∈ [Sk]}. Since each data point belongs to exactly one layer, the confidence
intervals for layer s depend only on Ψs

t , eliminating cross-layer dependencies. Moreover, each layer
corresponds to a distinct level of statistical precision—lower layers admit wider confidence bounds.
This enforced independence justifies the use of Azuma’s inequality for tight concentration bounds.

We now elaborate on the details. Fix a time t, the data of each round belongs to exactly
one stopping layer st, determined alongside the pricing decision pt. The algorithm starts at layer
s = 1 and examines successive layers until a price is selected; see Figure 1 (bottom panel) for an
illustration of the algorithm’s flow at time t with three layers. For each price pj = mj + v̂k(xt), let
Ψs

t (j) ≜ {τ ∈ Ψs
t | mj + v̂k(xτ ) = pτ} ⊂ Ψs

t be the set of previous rounds in layer s that used pj . At
layer s, we estimate ξ∗

j via the sample mean over samples from layer s only:

wj
t,s = 1

|Ψs
t (j)|

∑
τ∈Ψs

t (j)
yτ .
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Algorithm 2 Upper Confidence Bound with Layered Data Partitioning (UCB-LDP)
Input: the estimator v̂, the discretization number N , the length T , the price bound B and the

confidence parameter δ

1: Divide the F -learning interval [−∥v̂∥∞, B + ∥v̂∥∞] into N equal-length intervals with their
midpoints denoted as {mj}j∈[N ]

2: Set max number of layers as S =
⌈

1
2 log2 (T )

⌉
, and initialize Ψs

1 = ∅ for s ∈ [S]
3: for t = 1, 2, · · · , T do
4: Observe the context xt

5: Initialize current layer index s = 1 and action set At,1 = {j ∈ [N ] | mj + v̂(xt) ∈ (0, B)}
6: while index jt is not found do
7: For all j ∈ [N ], compute confidence radius rj

t,s defined in (1) and UCBj
t,s defined in (2)

8: if s = S then ▷ Exploitation
9: Choose the index jt = argmaxj∈At,s

UCBj
t,s

10: else
11: if (mj + v̂(xt))rj

t,s > B2−s for some j ∈ At,s then ▷ Fail statistical precision check
12: Choose an arbitrary jt such that (mj + v̂(xt))rj

t,s > B2−s ▷ Exploration
13: else if (mj + v̂(xt))rj

t,s ≤ B2−s for all j ∈ At,s then ▷ Pass statistical precision
check

14: Let At,s+1 = {j ∈ At,s | UCBj
t,s ≥ max

j′∈At,s

UCBj′

t,s −B21−s} ▷ Price elimination
15: Advance to the next layer s← s + 1
16: end if
17: end if
18: end while
19: Set the stopping layer st = s and price pt = mjt + v̂(xt)
20: Update Ψst

t+1 = Ψst
t ∪ {t} and keep Ψσ

t+1 = Ψσ
t for σ ̸= st

21: end for

The corresponding confidence radius is given by

rj
t,s ≜ min

{√
2 ln(2SkNkTk/δ)

|Ψs
t (j)| , 1

}
. (1)

We consequently compute the UCB for the revenue of price pj at round t and layer s as

UCBj
t,s ≜ (mj + v̂(xt))(wj

t,s + rj
t,s). (2)

If Ψs
t (j) is empty, indicating no previous round has selected price pj , we set its UCB to infinity and

define wj
t,s = 0 by convention.

While traversing the layers, we maintain a candidate-action set At,s initialized by At,1 = {j ∈
[Nk] | mj + v̂k(xt) ∈ (0, B)} that includes all discretized prices in (0, B). As we move through
layers, the set of candidate actions At,s may shrink: At,1 ⊇ · · · ⊇ At,Sk

. The algorithm’s progression
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through layers is guided by the level of revenue uncertainty, determined by (mj + v̂k(xt))rj
t,s, for

currently active actions in At,s:

(a) Exploitation: The layer traversal terminates unconditionally at the final layer Sk, in which
case we must have (mj + v̂k(xt))rj

t,s ≤ 2B/
√

Tk for all j ∈ At,Sk
. This implies that the revenue

uncertainty is small for all remaining prices. Consequently, the algorithm selects the price pj

with the highest UCB and set the stopping layer st = Sk.

(b) Price elimination: For any layer s < Sk, if all prices indexed inAt,s satisfy (mj+v̂k(xt))rj
t,s ≤

B · 2−s, we eliminate those whose UCB falls short of the maximum by at least B21−s, and
proceed to the next layer with the remaining prices.

(c) Exploration: For any layer s < Sk, if there exists j ∈ At,s such that (mj +v̂k(xt))rj
t,s > B ·2−s,

the revenue uncertainty is substantial. In this case, the algorithm selects any such price pj for
further exploration, halts the layer traversal, and sets the stopping layer st = s.

Because the stopping layer st at round t depends only on {Ψs
t}s≤st , the statistical correlations

across layers are decoupled. This property is formally analyzed by Li et al. (2019), Auer (2002) for
linear bandits. The following lemma provides a key result on the UCB property of the algorithm.

Lemma 1. Fix an episode k. For any round t in the episode k, and any layer s at round t, with
probability at least 1− δ/(SkNkTk), each j ∈ [Nk] satisfies

|ξ∗
j − wj

t,s| ≤ rj
t,s + Lηj

t,s, where ηj
t,s = 1

|Ψs
t (j)|

∑
τ∈Ψs

t (j)
|v̂k(xτ )− v∗(xτ )|.

Based on Lemma 1, we construct a high-probability event

Γk =
{
|ξ∗

j − wj
t,s| ≤ rj

t,s + Lηj
t,s, ∀t,∀s, ∀j

}
. (3)

We clearly see that ηj
t,s ≤ ∥v̂k − v∗∥∞ for any t, s, j. Combining with a union bound implies that

P(Γk) ≤ δ

SkNkTk
×Nk × Tk × Sk = δ.

The UCB property offers an intuitive decomposition: the first term captures the variance from
random feedback yt given xt and pt, and the second term represents the bias from estimating v̂k.
As episodes progress, more data accumulate, reducing both variance and bias, so that wj

t,s converges
to ξ∗

j . Crucially, our construction implies that the resulting bounds do not explicitly depend on
the (unknown) Lipschitz constant for F . This follows from the fact that comparing UCB values
relative to each other cancels out the bias term, which is common across all indices. Hence, our
approach sidesteps the need for explicit knowledge of Lipschitz parameters, further simplifying
implementation.

4 Regret Analysis

In this section, we analyze the regret of our proposed Algorithm 1. We first analyze a single episode
of Algorithm 1 and then extend the analysis to the entire horizon.
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4.1 Upper Bounds

The estimator v̂k obtained during the estimation phase plays a crucial role in guiding the UCB
procedure. A lower estimation error in v̂k is expected to yield lower regret during the UCB phase.
However, achieving such accuracy requires a longer exploration phase, which itself incurs regret.
Therefore, in addition to the “inner” balance between revenue maximization and F -learning within
the UCB phase, there is also an “outer” balance between the regret incurred during the exploration
phase and that incurred during the UCB phase, both relating to learning v∗.

For each round t in a fixed episode k, we denote the best price from the discretized set as

p̃∗
t ≜ mj∗

t
+ v̂k(xt), where j∗

t = argmax
j∈[Nk]

Revt (mj + v̂k(xt)) .

In our regret analysis, we decompose the per-round regret into two parts: the learning and the
discretization regret. In particular, the regret at round t can be written as

Revt(p∗
t )− Revt(pt) = Revt(p̃∗

t )− Revt(pt)︸ ︷︷ ︸
learning regret R1

t

+ Revt(p∗
t )− Revt(p̃∗

t )︸ ︷︷ ︸
discretization regret R2

t

.

The term R1
t is called the learning regret; it measures the loss incurred by uncertainty about F and

by misspecification from using v̂k in the discretized price set. The term R2
t is called the discretization

regret; it quantifies the loss due to discretizing the continuous price decision.

4.1.1 Learning Regret

We first analyze the total learning regret, denoted as ∑T
t=1R1

t , from the inner UCB algorithm while
keeping the exploration and estimation phases fixed.

Define the best among the remaining prices in At,s at layer s as

p̃∗
t,s ≜ mj∗

t,s
+ v̂k(xt), where j∗

t,s = argmax
j∈At,s

Revt(mj + v̂k(xt)).

If the estimation of v̂k is exact, our algorithm ensures j∗
t,s = j∗

t under the high probability event Γk

in (3), and hence classical results in Auer (2002) can be applied, because the optimal action will not
be eliminated when Γk holds.

However, the estimation error in v̂k may result in the undesired elimination of the best discretized
price for each layer s, leading to a revenue gap that propagates through the layers. Specifically, we
want to bound the revenue difference between p̃∗

t,s and p̃∗
t . Fortunately, this gap can be controlled

with careful analysis. When advancing to a new layer, the revenue difference between the prices
indexed by j∗

t,s and j∗
t,s+1 is bounded by a constant multiple of the misspecification error, which

can be upper bounded by BL∥v̂k − v∗∥∞. For any layer s ∈ [st − 1], such error propagation occurs
s− 1 times, and we can prove that the revenue gap is upper bounded by 4BL(s− 1)∥v̂k − v∗∥∞, as
stated in Lemma 2.

Lemma 2. For each round t in episode k and each layer s ∈ [st], conditional on event Γk, we have

Revt
(
p̃∗

t

)
− Revt

(
p̃∗

t,s

)
≤ 4BL(s− 1)∥v̂k − v∗∥∞.
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Now, we can effectively control the regret within layer s using j∗
t,s as a benchmark. The statistical

precision check (Step 13 of Algorithm 2) ensures that the confidence radius decreases exponentially
with the layer index s, for all prices with indices in At,s. The additional bias term (4BL∥v̂k − v∗∥∞)
in Lemma 3 arises from the parameter perturbation.

Lemma 3. For each round t in episode k and each layer 2 ≤ s ≤ st, conditional on event Γk, we
have

Revt
(
p̃∗

t,s

)
− Revt

(
pt
)
≤ 8B · 2−s + 4BL∥v̂k − v∗∥∞.

Combining Lemma 2 and Lemma 3, we immediately obtain Lemma 4, which is an upper bound
on the learning regrets for prices in layer s. This bound decomposes into variance 8B · 2−s and bias
4BLs∥v̂k − v∗∥∞. As we increase the value of s, the variance decreases exponentially, while the
bias only increases linearly. Therefore, having a larger value of s is mostly2 advantageous for online
learning.

Lemma 4. For each round t in episode k and each layer 2 ≤ s ≤ st, conditional on event Γk, we
have

Revt
(
p̃∗

t

)
− Revt

(
pt
)
≤ 8B · 2−s + 4BLs∥v̂k − v∗∥∞.

To obtain an upper bound on the cumulative regret, we decompose the time horizon into episodes
and, within each episode, into layers. For any round t and any layer s, Lemma 4 bounds the regret
incurred in that round by a function of the layer index s. To bound the cumulative regret over all
rounds in Ψs

t , we analyze the cardinality of Ψs
t . Specifically, we use the inequality |Ψs

t | ≤ |Ψs
Tk+1|

and bound the latter using Lemma 11. Therefore, the overall cumulative learning regret of the inner
UCB algorithm is bounded by the sum of the regret contributions across all layers and all episodes.
Formally, we provide a bound on the learning regret of the inner UCB algorithm.

Lemma 5. Under Assumptions 1, 2 and 3, the learning regret
∑T

t=1R1
t is bounded by

⌈log2 T ⌉∑
k=1

[
16B

√
2NkTk ln(2SkTkNk/δ) ln Tk + 9BL∥v̂k − v∗∥∞Tk ln Tk

+ 4BT
1
2

k + 64BNk ln(2SkTkNk/δ)
]

with probability at least 1− ⌈log2 T ⌉δ.

The regret bound in Lemma 5 shows that higher estimation accuracy for both F and v∗ leads
to lower regret in the UCB phase. The first term in the bound captures the effect of uncertainty
in estimating the discretized F -values. The second term in Lemma 5 reflects the estimation error
of v̂k, i.e., the misspecification error in the linear bandit model. The last two terms are of order
O(
√

T ) and are dominated by the first two terms.

Remark 4 (Comparison with Luo et al. 2022). Luo et al. (2022) introduced a perturbed linear bandit
formulation for dynamic pricing and established an expected learning regret bound of O(Nk

√
Tk ln Tk).

In comparison, we improve this bound to O(
√

NkTk ln Tk ln Nk) by leveraging the ℓ∞-norm to bound
2Although larger s tightens variance, the traversal may stop early when precision checks fail, triggering exploration.
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the revenue. Specifically, the revenue at round t takes the form ξ⊤
t aj, and we may use either the ℓ2

or the ℓ∞ norm to bound it:

ξ⊤
t aj ≤ ∥ξt∥2 ∥aj∥2 ≤ B ∥ξt∥2 or ξ⊤

t aj ≤ ∥ξt∥∞ ∥aj∥1 ≤ B ∥ξt∥∞ .

The ℓ∞-based bound takes advantage of the fact that each action vector aj has exactly one non-zero
component, thus avoiding an extra

√
Nk factor incurred when using the ℓ2 norm, as in Luo et al.

(2022). However, this improvement is nontrivial: switching from the ℓ2 to the ℓ∞ norm precludes
the use of the elliptical potential lemma, which is commonly used in linear bandit analysis. Instead,
we develop concentration bounds based on Azuma’s inequality. A key insight that underlies our
method is that the number of candidate prices becomes finite after discretization. This allows us to
construct an ℓ∞-based UCB for each price individually. If the price set were infinite and the revenue
function lacked additional structure, applying an ℓ∞-based UCB would not be feasible.

4.1.2 Discretization Regret

We now analyze the discretization regret, denoted by ∑T
t=1R2

t , which arises due to the discretization
of the continuous price space.

Intuitively, increasing the number of price points reduces the discretization regret. A finer price
grid allows the best discrete price to more closely approximate the optimal price in the continuous
space. This intuition is formalized in Lemma 6, which shows that the discretization regret is inversely
proportional to the number of candidate prices Nk and proportional to the number of rounds Tk.

Lemma 6. Under Assumptions 1 and 2, the discretization regret
∑T

t=1R2
t is upper bounded by

T∑
t=1
R2

t ≤
⌈log2 T ⌉∑

k=1

3BTk

Nk
.

4.1.3 Regret Upper Bound

We are now ready to present the overall regret upper bound of Algorithm 1. To minimize the total
regret, we must optimally balance the learning regret and the discretization regret. Increasing the
discretization parameter Nk reduces the discretization regret by yielding a finer approximation of
the continuous price space. However, as indicated by Lemma 5, it also increases the learning regret
due to the expanded set of candidate prices and the associated complexity of the search process. To
achieve the optimal trade-off, we set Nk = Õ(T 1/3

k ), which leads to an overall regret upper bound of
Õ(T 2/3).

Theorem 1. Suppose 0 < δ < 1/(2⌈log2 T ⌉). Under Assumptions 1, 2 and 3, the regret of
Algorithm 1 satisfies

Reg(T ) = Õ
(
ρ

1
3
V (δ)T

2
3
)

with probability at least 1− 2δ⌈log2 T ⌉.
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We remark that our regret bound depends on V only through the estimation error parameter
ρV(δ) from the offline regression oracle tailored to the finite function space; see Assumption 4. In
Section 5, we provide extensions to incorporate general function spaces and discuss corresponding
regret upper bound, where we also compare our results with existing works under the linear valuation
model.

Our analysis of the overall regret, derived from Lemma 5 and Theorem 1, identifies four distinct
sources of error: (i) the regret associated with exploration for estimating v∗, (ii) the regret incurred
in learning the distribution F , (iii) the estimation error of the valuation function v̂, and (iv) the
discretization error. As summarized in Table 2, these components scale differently: T e

k for collecting
samples to estimate v∗,

√
NkTk for learning F , ∥v̂k − v∗∥∞Tk for estimation error, and Tk/Nk

for baseline discretization error. Crucially, Theorem 2 establishes the minimax optimality of our
approach.

Table 2: Regret Contributions and Orders for Episode k.

Term Regret Order Note

Regret regarding sample collection O(T e
k ) Linear in the exploration length

Regret of learning F Õ(
√

NkTk) Lemma 5
Estimation error of v̂k Õ(∥v̂k − v∗∥∞Tk) Lemma 5
Discretization error O(Tk/Nk) Lemma 6

4.2 Lower Bounds

Xu and Wang (2022) establish a regret lower bound of Ω(T 2
3 ) for the non-contextual pricing problem

with a Lipschitz continuous noise distribution F . Combined with the Õ(T 2
3 ) regret upper bound in

Theorem 1, the minimax optimality of Algorithm 1 up to logarithmic terms is established.
We extend the lower bound for the non-contextual pricing problem under an additional assump-

tion that the noise distribution F is m-th differentiable. Several important special cases are worth
highlighting. When m = 1, Lipschitz continuity holds for F , and we recover the Ω(T 2

3 ) lower bound
in Xu and Wang (2022). The case m = 2 implies Lipschitz continuity and second-order smoothness
in F , which aligns with the Ω(T 3

5 ) regret lower bound in Luo et al. (2022). Moreover, since our
constructed hard instances satisfy the requirements in Wang et al. (2021), our results also imply an
Ω(T

m+1
2m+1 ) lower bound for a general m-th differentiable demand function.

Theorem 2. Consider a non-contextual pricing problem where the market noise is independently
and identically generated from an unknown distribution. Let the distribution satisfy the following
conditions:

1. F (·) is nondecreasing, right-continuous, takes values in [0, 1], and m times differentiable on a
bounded interval [c1, c2].

2. The revenue function Rev(x) = x(1−F (x)) has a unique maximizer within the interval [c1, c2].
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Then, no policy can achieve an O
(
T

m+1
2m+1 −ζ) regret bound for any ζ > 0, where T represents the

number of pricing rounds.

To establish our lower bounds, we follow the standard roadmap for lower-bound proofs in
continuum-armed bandits (Kleinberg 2004, Wang et al. 2021, Luo et al. 2022, Xu and Wang 2022).
Notably, Wang et al. (2021) construct an m-times differentiable demand function to derive a lower
bound. However, their constructed demand function is not monotone so their construction cannot
directly convert to a valid cumulative distribution function. To address this limitation, we explicitly
construct a valid distribution that satisfies the conditions stated in Theorem 2.

4.2.1 Sketch of Construction

Our construction builds on an infinitely differentiable base-case bump function B(x) supported
on [0, 1]. This base-case bump function is then rescaled to an arbitrary interval [a, b] ⊂ [0, 1] as
B[a,b](x) = B

(
x−a
b−a

)
.

We now describe the remaining steps of the construction. We first construct a sequence of
nested intervals [ak, bk] with widths wk = 3−k! for k ≥ 0, such that the intersection of these intervals
converges to a single point x∗. To start, we set [a0, b0] = [0, 1] with width w0 = 1. For each k ≥ 1, let
wk = 3−k!. We divide the middle third

[
ak−1 + wk−1/3, bk−1−wk−1/3

]
into Qk = wk−1/(3wk) equal

subintervals of length wk. For each k, we then have Qk possible choices of [ak, bk]. By construction
the intersection ⋂∞

k=0[ak, bk] is a single point. For each choice of the sequence
{
[ak, bk]

}∞
k=0, we can

define
f(x) = f(x;a, b, cf , m) = cf

∞∑
k=0

wm
k B[ak,bk](x),

where cf > 0 is chosen small enough so that ∥f ′∥∞ < 1. Each term wm
k B[ak,bk] is C∞ and vanishes

(with all derivatives up to order m) at the endpoints of [ak, bk], and the rapid decay wk → 0
ensures the series converges in Cm. We refer to f(x) as the bump tower. To normalize the range
of f(x) to [0, 1], we define the rescaled function g(x) = f(x)

f(x)+1 . Using this, we define the revenue
function on the interval [b, 1] by Rev(x) = b + (1− b)g

(
x−b
1−b

)
, and extend it linearly to the full pricing

domain [0, 1 + b]. The parameter b ∈ (0, 1) is selected to ensure that the corresponding cumulative
distribution function F (x) = 1 − Rev(x)/x is nondecreasing; see (10) for its explicit form. We
visualize the key functions in Figure 2 for the choice (m, cf ) = (2, 0.05).

Finally, to establish the minimax lower bound, we show that any policy will frequently fail to
identify the precise location of the peak of certain revenue functions. This results in an unavoidable
accumulation of regret due to the policy’s inability to fully exploit the potential revenue, which
is deliberately induced by the careful structure of the constructed distribution functions. The full
proof of Theorem 2 is provided in Appendix B.3.

Remark 5. The Lipschitz continuity assumption is crucial as it enables us to control the misspeci-
fication error in the regret analysis. Without the Lipschitz condition, Xu and Wang (2022) proposed
an algorithm with a regret bound of Õ(T 3

4 ). In their work, they discretize the linear parameter
space and distribution space to form the policy space, reducing the original problem into an EXP4
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Figure 2: Construction of the Revenue Function.

agent. Although they discretize the distribution in a similar way to us, they still consider finding a
good distribution within the given set, resulting in a policy space of size O(2Nk). In contrast, for
setting a suitable price, we only need to evaluate at Nk points. This observation effectively reduces
the search space from O(2Nk) to O(Nk), leading to polynomial and exponential decrease in regret
and time complexity, respectively. However, it remains unclear whether their bound is tight without
the Lipschitz continuity assumption. Establishing the tightness of the regret bound in this setting
is an open question. Moreover, the dependence of the lower bound on the order of the statistical
complexity ρV(δ) remains unclear, presenting another promising direction for future research.

Remark 6. Fan et al. (2024) propose a dynamic pricing policy for m-th differentiable F . While
their work is insightful, their regret upper bound scales as Õ

(
T

2m+1
4m−1

)
, which, as shown in Theorem 2,

leave room for improvement. Similarly, Chen et al. (2024) study m-th differentiable F under a
general valuation model and achieve regret upper bounds of Õ

(
T

2m+1
4m−1 ∨ d0+4

d0+8
)
. Notably, a gap persists

between these upper bounds and our derived lower bound. This gap arises for two possible reasons.
First, their policy might not achieve optimality, as evidenced by the Õ(T 3

4 ) regret upper bounds
they incur when F is only Lipschitz, whereas a Õ(T 2

3 ) regret upper bound is attainable in such
cases. Second, the inherent uncertainty in valuation models could increase the problem’s complexity,
potentially leading to a larger lower bound than what we derived. As a result, designing a minimax
optimal policy for smoother distributions remains an open problem.

Remark 7. To intuitively understand the coefficients of parameters in the regret lower bound,
consider a simplified scenario with a d0-dimensional linear valuation model. Suppose we design
d0 distinct challenging sub-problems, each corresponding to a unique context. Under a uniform
context distribution, each sub-problem appears approximately T/d0 times over the horizon T . For
each sub-problem, the regret lower bound scales as Ω

(
d

− 2
3

0 T
2
3
)
, which is the typical regret rate of
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non-contextual dynamic pricing problems. Aggregating the regret across all d0 sub-problems yields
a total lower bound of Ω

(
d

1
3
0 T

2
3
)
. This illustrates how the interplay between dimension and time

horizon arises: the learner must resolve uncertainty across contexts while adapting to demand shifts,
further complicating the task of exploration.

5 Discussions

In this section, we refine our results under additional assumptions frequently considered in the
literature and compare them with existing approaches.

5.1 Linear Valuation Models

Given the general regret bound established in Theorem 1, the function class V can be selected
flexibly to encompass a wide range of parametric models, including linear functions, reproducing
kernel Hilbert spaces, and neural networks.

Achieving practicality and optimal regret in contextual dynamic pricing requires an offline
regression oracle that is both computationally efficient and statistically optimal for the chosen
function class V . To showcase the flexibility of our framework, we focus on linear function classes (Fan
et al. 2024, Luo et al. 2024, Xu and Wang 2022, Golrezaei et al. 2019) and derive the corresponding
regret guarantees.

In the case of linear valuation models, consider the function class V = {θ⊤x : θ ∈ Rd0 , ∥θ∥2 ≤ 1}
with ∥x∥2 ≤ 1, where d0 denotes the dimension of the covariates. Under standard regularity
conditions (e.g., the positive definiteness of the covariate covariance matrix), Assumption 4 holds
with statistical complexity ρV(δ) = O(d0 ln(d0/δ)). This bound is tight, as confirmed by minimax
theory (Mourtada 2022).

Setting ρV(δ) = O(d0 ln(d0/δ)) and δ = 1/T in Theorem 1, we immediately obtain the following
regret upper bound for the linear valuation model.

Corollary 1. Under Assumptions 1, 2 and 3, the expected regret of Algorithm 1 under d0-dimensional
linear valuation models satisfies

E[Reg(T )] = Õ
(
d

1
3
0 T

2
3
)
,

where the expectation is taken with respect to all the randomness in the environment.

Corollary 1 yields a substantial improvement over the previously established bound of Õ(d0T
3
4 )

reported in Luo et al. (2024) and Xu and Wang (2022). Furthermore, when paired with the lower
bound in Theorem 2, our result is minimax optimal, thereby closing the gap in the existing literature.

Remark 8 (High-Dimensional Covariates with Sparsity). Our approach extends to high-dimensional
settings with sparse parameter θ∗, containing only s0 non-zero components. Oh et al. (2021)
employ Lasso regression to obtain an estimator with ρV(δ) = O(s0 ln(d0/δ)) under mild assumptions.
Javanmard and Nazerzadeh (2019) achieve similar estimation error using regularized maximum
likelihood estimation. Ban and Keskin (2021) also explore sparse linear demand models in dynamic
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pricing. By exploiting sparsity, our method improves the regret upper bound from Õ(d
1
3
0 T

2
3 ) to

Õ(s
1
3
0 T

2
3 ), which appears to be the first such result for semi-parametric contextual pricing with

unknown F that is only Lipschitz. Using analogous arguments, our results can be further extended
to function classes in reproducing kernel Hilbert spaces, as discussed in Steinwart et al. (2009),
Mendelson and Neeman (2010).

5.2 Additional Smoothness Assumption on the Revenue Functions

Intuitively, imposing additional smoothness on the expected revenue function reduces the intrinsic
complexity of dynamic pricing problems. In particular, second-order smoothness near the optimal
price is a common assumption in the literature (Luo et al. 2024, Chen and Gallego 2021, Luo
et al. 2022). When the revenue function is twice differentiable and the optimal price lies in the
interior of the pricing range [0, B], a standard Taylor expansion around the maximizer motivates
this assumption. Notice that such a second-order condition implicitly requires that the optimal
price be unique for every covariate. We write p∗(x) for the optimal price at covariate x.

Assumption 5 (Second-Order Smoothness). Define the general expected revenue function associated
with the noise distribution F as Revq(p) = p (1− F (p− q)) . There exists a positive constant C such
that for any x ∈ X and q = v∗(x), Revq (p∗(x))− Revq(p) ≤ C (p∗(x)− p)2 .

As shown in Theorem 2 and by Luo et al. (2022), the dynamic pricing problems satisfying both
Assumption 3 and Assumption 5 have a regret lower bound of at least Ω

(
T

3
5
)
, which demonstrates

that the second-order smoothness assumption is non-trivial and effectively reduces the difficulty of
dynamic pricing problems.

Remark 9. Our method achieves a regret bound of Õ(d
1
3
0 T

2
3 ) without relying on the second-

order smoothness assumption and linear valuation models. In contrast, Luo et al. (2022) leverage
Assumption 5 of the revenue function to attain a regret bound of Õ(d0T

2
3 ). Fan et al. (2024) study

a related dynamic pricing problem under the assumption that the noise distribution F has bounded
second derivatives, which implies Assumption 5, and derive a regret bound of Õ

(
T

5
7
)
. The higher

regret in Fan et al. (2024) stems from the need to estimate the derivative F ′ in order to compute the
price at each round, introducing additional estimation error. In contrast, our approach avoids this
by estimating F over a discrete grid. Recently, Wang and Chen (2025) provide a tight bound Õ(T 3

5 )
under additional assumptions (twice differentiability and strong unimodality), which are stronger
than ours in Assumption 3 and 5.

5.3 Estimation Errors of Valuation Models

To further reduce regret, we consider stronger smoothness assumptions on the distribution function
F . A commonly adopted condition is the second-order smoothness assumption (see Assumption 5).
Under this assumption, the discretization error improves from the baseline rate of O(Tk/Nk) (see
Table 2) toO(Tk/N2

k ), because the difference between the optimal price p∗
t and the optimal discretized
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price p̃∗
t is bounded by O(1/Nk). Since our theoretical analysis relies solely on the estimation error

guarantee of the regression oracle (Assumption 4), any refinement in the error ∥v̂k − v∗∥∞, or in
the regret incurred during the sample collection phase, directly yields a tighter upper bound on
the total regret. This oracle-based framework thus enables broad adaptability to various function
classes, while preserving minimax optimality as established in Theorem 2.

5.3.1 General Regression Oracle

We first extend Assumption 4 by allowing the error to scale differently with the number of samples
n.

Assumption 6 (General Offline Regression Oracle). Under Assumption 1, let {(xt, yt)}t∈[n] be
i.i.d. samples from a fixed but unknown distribution, satisfying E[Byt | xt] = v∗(xt). Given any
confidence level δ > 0, a general offline regression oracle returns a predictor v̂ ∈ V such that

∥v̂ − v∗∥∞ ≤
√

ρV(δ)/nα with probability at least 1− δ.

In Chen et al. (2024), the authors construct Distributional Nearest Neighbor (DNN) and two-scale
Distributed Nearest Neighbor (TDNN) estimators that satisfy Assumption 6 with rates α = 4

d0+4
and α = 8

d0+8 in Assumption 6, respectively.
Assuming the availability of such an offline regression oracle, we extend our results under a

general estimation assumption via a simple corollary. By setting T e
k = ρ

1
2+α

V (δ)ℓ
2

2+α

k , we immediately
obtain a regret bound by Theorem 1 and Lemma 5.

Corollary 2. Suppose 0 < δ < 1/(2⌈log2(T )⌉). Under Assumptions 1, 2, 3 and 6, the regret of
Algorithm 1 with T e

k = ρ
1

2+α

V (δ)ℓ
2

2+α

k satisfies

Reg(T ) = Õ
(
(ρ

1
3
V (δ)T

2
3 ) ∨ (ρ

1
2+α

V (δ)T
2

2+α )
)

with probability at least 1− 2⌈log2(T )⌉δ.

Remark 10. Whereas Chen et al. (2024) achieve only linear O(T ) regret under the assump-
tion of Lipschitz continuity for F , our method attains sublinear regret rates of Õ

(
T

2
3 ∨ d0+4

d0+6
)

and

Õ
(
T

2
3 ∨ d0+8

d0+12
)

when we plug in their DNN and TDNN estimators, respectively.

5.3.2 Online Classification Oracle

An alternative approach to estimating the unknown value function v∗ is to use a powerful online
classification oracle, leveraging the data (xt, pt, yt) collected during the (k − 1)-th episode by an
adaptive algorithm. This yields an estimate v̂k, which can then be used for pricing decisions in the
k-th episode. To motivate this approach, observe that the outcome yt is binary and governed by the
relation P(yt = 1) = 1− F (pt − v∗(xt)) so that

P(yt = 1)


> 1

2 , if F −1
(

1
2

)
+ v∗(xt)− pt > 0,

= 1
2 , if F −1

(
1
2

)
+ v∗(xt)− pt = 0,

< 1
2 , if F −1

(
1
2

)
+ v∗(xt)− pt < 0.
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This formulation naturally suggests a binary classification task, where the goal is to infer the
decision boundary defined implicitly by the value function v∗. By invoking a classification oracle,
we can obtain a predictor v̂ ∈ V that approximates the true value function v∗, enabling informed
pricing decisions in subsequent episodes. We summarize our algorithm using a classification oracle
in Algorithm 3.

Assumption 7 (Online Classification Oracle). Given data {(xt, pt, yt)}t∈[n], generated by a dynamic
pricing policy, satisfying P(yt = 1) = 1− F (pt − v∗(xt)), and any confidence level δ > 0, an online
classification oracle returns a predictor v̂ ∈ V such that

∥v̂ − v∗∥∞ ≤
√

ρV(δ)/nα with probability at least 1− δ.

Algorithm 3 Distribution-Free Dynamic Pricing Algorithm with Online Classification Oracle
Input: price upper bound B, statistical complexity ρV(δ), confidence parameter δ

1: for episode k = 1, 2, · · · do
2: Set the length of the k-th UCB phase as Tk = 2k−1

3: Call Online Classification Oracle on data {(xt, pt, yt)} from the previous episode to get
v̂k. For k = 1, we set v̂k ≡ 0. ▷ Estimation phase

4: Set the discretization number Nk = ⌈T 1/5
k ⌉

5: for t = 2k−1 + 1, · · · , 2k do ▷ UCB phase
6: Apply UCB-LDP (Algorithm 2) on the coming sequential contexts xt with the estimator

v̂k, the discretization number Nk, the length Tk, the bound B and the confidence parameter δ

7: end for
8: end for

Under the Lipschitz condition alone, the regret upper bound for the contextual dynamic
pricing problem is Õ

(
ρ

1
3
V (δ)T 2

3
)
. However, by incorporating the additional second-order smoothness

assumption (see Assumption 5), we can further improve performance, achieving tighter bounds than
those established in prior work such as Luo et al. (2024).

Corollary 3. Suppose 0 < δ < 1/(2⌈log2 T ⌉). Under Assumptions 1, 2, 5 and 7, the regret of
Algorithm 3 satisfies

Reg(T ) = Õ
(
T

3
5 ∨ ρ

1
2
V (δ)T 1− α

2
)

with probability at least 1− 2⌈log2(T )⌉δ.

Remark 11. Wang and Chen (2025) formulate the estimation of their linear valuation model v∗

as a classification problem and propose an online method inspired by active learning techniques
(Chen et al. 2023). Assuming that the noise distribution F is twice differentiable, they construct
an estimator v̂ satisfying ∥v∗ − v̂∥2 = O(ς), while achieving cumulative regret Õ(d3

0/ς2), where ς

controls the estimation error. In contrast, if a powerful online classification oracle is available, we
relax the smoothness requirements on F allowing it to be merely Lipschitz continuous.
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Remark 12. We acknowledge that Assumption 7 is rather strong, requiring a classification oracle
that can guarantee a specific estimation error with input of datasets collected by adaptive algorithms.
In the work of Luo et al. (2024), the authors take a similar approach: a linear classification method
is applied to the adaptively collected data from the previous episode to estimate the parameters of
a linear value function. They numerically show that Assumption 7 holds with α ≥ 1 under linear
valuation models.3 However, it remains an open question whether a suitable classification oracle can
be constructed to satisfy Assumption 7 with theoretical guarantees. As noted by Luo et al. (2022),
“α is indeterministic and no rigorous justification has been made.” While both Luo et al. (2024) and
our work assume access to a classification oracle (they use classical logistic regression), our approach
improves upon the regret guarantees in Luo et al. (2024) and matches the minimax lower bound
Ω
(
T

3
5
)

established in Luo et al. (2022), when the function class V is linear.

5.4 Explicit Knowledge of the Distribution or Valuation Function

5.4.1 Knowledge of F

When the distribution F is fully known to the seller, Javanmard and Nazerzadeh (2019) propose an
algorithm that achieves a regret of O(d0 ln T ) under smoothness assumptions on F . They further
show that if the covariate covariance matrix is not positive definite, an alternative approach can
still guarantee a regret of O(

√
T ln d0). These results highlight the significant advantage of having

knowledge of F , which enables sharper regret guarantees.
Building upon this framework, we extend their methodology by incorporating an offline regression

oracle to develop a distribution-dependent Algorithm 4. It is worth noting that we need to slightly
refine Assumption 4 for the known-F setting. Assumption 4 requires i.i.d. data with the moment
condition E[Byt | xt] = v∗(xt). When F is known, pricing decisions depend only on the context,
and since the contexts are i.i.d., the observations within an episode remain i.i.d.; however, the
moment condition E[Byt | xt] = v∗(xt) need not hold. Accordingly, we replace Assumption 4 with a
known-F offline regression oracle (e.g., an MLE oracle under the correctly specified Bernoulli model
with link induced by F ), which still guarantees ∥v̂ − v∗∥∞ ≤

√
ρV(δ)/n with probability at least

1− δ.
The regret upper bound of Algorithm 4 is summarized in the following corollary.

Corollary 4. Assume that the noise distribution F is twice continuously differentiable, and that
both F and 1− F are log-concave. Under Assumptions 1 and 4, the regret of Algorithm 4 satisfies

Reg(T ) = O
(
ρV(δ) ln T

)
with probability at least 1− ⌈log2 T ⌉δ.

When the differentiability and log-concavity assumptions are relaxed, we obtain the following
weaker guarantee under the Lipschitz condition alone.

3It is worth noting that our algorithm achieves minimax optimality as long as α ≥ 4
5 , which is slightly below the

numerically justified threshold of 1.
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Algorithm 4 Distribution-Dependent Dynamic Pricing Algorithm
Input: price upper bound B, distribution F , confidence parameter δ

1: for episode k = 1, 2, · · · do
2: Call Known-F Offline Regression Oracle on data {(xt, yt)} from the previous episode

to get v̂k. For k = 1, we set v̂k ≡ 0.
3: for round t = 2k−1 + 1, · · · , 2k do
4: Observe context xt, set price pt = argmaxp p(1− F (p− v̂k(xt))) and observe feedback yt

5: end for
6: end for

Corollary 5. Under Assumptions 1, 3 and 4, the regret of Algorithm 4 satisfies

Reg(T ) = O
(√

ρV(δ)T ln T
)

with probability at least 1− ⌈log2 T ⌉δ.

Remark 13. Cohen et al. (2020) also examine the linear valuation model under the assumption
of a known noise distribution. Unlike our setting, they assume sub-Gaussian noise rather than
enforcing the Lipschitz continuity condition (Assumption 3). Their method leverages a shallow-cut
technique for ellipsoidal uncertainty sets, preserving more than half of the original volume at each
iteration. Using this approach, they establish a regret bound of O(d

19
6

0 T
2
3 ln 11

6 T ). However, their
analysis is tailored specifically to linear valuation models and does not extend naturally to more
general function classes. In contrast, our framework accommodates a broader class of valuation
functions by reducing the problem to offline regression over general function spaces, improving
flexibility and generalizability.

5.4.2 Knowledge of vt

In many practical applications, sellers may directly observe customer valuations vt, for example,
through bidding mechanisms. This additional information simplifies algorithm design by removing
the need for an explicit exploration phase. In this setting, we modify Algorithm 1 to use the observed
tuples (xt, vt) instead of (xt, yt) when invoking the offline oracle4. Unfortunately, with only the
Lipschitz continuity assumption (Assumption 3), the regret of the modified algorithm does not
improve and remains Õ

(
T

2
3
)
.

However, with additional smoothness assumption (Assumption 5), we can achieve a tighter
regret bound when the seller observes vt. The key reason is that the discretization regret in episode
k improves to O

(
Tk/N2

k

)
, leading to tighter overall bounds. We summarize the algorithm in

Algorithm 5 and establish its regret bound in corollary 6.

4Similar to the known-F setting, we require an offline oracle that satisfies a variant of Assumption 4 in which
the moment condition is replaced by E[vt | xt] = v∗(xt). The formal statement is given as Assumption 10 in the
Appendix.
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Algorithm 5 Distribution-Free Dynamic Pricing Algorithm with General Offline Regression Oracle
and Observable Valuation
Input: price upper bound B, estimation parameter ρV(δ), confidence parameter δ

1: for episode k = 1, 2, · · · do
2: Call Adjusted Offline Regression Oracle on data {(xt, vt)} from the previous episode

to get v̂k. For k = 1, we set v̂k ≡ 0.
3: Set the length Tk = 2k−1 and the discretization number Nk = ⌈T

1
5

k ⌉
4: for t = 2k−1 + 1, · · · , 2k do
5: Apply UCB-LDP (Algorithm 2) on the coming sequential contexts xt with the estimator

v̂k, the discretization number Nk, the length Tk, the bound B and the confidence parameter δ

6: end for
7: end for

Corollary 6. Suppose 0 < δ < 1/(2⌈log2 T ⌉). Under Assumptions 1, 2, 10 and 5, the regret of
Algorithm 5 satisfies

Reg(T ) = Õ
(
T

3
5 ∨ ρ

1
2
V (δ)T

1
2
)

with probability at least 1− 2⌈log2(T )⌉δ.

Assuming access only to censored demand data (i.e., observing yt rather than the full valuation
vt), Luo et al. (2022, 2024) establish a minimax regret lower bound of Ω

(
T

3
5
)
. Whether access to

full valuation information can lead to strictly smaller lower bounds remains an open question. We
note, however, that in Section 5.3.2, we show that this lower bound is attainable even when only
binary purchase decisions yt are observed, provided that a powerful classification oracle is available.

To conclude our discussion in this section, we summarize the regret results of our proposed
algorithms and compare them with existing literature in Table 3.

6 Numerical Experiments

In this section, we present numerical simulations to evaluate the empirical performance of our
algorithm for linear valuation models.

6.1 Comparison with Existing Methods

We consider the contextual dynamic pricing problem under randomly generated linear valuation
models. The contexts are drawn from a standard Gaussian distribution in R4, followed by ℓ2-
normalization to a unit ball. The noise term is drawn from a Gaussian distribution N (0, 0.3),
truncated between −1 and 1. Similarly, the parameter θ is initialized as a normalized vector, with
its components drawn from a standard Gaussian distribution.

We compare our method with the algorithms proposed in Tullii et al. (2024) and Fan et al. (2024).
We note that the algorithm in Tullii et al. (2024) requires knowledge of the Lipschitz constant L in
Assumption 3. For consistency with their experimental setup, we adopt L = 1 for their method
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Table 3: Summary of Regret Guarantees and Comparison with Prior Work

Algorithm Regret Assumptions Comparison with Literature

Algorithm 1 Õ
(
(ρ

1
3
V (δ)T 2

3 )∨
(ρ

1
2+α

V (δ)T 2
2+α )

) Assumption 6 DNN: α = 4/(d0 + 4)⇒ Õ(T 2
3 ∨ T

d0+4
d0+6 );

TDNN: α = 8/(d0 + 8)⇒ Õ(T 2
3 ∨ T

d0+8
d0+12 );

Chen et al. (2024) do not guarantee sublinear
regret when F is only Lipschitz.

Algorithm 3 Õ
(
(ρ

1
2
V (δ)T 1− α

2 )∨
T

3
5
) Assumption 5

Assumption 7
Improves on Õ(T 2

3 ∨T 1− α
2 ) in Luo et al. (2024);

minimax-optimal for α ≥ 4/5.

Algorithm 4 O
(
ρV(δ) ln T

)
Known F

F is log-concave,
twice differentiable
Assumption 4

For linear V, matches Javanmard and Naz-
erzadeh (2019)’s O(d0 ln T );
we extend to general V.

Algorithm 4 Õ
(√

ρV(δ)T
)

Known F

Assumption 4
Cohen et al. (2020) obtain O(d

19
6

0 T
2
3 ln

11
6 T ) un-

der linear model with sub-Gaussian noise;
we extend beyond linear models.

Algorithm 5 Õ(T 3
5 ∨ ρ

1
2
V (δ)T 1

2 ) Assumption 5
Observable vt

Matches the lower bound Ω(T 3
5 ) of Luo et al.

(2022, 2024) for binary feedback.

Note: Common assumptions such as Assumption 1, Assumption 2, and Assumption 3 are omitted.

while the effective constant is ≈ 0.78 (computed from the truncated normal’s PDF at 0). For both
baselines, Tullii et al. (2024) and Fan et al. (2024), we use the public implementation released by
Tullii et al. (2024). We evaluate all methods under the price bound B = 2 for all time horizons
T ∈ {1000, 5000, 10000, 20000, 50000}. The results are averaged across 10 independently generated
instances.
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Figure 3: Comparison of the expected cumulative regret of our algorithm with Fan et al. (2024), Tullii
et al. (2024). The results are averaged over 10 independent random instances, with 95% confidence
intervals shown.

The average cumulative regret achieved by the three algorithms is shown in Figure 3, together
with the 95% confidence intervals for the mean regret. Our algorithm consistently demonstrates
superior cumulative regret (up to 80–90% lower) compared to both benchmarks across all time
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horizons. Notably, the variance across 10 runs, as indicated by the confidence intervals, is significantly
smaller than that of Tullii et al. (2024) and Fan et al. (2024), reflecting enhanced stability. This
improvement is attributed to our adaptive layer search mechanism, which dynamically optimizes
upper confidence bounds without requiring prior knowledge of the Lipschitz constant.

While Tullii et al. (2024) achieves faster runtime through Lipschitz-constant-guided UCB
simplification, our method eliminates this dependency through layer-wise UCB at only 1.8–4.5
times the computation time of Tullii et al. (2024). This is particularly impactful in real-world
pricing systems where Lipschitz constants are rarely known a priori. Furthermore, we significantly
outperform Fan et al. (2024) in speed by avoiding their computationally intensive full distribution
estimation.

6.2 Noise Distribution

In this experiment, we investigate the robustness of our algorithm’s performance to different types
of noise distributions. We conduct simulations using four zero-mean noise distributions: the normal
distributions with variance parameter 0.5 or 1, the Cauchy distribution with scale parameter 0.1,
and the uniform distribution on [−2, 2].

For each of these noise distributions, we generate random context vectors of dimension d0 = 4
and set the price bound B = 4, as in Section 6.1. The noise distributions are all truncated to the
same interval of [−3, 3]. With the confidence parameter δ set to 0.05, we have ρV(δ) = d0 ln(d0/δ).
We test our algorithm over time horizons T ∈ {1000, 2000, 4000, 8000, 16000}. The results are
reported in Figure 4, which is averaged over 10 independent replications with 95% confidence
intervals presented.

0 0.10.2 0.4 0.8 1.6
·104

0

500

1,000

1,500

2,000

Time horizon T

C
um

ul
at

iv
e

re
gr

et Uniform[−2, 2]
Cauchy(0, 0.1)
Normal(0, 1)

Normal(0, 0.5)

Figure 4: Comparison of the mean cumulative regret under various noise distributions. The results are
averaged over 10 independent random instances, with 95% confidence intervals shown.

Figure 4 demonstrates that both the noise distribution type and variance parameter affect
our algorithm’s performance. We remark that our algorithm is agnostic to this distributional
information, as long as the basic Lipschitz continuity Assumption 3 holds. As shown in Javanmard
and Nazerzadeh (2019), the regret rate can be reduced to Õ(

√
T ) if the decision maker knows that

the noise distribution belongs to the exponential family. Fan et al. (2024), Chen et al. (2024) further
demonstrate that knowledge of the smoothness level of the CDF can also reduce regret. However,
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the true smoothness level is typically unknown and must be determined via cross-validation. In
contrast to these methods, our approach does not rely on knowing either the noise distribution family
(beyond Lipschitz continuity), the CDF smoothness level, the scale parameter, or the Lipschitz
constant in Assumption 3.

7 Conclusion

We present a comprehensive solution to the contextual dynamic pricing problem that combines
minimax-optimality with practical applicability. Our algorithm integrates an explore-then-UCB
strategy with layered data partitioning, achieving a regret upper bound of Õ(ρ

1
3
V (δ)T 2

3 ). It improves
upon existing bounds for linear valuation models and extends naturally to more general function
spaces via suitable offline regression oracles, relying only on the Lipschitz continuity of the noise
distribution.

Future research can pursue several directions. First, relaxing the Lipschitz continuity assumption
on the noise distribution F and determining the corresponding regret lower bound would deepen
our understanding of the problem’s intrinsic difficulty. While Xu and Wang (2022) establish an
upper bound of Õ(T 3

4 ) without assuming Lipschitz continuity, it remains an open question whether
the minimax lower bound in this setting is also Ω(T 3

4 ) when the Lipschitz continuity assumption is
removed.

Second, it is important to further investigate how to tighten the dependence on function-class
complexity. For linear valuation models with covariates of dimension d0, we establish a regret bound
of Õ(d

1
3
0 T

2
3 ). Whether this d

1
3
0 dependence is optimal remains an open question, and resolving it

would clarify how regret scales with the complexity of the underlying valuation function space.
Finally, improving regret upper bounds for smoother distributions is a promising direction.

Under stronger assumptions (e.g., twice-differentiability and strong uni-modality of the revenue
function) than Assumption 3, rates of order Õ(T 3/5) can be achieved (Wang and Chen 2025).
Further investigation in this area would clarify the impact of distribution smoothness on regret
performance.

References
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A Examples of Offline Regression Oracle Satisfying Assumption 4

A.1 Finite-Dimensional Parameterization

We consider the case where the true function is parameterized by a finite-dimensional vector
θ ∈ Θ ⊂ Rd. Specifically, we assume the true function can be expressed as:

v∗(x) = g(θ∗,x)

where g : Θ×X → R is a known function. To estimate the unknown parameter θ∗, we can use a
regression model that minimizes the empirical risk:

Rn(θ) = 1
2n

n∑
i=1

(yi − g(θ,xi))2.

Then the least squares estimator is defined as θ̂n = arg minθ∈Θ Rn(θ), and the estimate of v∗ is
given by

v̂(x) = g(θ̂n,x).

For a matrix A, recall that the operator norm of A is defined as

∥A∥op = sup
∥u∥2=1

∥Au∥2.

Lemma 7 (Matrix Bernstein Inequality). Let X1, . . . , Xn be independent, mean-zero, symmetric
random matrices in Rd×d. Suppose that almost surely ∥Xi∥op ≤ R, and define the variance parameter
σ2 =

∥∥∑n
i=1 E

[
X2

i

]∥∥
op. Then for all t ≥ 0,

P
{∥∥∥ n∑

i=1
Xi

∥∥∥
op
≥ t
}
≤ 2d exp

(
− t2

2σ2 + 2Rt/3

)
.

Theorem 3. Assume the following regularity conditions hold:

1. Θ ⊂ Rd is convex and compact, and θ∗ ∈ int(Θ).

2. supθ∈Θ,x∈X ∥∇θg(θ,x)∥2 ≤ L <∞.

3. supθ∈Θ,x∈X ∥∇2g(θ,x)∥op ≤ B <∞.

4. H(θ∗) = E[∇g(θ∗,x)∇g(θ∗,x)⊤] ≻ λ0I for λ0 > 0.

5. ∥∇2g(θ1,x)−∇2g(θ2,x)∥op ≤M∥θ1 − θ2∥2.

6. X ⊂ Rd0 is compact, and xi are drawn i.i.d. from some distribution supported on X .

7. ϵi are σ-sub-Gaussian with E[ϵi] = 0
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Then there exist constants c1, c2 > 0 depending on (λ0, L, B, σ, M, d) such that: for any δ > 0, if
n ≥ 1

c2
ln
(

8d
δ

)
, then with probability at least 1− δ:

∥v̂ − v∗∥∞ ≤
√

d

c1n
ln
(8d

δ

)

where c1 = λ2
0

8σ2L4 and c2 = min
(

λ2
0

512L4 ,
λ2

0
512σ2B2 ,

c1δ2
0

d

)
with δ0 = min

(
1, λ0

16M

)
.

Proof. We prove the theorem through a series of probabilistic bounds.
We first prove the gradient concentration at θ∗. Define Zi = ∇g(θ∗,xi) and thus ∥Zi∥2 ≤ L.

The empirical gradient is:

∇Rn(θ∗) = − 1
n

n∑
i=1

ϵiZi.

Since ϵi are σ-sub-Gaussian and independent of xi, each component of ϵiZi is σL-sub-Gaussian.
Let S = ∑n

i=1 ϵiZi. Then we have:

P
(
∥∇Rn(θ∗)∥2 ≥ t

√
d/n

)
= P

(
∥S∥2 ≥ t

√
nd
)

≤ P
(

max
1≤j≤d

∣∣Sj

∣∣ ≥ t
√

n
)

≤
d∑

j=1
P
(
|Sj | ≥ t

√
n
)

≤
d∑

j=1
2 exp

(
− (t

√
n)2

2Var(Sj)
)

≤ 2d exp
(
− t2n

2σ2nL2

)
= 2d exp

(
− t2

2σ2L2

)
. (4)

Then we need to consider the Hessian matrix. Define δ0 = min
(
1, λ0

16M

)
. Decompose the Hessian

at θ∗:
∇2Rn(θ∗)−H(θ∗) = 1

n

n∑
i=1

[
∇gi∇g⊤

i − E[∇gi∇g⊤
i ]
]

︸ ︷︷ ︸
T1

− 1
n

n∑
i=1

ϵi∇2gi︸ ︷︷ ︸
T2

.

Since ∥∇gi∇g⊤
i ∥op ≤ L2, matrix Bernstein inequality (Lemma 7) gives:

P
(
∥T1∥op ≥

λ0
16

)
≤ 2d exp

(
− nλ2

0
512L4

)
. (5)

Since ∥ϵi∇2gi∥op ≤ |ϵi|B and ϵi is σ-sub-Gaussian:

P
(
∥T2∥op ≥

λ0
16

)
≤ 2d exp

(
− nλ2

0
512σ2B2

)
. (6)

By Lipschitz continuity (Regularity Condition 5), for θ ∈ Bδ0(θ∗):

∥∇2Rn(θ)−∇2Rn(θ∗)∥op ≤M∥θ − θ∗∥2 ≤Mδ0.
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On the event where ∥T1∥op < λ0/16 and ∥T2∥op < λ0/16, we have

∥∇2Rn(θ)−H(θ∗)∥op ≤Mδ0 + λ0
8 ≤

λ0
16 + λ0

8 = 3λ0
16 <

λ0
4 .

Thus, it holds that λmin(∇2Rn(θ)) ≥ λ0 − λ0/4 > λ0/2. By union bound over (5) and (6):

P
(

inf
θ∈Bδ0 (θ∗)

λmin(∇2Rn(θ)) ≥ λ0/2
)
≥ 1− 2d exp

(
− λ2

0n

512L4

)
− 2d exp

(
− λ2

0n

512σ2B2

)
. (7)

With (4) and (7), we can now bound the parameter estimation error. By Taylor expansion and
first-order optimality for empirical risk minimization:

θ̂n − θ∗ = −[∇2Rn(θ̄)]−1∇Rn(θ∗)

for some θ̄ between θ∗ and θ̂n. On the event where infθ∈Bδ0 (θ∗) λmin(∇2Rn(θ)) ≥ λ0/2 and
∥∇Rn(θ∗)∥2 < λ0t

2
√

d/n, we have

∥θ̂n − θ∗∥2 ≤
2
λ0
∥∇Rn(θ∗)∥2 < t

√
d/n.

To ensure θ̂n ∈ Bδ0(θ∗), we let t
√

d/n ≤ δ0. Combining with previous bounds yield

P
(
∥θ̂n − θ∗∥2 ≥ t

√
d/n

)
≤ 2d exp

(
− λ2

0t2

8σ2L2

)
+ 2d exp

(
− λ2

0n

512L4

)
+ 2d exp

(
− λ2

0n

512σ2B2

)
.

Finally, we relate the function estimation error to the parameter estimation error:

∥v̂ − v∗∥∞ = sup
x∈X
|g(θ̂n,x)− g(θ∗,x)| ≤ sup

x∈X
∥∇g(θ̃,x)∥2∥θ̂n − θ∗∥2 ≤ L∥θ̂n − θ∗∥2

for some θ̃ between θ∗ and θ̂n. Therefore, we have

P
(
∥v̂ − v∗∥∞ ≥ t

√
d/n

)
≤ P

(
∥θ̂n − θ∗∥2 ≥

t

L

√
d/n

)

≤ 2d exp
(
− λ2

0t2

8σ2L4

)
+ 2d exp

(
− λ2

0n

512L4

)
+ 2d exp

(
− λ2

0n

512σ2B2

)
.

Set t =
√

1
c1

ln(8d/δ) and n ≥ 1
c2

ln(8d/δ), we have:

2d exp(−c1t2) = 2d · δ

8d
= δ/4,

2d exp
(
− λ2

0n

512L4

)
≤ 2d exp(−c2n) ≤ 2d · δ

8d
= δ/4,

2d exp
(
− λ2

0n

512σ2B2

)
≤ 2d exp(−c2n) ≤ δ/4.

Summing over all probabilities, we obtain:

P
(
∥v̂ − v∗∥∞ ≥

√
d

c1n
ln
(8d

δ

))
≤ δ/4 + δ/4 + δ/4 = 3δ/4 ≤ δ,

which completes the proof.

From the previous theorem, we know that Assumption 4 holds for the parametric function spaces
with ρ(δ) = O(d ln(d/δ)) and offline least squares regression oracle. A special case is the linear
function space, where g(θ,x) = θ⊤x, which is widely used in the literature.
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A.2 Finite Function Space

We now discuss a second example of an offline regression oracle in the case of finite function spaces.

Theorem 4. Consider a finite function space V with |V| < ∞, and a target function v∗ ∈ V.
Assume there exists B > 0 such that supv∈V,x∈X |v(x)| ≤ B. Given a dataset {(xi, yi)}ni=1 of size n

generated as yi = v∗(xi) + ϵi, where:

1. {xi}ni=1 are i.i.d. random variables on X ,

2. {ϵi}ni=1 are i.i.d. random noise with E[ϵi] = 0 and |ϵi| ≤ B a.s.,

3. All xi and ϵi are mutually independent,

4. The minimum expected gap satisfies µmin = minv ̸=v∗ Ex[(v∗(x)− v(x))2] > 0.

Then the estimator v̂ = arg minv∈V
∑n

i=1(yi − v(xi))2 satisfies

P(v∗ ̸= v̂) ≤ (|V| − 1) exp
(
− nµ2

min
128B4

)
. (8)

Proof. The least squares regression oracle uses the following estimator:

v̂ = argmin
v∈V

n∑
i=1

(yi − v(xi))2.

Define A = {v̂ ̸= v∗}. The boundedness implies supx |v̂(x) − v∗(x)| ≤ 2B. Then the oracle
selects v ̸= v∗ if

n∑
i=1

(yi − v(xi))2 ≤
n∑

i=1
(yi − v∗(xi))2.

Substituting yi = v∗(xi) + ϵi and simplifying:
n∑

i=1

[
(v∗(xi)− v(xi))2 + 2(v∗(xi)− v(xi))ϵi

]
≤ 0.

Let dv(xi) = v∗(xi)− v(xi). Then:

Sv =
n∑

i=1

[
dv(xi)2 + 2dv(xi)ϵi

]
≤ 0.

By the union bound:
P(A) ≤

∑
v ̸=v∗

P(Sv ≤ 0).

For each v ̸= v∗, we have E[Sv] = E
[∑n

i=1 dv(xi)2] = nµv ≥ nµmin > 0. Since |dv(xi)| ≤ 2B

and |ϵi| ≤ B, we have

|dv(xi)2 + 2dv(xi)ϵi| ≤ (2B)2 + 2(2B)(B) = 8B2.
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The Hoeffding’s inequality yields

P(Sv ≤ 0) ≤ exp
(
−2(E[Sv])2

n(16B2)2

)
= exp

(
−(E[Sv])2

128nB4

)
≤ exp

(
− nµ2

min
128B4

)
.

Therefore, we have:

P(A) ≤ (|V| − 1) exp
(
− nµ2

min
128B4

)
.

To bound the right-hand-side of (8) by δ, we set the sample size n

n ≥ 128B4

µ2
min

ln(|V|/δ).

so that
(|V| − 1) exp

(
− nµ2

min
128B4

)
≤ δ.

Though Theorem 4 does not fully satisfy Assumption 4, it can still works for Theorem 1 as it
provides the sample complexity of learning in finite function spaces.

B Proofs

B.1 Proofs for Section 3

Lemma 8 (Azuma’s Inequality). Let {Xτ}nτ=1 be a martingale difference sequence with respect to
a filtration {Fτ}nτ=0, i.e., E[Xτ | Fτ−1] = 0 for all τ . Assume aτ ≤ Xτ ≤ bτ a.s. for τ = 1, . . . , n.
Then for any ι ∈ (0, 1),

P

∣∣∣ 1
n

n∑
τ=1

Xτ

∣∣∣ ≥ 1
n

√√√√1
2 ln(2/ι)

n∑
τ=1

(bτ − aτ )2

 ≤ ι.

Lemma 1. Fix an episode k. For any round t in the episode k, and any layer s at round t, with
probability at least 1− δ/(SkNkTk), each j ∈ [Nk] satisfies

|ξ∗
j − wj

t,s| ≤ rj
t,s + Lηj

t,s, where ηj
t,s = 1

|Ψs
t (j)|

∑
τ∈Ψs

t (j)
|v̂k(xτ )− v∗(xτ )|.

Proof. Let H0 denote the filtration generated by(τ,xτ , pτ ), τ ∈
⋃

s′≤s

Ψs′
t

 ∪
yτ , τ ∈

⋃
s′<s

Ψs′
t

 .

By construction of the layered partition, the event {τ ∈ Ψs
t} is H0-measurable and does not depend

on {yτ : τ ∈ Ψs
t}; since {ϵτ}τ are i.i.d. and independent of contexts, conditioning on H0 renders
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{ϵτ : τ ∈ Ψs
t} independent. Considering the conditional independence of ϵτ indexed in Ψs

t , we can
deduce that for τ ∈ Ψs

t (j)

E[yτ | {yτ ′ : τ ′ ∈ Ψs
t (j), τ ′ < τ},H0]

= E[I {ϵτ > mj + v̂k(xτ )− v∗(xτ )} | {ϵτ ′ : τ ′ ∈ Ψs
t (j), τ ′ < τ},H0]

= E[I {ϵτ > mj + v̂k(xτ )− v∗(xτ )} | H0]
= 1− F (mj + v̂k(xτ )− v∗(xτ )).

Now we consider the concentration for yτ , τ ∈ Ψs
t (j). For notation brevity, denote Hτ as the

filtration generated by {yτ ′ : τ ′ ∈ Ψs
t (j), τ ′ < τ} ∪ H0. Then for τ = 0, the definition of Hτ is

consistent with H0. To apply Azuma’s inequality (Lemma 8) with bτ = 1 and aτ = 0, it is easy to
check yτ − E[yτ |Hτ ] is a martingale difference sequence adapted to filtration Hτ . Hence, we can
derive the following results:

P
(∣∣∣wj

t,s −
∑

τ∈Ψs
t (j) E[yτ |Hτ ]
|Ψs

t (j)|
∣∣∣ ≥ √2 ln(2SkNkTk/δ)

|Ψs
t (j)|

)
≤ δ

SkNkTk
.

Hence, we obtain

P
(∣∣∣wj

t,s −
∑

τ∈Ψs
t (j) E[yτ |Hτ ]
|Ψs

t (j)|
∣∣∣ ≥ rj

t,s

)

≤ P
(∣∣∣wj

t,s −
∑

τ∈Ψs
t (j) E[yτ |Hτ ]
|Ψs

t (j)|
∣∣∣ ≥ √2 ln(2SkNkTk/δ)

|Ψs
t (j)|

)

≤ δ

SkNkTk
.

From Assumption 3, we know∣∣ξ∗
j − E[yτ | Hτ ]

∣∣ =
∣∣(1− F (mj))− (1− F (mj + v̂k(xτ )− v∗(xτ )))

∣∣ ≤ L|v̂k(xτ )− v∗(xτ )|.

Therefore, we have ∣∣∣∣∣
∑

τ∈Ψs
t (j)(ξ∗

j − E[yτ |Hτ ])
|Ψs

t (j)|

∣∣∣∣∣ ≤ L
∑

τ∈Ψs
t (j) |v̂k(xτ )− v∗(xτ )|
|Ψs

t (j)| ,

so by the triangle inequality, we find

P
(∣∣∣wj

t,s − ξ∗
j

∣∣∣ ≥ rj
t,s +

L
∑

τ∈Ψs
t (j) |v̂k(xτ )− v∗(xτ )|
|Ψs

t (j)|

)

≤P
(∣∣∣wj

t,s −
∑

τ∈Ψs
t (j) E[yτ |Hτ ]
|Ψs

t (j)|
∣∣∣+ ∣∣∣∑τ∈Ψs

t (j)(ξ∗
j − E[yτ |Hτ ])
|Ψs

t (j)|
∣∣∣

≥ rj
t,s +

L
∑

τ∈Ψs
t (j) |v̂k(xτ )− v∗(xτ )|
|Ψs

t (j)|

)

≤P
(∣∣∣wj

t,s −
∑

τ∈Ψs
t (j) E[yτ |Hτ ]
|Ψs

t (j)|
∣∣∣ ≥ rj

t,s

)

≤ δ

SkNkTk
.
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B.2 Proofs for Upper Bounds in Section 4.1

Recall that

p̃∗
t ≜ mj∗

t
+ v̂k(xt), where j∗

t = argmax
j∈[Nk]

Revt (mj + v̂k(xt)) ,

p̃∗
t,s ≜ mj∗

t,s
+ v̂k(xt), where j∗

t,s = argmax
j∈At,s

Revt(mj + v̂k(xt)).

Lemma 2. For each round t in episode k and each layer s ∈ [st], conditional on event Γk, we have

Revt
(
p̃∗

t

)
− Revt

(
p̃∗

t,s

)
≤ 4BL(s− 1)∥v̂k − v∗∥∞.

Proof. We prove this lemma by induction on s. For s = 1, the lemma holds naturally since
At,1 = [Nk] and hence j∗

t = j∗
t,1. Assume that the bound holds at the layer s ≤ st − 1. It suffices to

show that
Revt

(
mj∗

t,s
+ v̂k(xt)

)
− Revt

(
mj∗

t,s+1
+ v̂k(xt)

)
≤ 4BL∥v̂k − v∗∥∞.

If j∗
t,s = j∗

t,s+1, then the desired bound holds. Hence we assume that j∗
t,s /∈ At,s+1. Let

ĵt,s := argmax
j∈At,s

(mj + v̂k(xt))
(
wj

t,s + rj
t,s

)
be the index with the highest UCB in At,s. From Step 14 of Algorithm 2, we know that ĵt,s ∈ At,s+1.
Then we have

Revt

(
mj∗

t,s
+ v̂k(xt)

)
− Revt

(
mj∗

t,s+1
+ v̂k(xt)

)
≤ Revt

(
mj∗

t,s
+ v̂k(xt)

)
− Revt

(
mĵt,s

+ v̂k(xt)
)

≤
(
mj∗

t,s
+ v̂k(xt)

) (
1− F

(
mj∗

t,s

))
−
(
mĵt,s

+ v̂k(xt)
) (

1− F
(
mĵt,s

))
+ 2BL |v̂k(xt)− v∗(xt)| .

From the definition of Γk in (3), we know that(
mj∗

t,s
+ v̂k(xt)

) (
1− F

(
mj∗

t,s

))
−
(
mĵt,s

+ v̂k(xt)
) (

1− F
(
mĵt,s

))
≤
(
mj∗

t,s
+ v̂k(xt)

)(
w

j∗
t,s

t,s + r
j∗

t,s

t,s

)
−
(
mĵt,s

+ v̂k(xt)
)(

w
ĵt,s

t,s − r
ĵt,s

t,s

)
+ BLη

j∗
t,s

t,s + BLη
ĵt,s

t,s

=
(
mj∗

t,s
+ v̂k(xt)

)(
w

j∗
t,s

t,s + r
j∗

t,s

t,s

)
−
(
mĵt,s

+ v̂k(xt)
)(

w
ĵt,s

t,s + r
ĵt,s

t,s

)
+ 2

(
mĵt,s

+ v̂k(xt)
)

r
ĵt,s

t,s

+ BLη
j∗

t,s

t,s + BLη
ĵt,s

t,s .

From the statistical precision check (Step 13 of Algorithm 2), we know(
mĵt,s

+ v̂k(xt)
)

r
ĵt,s

t,s ≤ B2−s

as s < st. Furthermore, since j∗
t,s /∈ At,s+1, the elimination step also implies that(

mj∗
t,s

+ v̂k(xt)
)(

w
j∗

t,s

t,s + r
j∗

t,s

t,s

)
−
(
mĵt,s

+ v̂k(xt)
)(

w
ĵt,s

t,s + r
ĵt,s

t,s

)
< −B21−s

≤ −2
(
mĵt,s

+ v̂k(xt)
)

r
ĵt,s

t,s .
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Combining all the inequalities above, we obtain

Revt

(
mj∗

t,s
+ v̂k(xt)

)
− Revt

(
mj∗

t,s+1
+ v̂k(xt)

)
≤ 2BL |v̂k(xt)− v∗(xt)|+ BLη

j∗
t,s

t,s + BLη
ĵt,s

t,s .

Recall that ηj
t,s ≤ ∥v̂k − v∗∥∞ for any t, s, j, combining all the above inequalities yields the desired

inequality.

Lemma 3. For each round t in episode k and each layer 2 ≤ s ≤ st, conditional on event Γk, we
have

Revt
(
p̃∗

t,s

)
− Revt

(
pt
)
≤ 8B · 2−s + 4BL∥v̂k − v∗∥∞.

Proof. For all 2 ≤ s ≤ st, Step 14 of Algorithm 2 shows that

(mj + v̂k(xt))(wj
t,s−1 + rj

t,s−1) ≥ (mj∗
t,s

+ v̂k(xt))(w
j∗

t,s

t,s−1 + r
j∗

t,s

t,s−1)−B22−s, ∀j ∈ At,s,

as j∗
t,s ∈ At,s ⊂ At,s−1. Furthermore, Step 13 of Algorithm 2 implies that (mj +v̂k(xt))rj

t,s−1 ≤ B21−s

for all j ∈ At,s−1. Combining two inequalities, we obtain

(mj∗
t,s

+ v̂k(xt))(w
j∗

t,s

t,s−1 + r
j∗

t,s

t,s−1)− (mj + v̂k(xt))(wj
t,s−1 − rj

t,s−1)

≤2(mj + v̂k(xt))rj
t,s−1 + B22−s

≤4B21−s, ∀j ∈ At,s.

Therefore, from the definition of Γk in (3), we have

4B21−s ≥ (mj∗
t,s

+ v̂k(xt))(w
j∗

t,s

t,s−1 + r
j∗

t,s

t,s−1)− (mjt + v̂k(xt))(wjt
t,s−1 − rjt

t,s−1)

≥ Revt

(
p̃∗

t,s

)
− Revt (pt)−BLη

j∗
t,s

t,s−1 −BLηjt
t,s−1 − 2BL∥v̂k − v∗∥∞.

Recall that ηj
t,s ≤ ∥v̂k − v∗∥∞ for any t, s, j, combining all the above inequalities yields the desired

inequality.

Lemma 4. For each round t in episode k and each layer 2 ≤ s ≤ st, conditional on event Γk, we
have

Revt
(
p̃∗

t

)
− Revt

(
pt
)
≤ 8B · 2−s + 4BLs∥v̂k − v∗∥∞.

Proof. It follows from Lemma 2 and Lemma 3 that

Revt(mj∗
t

+ v̂k(xt))− Revt(mjt + v̂k(xt))
=Revt(mj∗

t,s
+ v̂k(xt))− Revt(mjt + v̂k(xt)) + Revt(mj∗

t
+ v̂k(xt))− Revt(mj∗

t,s
+ v̂k(xt))

≤8B · 2−s + 4BLs∥v̂k − v∗∥∞.

Recall that ΨSk
Tk+1 is the set of rounds chosen during the exploitation step (Step 8 of Algorithm 2),

i.e., time steps with st = Sk.
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Lemma 9. Conditional on event Γk, for every round t ∈ ΨSk
Tk+1 in the episode k, we have

Revt(p̃∗
t )− Revt(pt) ≤

4B√
Tk

+ 6BL∥v̂k − v∗∥∞ ln Tk.

Proof. Since the stopping layer st = Sk, it follows from Assumption 3 and Lemma 2 that

Revt(p̃∗
t )− Revt(pt)

= Revt(p̃∗
t )− Revt(p̃∗

t,Sk
) + Revt(p̃∗

t,Sk
)− Revt(pt)

≤ 4BL∥v̂k − v∗∥∞(Sk − 1) + Revt(mj∗
t,Sk

+ v̂k(xt))− Revt(mjt + v̂k(xt))

≤ (mj∗
t,Sk

+ v̂k(xt))(w
j∗

t
t,Sk

+ r
j∗

t
t,Sk

)− (mjt + v̂k(xt))(wjt

t,Sk
− rjt

t,Sk
) + 6BL∥v̂k − v∗∥∞ ln Tk

≤ (mj∗
t,Sk

+ v̂k(xt))(w
j∗

t
t,Sk

+ r
j∗

t
t,Sk

)− (mjt + v̂k(xt))(wjt

t,Sk
+ rjt

t,Sk
)

+ 4B√
Tk

+ 6BL∥v̂k − v∗∥∞ ln Tk

≤ 4B√
Tk

+ 6BL∥v̂k − v∗∥∞ ln Tk.

The last inequality comes from the fact that jt in At,Sk
is the index corresponding to the largest

UCB.

Lemma 10. Assuming |Ψs
Tk+1| ≥ 1, we have∑

t∈Ψs
Tk+1

ptr
jt
t,s ≤ 2B

√
2Nk|Ψs

Tk+1| ln(2SkNkTk/δ).

Proof. We have ∑
t∈Ψs

Tk+1

ptr
jt
t,s =

√
2 ln(2SkNkTk/δ)

∑
t∈Ψs

Tk+1

pt√
|Ψs

t (jt)|
.

It suffices to bound the term ∑
t∈Ψs

Tk+1

pt√
|Ψs

t (jt)|
. Notice that

∑
t∈Ψs

Tk+1

pt√
|Ψs

t (jt)|
≤

Nk∑
j=1

|Ψs
Tk+1(j)|∑
t=1

B√
t

≤
Nk∑
j=1

2B
√
|Ψs

Tk+1(j)|

≤ 2B

√√√√√Nk

Nk∑
j=1
|Ψs

Tk+1(j)|

≤ 2B
√

Nk|Ψs
Tk+1|.

Therefore, we conclude that∑
t∈Ψs

Tk+1

ptr
jt
t,s ≤ 2B

√
2Nk|Ψs

Tk+1| ln(2SkNkTk/δ).
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Lemma 11. For all s < Sk, we have

|Ψs
Tk+1| ≤ 2s+1

√
2Nk|Ψs

Tk+1| ln(2SkNkTk/δ).

Proof. For any s < Sk, the data enters the stopping layer s only during the exploration step (Step
12 of Algorithm 2). In this case, we know that∑

t∈Ψs
Tk+1

ptr
jt
t,s ≥ B2−s|Ψs

Tk+1|.

By Lemma 10, we obtain ∑
t∈Ψs

Tk+1

ptr
jt
t,s ≤ 2B

√
2Nk|Ψs

Tk+1| ln(2SkNkTk/δ).

Therefore, combing above inequalities, we have

|Ψs
Tk+1| ≤ 2s+1

√
2Nk|Ψs

Tk+1| ln(2SkNkTk/δ).

Lemma 5. Under Assumptions 1, 2 and 3, the learning regret
∑T

t=1R1
t is bounded by

⌈log2 T ⌉∑
k=1

[
16B

√
2NkTk ln(2SkTkNk/δ) ln Tk + 9BL∥v̂k − v∗∥∞Tk ln Tk

+ 4BT
1
2

k + 64BNk ln(2SkTkNk/δ)
]

with probability at least 1− ⌈log2 T ⌉δ.

Proof. We first consider a fixed episode k and assume that event Γk holds.

1. Rounds in the terminal layer Sk. By definition, ΨSk
Tk+1 is the set of rounds whose stopping

layer is Sk; in this layer we have (mj + v̂k(xt))rj
t,Sk
≤ 2B/

√
Tk. By Lemma 9,∑

t∈ΨSk
Tk+1

R1
t ≤

( 4B√
Tk

+ 6BL∥v̂k − v∗∥∞ ln Tk

)
Tk ≤ 4B

√
Tk + 6BL∥v̂k − v∗∥∞Tk ln Tk.

2. Rounds in layers s = 2, . . . , Sk − 1. Recall that p̃∗
t = arg maxj∈[Nk] Revt

(
mj + v̂k(xt)

)
is the

discrete empirical best price. Summing the per-round bound from Lemma 4 over t ∈ Ψs
Tk+1

and then over s = 2, . . . , Sk − 1 gives
Sk−1∑
s=2

∑
t∈Ψs

Tk+1

[
Revt(p̃∗

t )− Revt(pt)
]
≤

Sk−1∑
s=2

(
8B · 2−s + (4s− 2)BL∥v̂k − v∗∥∞

)
|Ψs

Tk+1|.

For the first term, apply Lemma 11 and Cauchy-Schwarz:
Sk−1∑
s=2

8B · 2−s|Ψs
Tk+1| ≤

Sk−1∑
s=2

16B
√

2Nk|Ψs
Tk+1| ln(2SkNkTk/δ)

≤ 16B
√

2Nk ln(2SkNkTk/δ)

√√√√(Sk − 2)
Sk−1∑
s=2
|Ψs

Tk+1|.
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Since ∑Sk
s=1 |Ψs

Tk+1| = Tk and Sk = ⌈1
2 log2 Tk⌉ ≤ 1

2 log2 Tk + 1, we have Sk − 2 ≤ 1
2 log2 Tk ≤

(ln Tk)/(2 ln 2) ≤ ln Tk. Therefore,

Sk−1∑
s=2

8B · 2−s|Ψs
Tk+1| ≤ 16B

√
2NkTk ln(2SkNkTk/δ) ln Tk.

For the second term, use the crude bound ∑Sk−1
s=2 (4s− 2)|Ψs

Tk+1| ≤ (4Sk − 6)∑Sk−1
s=2 |Ψs

Tk+1| ≤
(4Sk − 6)Tk, and since Sk ≤ 1

2 log2 Tk + 1,

4Sk − 6 ≤ 2 log2 Tk − 2 = 2
ln 2 ln Tk − 2 ≤ 3 ln Tk − 2.

Hence
Sk−1∑
s=2

(4s− 2)BL∥v̂k − v∗∥∞|Ψs
Tk+1| ≤ BL∥v̂k − v∗∥∞Tk(3 ln Tk − 2).

3. Rounds in the first layer s = 1. By Lemma 11 with s = 1, |Ψ1
Tk+1| ≤ 32Nk ln(2SkNkTk/δ).

Using the trivial per-round bound R1
t ≤ 2B on this layer,∑

t∈Ψ1
Tk+1

R1
t ≤ 64BNk ln

(
2SkNkTk/δ

)
.

Since ⋃Sk
s=1 Ψs

Tk+1 = [Tk], adding the contributions from all rounds yields, on Γk,

2k∑
t=2k−1+T e

k
+1
R1

t ≤ 16B
√

2NkTk ln(2SkNkTk/δ) ln Tk + BL∥v̂k − v∗∥∞Tk(3 ln Tk − 2)

+ 4B
√

Tk + 6BL∥v̂k − v∗∥∞Tk ln Tk + 64BNk ln
(
2SkNkTk/δ

)
.

Absorbing the harmless “−2” into the logarithmic factor and summing over k = 1, . . . , ⌈log2 T ⌉,
then applying a union bound over {Γk} gives the stated episode-wise sum and the overall probability
at least 1− ⌈log2 T ⌉δ.

Lemma 6. Under Assumptions 1 and 2, the discretization regret
∑T

t=1R2
t is upper bounded by

T∑
t=1
R2

t ≤
⌈log2 T ⌉∑

k=1

3BTk

Nk
.

Proof. Recall that p∗
t is the (continuous) optimal price, p̃∗

t is the discrete best price among the
candidate set, and mj are the midpoints of an equi-spaced grid partitioning

[
−∥v̂k∥∞, B + ∥v̂k∥∞

]
into Nk subintervals. Define the left neighbor of p∗

t on the discrete grid by

ṗt ≜ max
{

0, max
j:mj+v̂k(xt)≤p∗

t

(
mj + v̂k(xt)

)}
.

Since p̃∗
t maximizes the discrete revenue, we have

p̃∗
t

(
1− F (p̃∗

t − v∗(xt))
)
≥ ṗt

(
1− F (ṗt − v∗(xt))

)
,
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and therefore

p∗
t

(
1− F (p∗

t − v∗(xt))
)
− p̃∗

t

(
1− F (p̃∗

t − v∗(xt))
)

≤ p∗
t

(
1− F (p∗

t − v∗(xt))
)
− ṗt

(
1− F (ṗt − v∗(xt))

)
≤ p∗

t

(
1− F (ṗt − v∗(xt))

)
− ṗt

(
1− F (ṗt − v∗(xt))

)
= (p∗

t − ṗt)
(
1− F (ṗt − v∗(xt))

)
≤ p∗

t − ṗt,

where we used that ṗt is the left neighbor of p∗
t and 1− F (·) is nonincreasing and bounded by 1.

It remains to bound p∗
t − ṗt. Because the candidate prices {mj + v̂k(xt)}Nk

j=1 are equally spaced
with grid spacing (B + 2∥v̂k∥∞)/Nk, and mj are midpoints, we have

m1 + v̂k(xt) ≤
B + 2∥v̂k∥∞

2Nk
, mNk

+ v̂k(xt) ≥ B − B + 2∥v̂k∥∞
2Nk

.

Three cases are possible:
(i) No candidate ≤ p∗

t . Then ṗt = 0 and p∗
t ≤ m1 + v̂k(xt) ≤ B+2∥v̂k∥∞

2Nk
.

(ii) Some candidate ≤ p∗
t and the largest such candidate is not mNk

+ v̂k(xt). Then the next
candidate exceeds p∗

t and lies at distance at most B+2∥v̂k∥∞
Nk

, hence 0 ≤ p∗
t − ṗt ≤ B+2∥v̂k∥∞

Nk
.

(iii) The largest candidate ≤ p∗
t is mNk

+ v̂k(xt). By the midpoint bound above, mNk
+ v̂k(xt) ≥

B − B+2∥v̂k∥∞
2Nk

, so 0 ≤ p∗
t − ṗt ≤ B+2∥v̂k∥∞

2Nk
.

In all cases,
0 ≤ p∗

t − ṗt ≤
B + 2∥v̂k∥∞

Nk
.

Combining with the first part yields, for each round t,

p∗
t

(
1− F (p∗

t − v∗(xt))
)
− p̃∗

t

(
1− F (p̃∗

t − v∗(xt))
)
≤ B + 2∥v̂k∥∞

Nk
≤ 3B

Nk
.

Summing over the Tk rounds of episode k gives the stated episode-wise bound; summing over
episodes yields the cumulative bound.

Theorem 1. Suppose 0 < δ < 1/(2⌈log2 T ⌉). Under Assumptions 1, 2 and 3, the regret of
Algorithm 1 satisfies

Reg(T ) = Õ
(
ρ

1
3
V (δ)T

2
3
)

with probability at least 1− 2δ⌈log2 T ⌉.

Proof. For episode k, recall that Γk is the high-probability event for UCB concentration. Let Ek

denote the event that the offline oracle satisfies Assumption 4 with confidence level δ for the k-th
call. By design, P(Γk) ≥ 1− δ and P(Ek) ≥ 1− δ. Applying the union bound, we have

P

⌈log2 T ⌉⋂
k=1

(Γk ∩ Ek)

 ≥ 1− 2⌈log2 T ⌉δ.

In what follows we work on the event ⋂⌈log2 T ⌉
k=1 (Γk ∩ Ek).
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Recall that T e
k =

⌈
ℓ

2
3
k ρ

1
3
V (δ)

⌉
, and whenever T e

k > ℓk (which happens when ℓk < ρV(δ)), we use
a pure exploration episode, so these T e

k are capped by ℓk. We know that the UCB phase begins
no earlier than k∗ = ⌈log2(ρV(δ))⌉. The regret during the exploration phase up to k∗ is at most
B2k∗ ≤ BρV(δ) + B. Once the UCB phase begins, exactly T e

k exploration rounds will be played,
and since the price pt is bounded by B, the regret during the exploration phase (with k > k∗) is

⌈log2 T ⌉∑
k=k∗+1

BT e
k ≤ Bρ

1
3
V (δ)

⌈log2 T ⌉∑
k=1

ℓ
2
3
k ≤ 3Bρ

1
3
V (δ)T

2
3 ,

where we used the fact that ℓk = 2k−1 and

⌈log2 T ⌉∑
k=1

ℓ
2
3
k =

⌈log2 T ⌉∑
k=1

2
2
3 (k−1) =

⌈log2 T ⌉−1∑
k=0

2
2
3 k = 2 2

3 (⌈log2 T ⌉) − 1
2 2

3 − 1
≤ (2T )2/3 − 1

2 2
3 − 1

≤ 3T 2/3.

Combining this regret of exploration phase with Lemma 5 and Lemma 6, we have

Reg(T ) =
T∑

t=1
R1

t +
T∑

t=1
R2

t +
⌈log2 T ⌉∑

k=1
BT e

k

≤
⌈log2 T ⌉∑

k=1

(
16B

√
2NkTk ln(2SkTkNk/δ) ln Tk + 9BL∥v̂k − v∗∥∞Tk ln Tk

+ 4BT
1
2

k + 64BNk ln(2SkTkNk/δ) + 3BTk/Nk

)
+ BρV(δ) + B + 3Bρ

1
3
V (δ)T

2
3 .

Recall first that T e
k =

⌈
ℓ

2
3
k ρ

1
3
V (δ)

⌉
. By Assumption 4,

∥v̂k − v∗∥∞ ≤
√

ρV(δ)
T e

k

= ρ
1/3
V (δ)
ℓ

1/3
k

on Ek.

Since Nk = ⌈T
1
3

k / ln 1
3 (Tk/δ)⌉, this implies that Reg(T ) = Õ(T 2

3 ρ
1
3
V (δ)) with probability at least

1− 2⌈log2(T )⌉δ.

B.3 Proofs for Lower Bounds in Section 4.2

B.3.1 Construction of Noise Distribution

We start with an infinitely differentiable function

u0(x) =


exp

− 1
x
(

1
3 − x

)
 , x ∈

(
0, 1

3

)
,

0, otherwise,

which is nonnegative. Normalize u0 via

u(x) =
(∫ 1

3

0
u0(t)dt

)−1 ∫ x

−∞
u0(t)dt.
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Then u(x) = 0 for x ≤ 0 and u(x) = 1 for x ≥ 1
3 . For any positive integer l, the l-th derivative on

(0, 1
3) takes the form

poly(x)(
x(1

3 − x)
)2l−2 exp

(
− 1

x(1
3 − x)

)
,

so for each m ∈ N there exists Lm > 0 with supx |u(m)(x)|/m! ≤ Lm, and u(m)(0) = u(m)(1
3) = 0 for

m ≥ 1. A Taylor expansion at x = 1
3 with Lagrange remainder gives∣∣∣u(1

3)− u(x)
∣∣∣ ≤ supξ |u(m)(ξ)|

m!
∣∣∣x− 1

3

∣∣∣m ≤ Lm

∣∣∣x− 1
3

∣∣∣m .

We summarize the properties of u(x) in the following proposition.

Proposition 1. For the function u above:

1. u(x) is nondecreasing;

2. u(m)(0) = u(m)(1
3) = 0 for all m ≥ 1;

3. for every m ≥ 1 and x ∈ R,
∣∣u(1

3)− u(x)
∣∣ ≤ Lm

∣∣x− 1
3
∣∣m.

Next step is to construct a bump function

B(x) =



0, x < 0,

u(x), 0 ≤ x ≤ 1
3 ,

1, 1
3 < x < 2

3 ,

u(1− x), 2
3 ≤ x ≤ 1,

0, x > 1,

Since u(x) is infinitely differentiable and its m-th order derivatives vanish at 0 and 1
3 , B(x) is also

infinitely differentiable. Furthermore, from Proposition 1, we have∣∣B(x)−B(1
3)
∣∣ ≤ Lm

∣∣x− 1
3
∣∣m. (9)

For any a < b, let B[a,b](x) = B
(

x−a
b−a

)
. Then (9) yields

B[a,b]

(
a + b− a

3

)
−B[a,b](x) = B

(1
3

)
−B

(
x− a

b− a

)
≤ Lm

∣∣∣∣13 − x− a

b− a

∣∣∣∣m = Lm

(b− a)m

∣∣∣∣a + b− a

3 − x

∣∣∣∣m .

Construct nested intervals [0, 1] = [a0, b0] ⊃ [a1, b1] ⊃ · · · with lengths wk = bk − ak = 3−k! for
k ≥ 1 (and w0 = 1). We further partition [ak−1 + wk−1

3 , bk−1 − wk−1
3 ] into Qk = wk−1

3wk
subintervals of

length wk and choose one of them as [ak, bk]. Note B[ak,bk] is constant on [ak + wk
3 , bk − wk

3 ], hence
B

(ℓ)
[ak,bk](x) = 0 there for all ℓ ≥ 1 on that interval. Importantly, there exist infinitely many series of

intervals that can be constructed in this manner. For each of these interval series, we define

f(x) = cf

∞∑
k=0

wm
k B[ak,bk](x),

with cf > 0 small (to be fixed). We list a few important properties of f(x) below.

47



Proposition 2. 1. 0 ≤ f(x) ≤ 3
2cf for all x.

2. There is a unique maximizer x∗ ∈ [0, 1] with x∗ ∈ ∩k≥0[ak, bk] and f(x∗) = cf
∑∞

k=0 wm
k .

3. f is unimodal: nondecreasing on [0, x∗] and nonincreasing on [x∗, 1].

4. f is m-times differentiable and
∣∣f (m)(x)

∣∣ ≤ cf m!Lm.

Proof. 1. Since 0 ≤ B[ak,bk](x) ≤ 1, we have

0 ≤ f(x) ≤
∞∑

k=0
cf wm

k ≤ cf

∞∑
k=0

3−k ≤ 3
2cf <∞.

2. Since wk = bk − ak = 3−k! → 0, then there exists a unique x∗ such that x∗ ∈ [ak, bk] for any k.
For B[ak,bk](x), it is nondecreasing on (−∞, x∗] and non-increasing on [x∗, +∞). Hence, x∗ is
the maximizer of f(x). Since x∗ ∈ [ak+1, bk+1] and thus B[ak,bk](x) = 1, we immediately know
that the maximum is cf

∑∞
k=0 wm

k ≤
3
2cf .

3. For any k ≥ 0, B[ak,bk](x) is nondecreasing in [0, x∗] and non-increasing in [x∗, 1] since
x∗ ∈ [ak+1, bk+1] ⊂ [ak, bk]. Thus f(x), as the sum of these bump functions, is nondecreasing
in [0, x∗] and non-increasing in [x∗, 1].

4. Since B(x) is infinitely times differentiable, we have
∞∑

k=0
wm

k B(m−1)
(

x− ak

bk − ak

) 1
(bk − ak)m−1 ≤

∞∑
k=0

wk ≤
∞∑

k=0
3−k <∞,

which shows that cf
∑∞

k=0 wm
k B

(m−1)
[ak,bk] (x) converges absolutely and uniformly. The above result

implies f(x) is (m− 1)-th differentiable.

Notice that for any x ∈ [0, 1], there exists at most one k, such that B
(m)
[ak,bk](x) ̸= 0. Consider

the case when B
(m)
[ak,bk](x) ̸= 0, and we know that

x ∈ [ak, bk] ⊂
[
ak−1 + wk−1

3 , bk−1 −
wk−1

3
]
⊂ · · · [a0, b0] = [0, 1].

Hence, we know that B
(m)
[aj ,bj ](x) = 0 for j = 0, 1, · · · , k − 1. Moreover, we know that

x /∈ [ak+1, bk+1]; otherwise we have B
(m)
[ak,bk](x) = 0. Therefore, we have x /∈ [aj , bj ] for

j = k + 1, k + 2, · · · , which indicates B
(m)
[aj ,bj ](x) = 0. Therefore, we have

cf max
x∈[ak,bk],k∈N

∣∣wm
k B

(m)
[ak,bk](x)

∣∣ ≤ cf max
x∈[ak,bk],k∈N

∣∣∣B(m)( x− ak

bk − ak

)∣∣∣ ≤ cf m!Lm.

The above property implies cf
∑∞

k=0 wm
k B

(m)
[ak,bk](x) also converges absolutely and uniformly.

From the above property, we know that f is m-th differentiable.
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We then rescale f(x) to [0, 1] and define the function g(x) = 1 − 1
1+f(x) . Notice that g(x) is

unimodal with the same unique maximizer x∗ of f(x). Furthermore,

|g(x∗)− g(x)| =
∣∣∣∣ 1
1 + f(x∗) −

1
1 + f(x)

∣∣∣∣ ≤ |f(x∗)− f(x)| ≤ L̃m|x∗ − x|m.

We further define the function F (x) as

F (x) =



0, if x < b,

1− b
x −

1−b
x g

(
x−b
1−b

)
, if b ≤ x ≤ 1,

2− 1+b
x , if 1 < x ≤ 1 + b,

1, if x > 1 + b.

(10)

Let cf ∈ (0, 1/L1) and b = (1 + cf L1)/2 ∈ (0, 1).

Proposition 3. 1. F is a right-continuous, nondecreasing CDF on R.

2. F is m-times differentiable on (b, 1).

3. The revenue Rev(x) = x(1− F (x)) has a unique maximizer x∗
r ∈ [b, 1].

Proof. 1. It is easy to check that F (−∞) = 0, F (+∞) = 1 and F (x) is continuous on R. The
remaining step is to show that F (x) is nondecreasing. The monotonicity of F (x) is clear on
(−∞, b) ∪ (1, +∞]. Then we consider the derivative of F (x) on [b, 1]. We have

F ′(x) =
b− xg′(x−b

1−b ) + (1− b)g(x−b
1−b )

x2 .

Since |g′(x)| =
∣∣∣ f ′(x)

(1+f(x))2

∣∣∣ ≤ cf L1, we have

b− xg′
(

x− b

1− b

)
≥ b− cf L1 = 1− cf L1

2 > 0.

It indicates that F ′(x) > 0 on [b, 1]. Note that F (b) ≤ F (x) ≤ F (1) for x ∈ [b, 1]. Thus F (x)
is nondecreasing on R.

2. It follows directly that f(x) is m-th differentiable.

3. Simple calculation yields

Rev(x) =



x, if x ∈ [0, b),

b + (1− b)g
(

x−b
1−b

)
, if x ∈ [b, 1],

1 + b− x, if x ∈ (1, 1 + b],

0, if x ∈ (1 + b,∞).

It is easy to check Rev(x) ≥ b > Rev(y) for any x ∈ [b, 1] and y ∈ [0, +∞)− [b, 1]. Since g(x)
has the same unique maximizer x∗

g = x∗
f for f , we obtain that

x∗
r = b + (1− b)x∗

g ∈ [b, 1]

is the unique maximizer for Rev(x).
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B.3.2 Construction of Instances

Each interval sequence {[ak, bk]}k≥0 yields a triplet (f, g, F ) and thus an instance. With well-
formulated groups of such instances, we will prove that no policy can perform well on all the
instances in one group.

We work at a fixed level k ≥ 3. In particular, we fix arbitrary level-i bumps for all i ≠ k, and
construct a group of instances that differs only in the level-k bump. Set

nk ≜
⌈ wk−1

kw2m+1
k

⌉
, Qk = wk−1

3wk
, and wk = bk − ak = 3−k!.

Let I1, . . . , IQk
be the Qk choices for [ak, bk] at level k, each with width wk. For each j, define the

instance CDF Fj using fj (and hence gj) obtained by adding up all the fixed level-i bumps for i ≠ k

and the level-k bump corresponding to Ij . Furthermore, let F0 be the truncated reference CDF
(with levels < k only), defined using

f0(x) = cf

k−1∑
i=0

wm
i B[ai,bi](x).

Recall that we set cf ∈ (0, 1/L1) and b = (1 + cf L1)/2 ∈ (0, 1). We restrict to prices pt ∈ [b, 1]
since outside this range revenue is dominated by a price in [b, 1]. Let unk

= (p1, y1, . . . , pnk
, ynk

) be
the data generated under a policy π, and Pj (resp. P0) be the law under Fj (resp. F0). Define the
normalized price

qt = (pt − b)/(1− b) ∈ [0, 1]

and the count
Nj =

nk∑
t=1

I {qt ∈ Ij} .

B.3.3 Preliminary

The following lemmas will be useful.

Lemma 12 (Lemma 6, Luo et al. 2022). For Bernoulli distributions Ber(p) and Ber(p + ε) with
1
2 ≤ p ≤ p + ε ≤ 1

2 + C, we have

DKL(Ber(p)∥Ber(p + ε)) ≤ 4
1− 4C2 ε2.

Lemma 13 (Transportation inequality, a variant of Luo et al. 2022). Consider any function h on
the sequence u that has a bounded value range [0, M ]. Then for two probability measure P0 and Pj,

EPj [h(u)]− EP0 [h(u)] ≤M
√

1
2DKL(P0∥Pj).

We remark that this is a variant (and direct corollary due to the symmetry of the total variation
norm) of a result appeared in Luo et al. 2022, Appendix A.5, with DKL(P0∥Pj) replacing DKL(Pj∥P0).

Lemma 14 (Instances difference bound). For any j ∈ [Qk], p ∈ [b, 1] and q = (p− b)/(1− b):
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1. If q /∈ Ij, then Fj(p) = F0(p).

2. If q ∈ Ij, then

0 ≤ (1− Fj(p))− (1− F0(p)) ≤ 3
2cf wm

k , 1
2 ≤ 1− F0(p) ≤ 1

1+cf
, and 1

2 ≤ 1− Fj(p) ≤ 1
1+cf

.

Proof. For p such that q /∈ Ij , then (by the nesting) q /∈ [ai, bi] for every i ≥ k. Hence B[ai,bi](q) = 0
for all i ≥ k, and therefore

fj(q) = cf

k−1∑
i=0

wm
i B[ai,bi](q) = f0(q).

and hence gj(q) = g0(q) and Fj(p) = F0(p).
Assume now q ∈ Ij . By construction,

fj(q)− f0(q) = cf

∞∑
i=k

wm
i B[ai,bi](q) ≥ 0.

and

(1− Fj(p))− (1− F0(p)) = 1− b

p

(
gj(q)− g0(q)

)
= 1− b

p

fj(q)− f0(q)
(1 + fj(q))(1 + f0(q))

≤ 1− b

p

(
fj(q)− f0(q)

)
= 1− b

p
cf

∞∑
i=k

wm
i B[ai,bi](q)

≤ 1− b

b
cf

∞∑
i=k

wm
i ≤ cf

∞∑
i=k

wm
i ,

since p ≥ b and (1− b)/b ≤ 1. To bound the tail ∑∞
i=k wm

i , use
wm

k+r

wm
k

= 3−m
(

(k+r)!−k!
)
≤ 3−r (r ≥ 1),

hence ∞∑
i=k

wm
i = wm

k

∞∑
r=0

wm
k+r

wm
k

≤ wm
k

∞∑
r=0

3−r = 3
2wm

k ,

and therefore
0 ≤ (1− Fj(p))− (1− F0(p)) ≤ 3

2cf wm
k .

It remains to bound the parameters 1− F0(p) and 1− Fj(p) themselves. The arguements below
works for both F0 and Fj , hence we can drop the subscript. The lower bound is immediate from the
generic relationship

1− F (p) = b + (1− b)g(q)
p

≥ b

p
≥ b ≥ 1

2 ,

since g ≥ 0, p ≤ 1, and b = 1+cf L1
2 ≥ 1

2 .
For the upper bound, note first that F is nondecreasing on [b, 1] (see the monotonicity proof in

the construction), so 1−F is nonincreasing. Because q ∈ Ij ⊂ [1/3, 2/3], we have p = b + (1− b)q ≥
b + (1− b)/3. Thus

1− F (p) ≤ 1− F
(
b + (1− b)1

3

)
=

b + (1− b)g(1
3)

b + (1− b)1
3

.
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At x = 1
3 , the bump sum satisfies f(1

3) = cf , hence

g
(1

3
)

=
f(1

3)
1 + f(1

3)
= cf

1 + cf
.

Combining the last two displays and writing b = 1+cf L1
2 gives

1− F (p) ≤
b + (1− b) cf

1 + cf

b + (1− b)1
3

= 3(b + cf )
(2b + 1)(cf + 1) .

We further choose cf < 1
L1+6 and recall that b = 1+cf L1

2 . Hence we have 3(b + cf ) < 2b + 1 and

1− F (p) ≤ 1
1 + cf

< 1.

This completes the proof.

B.3.4 Information Bounds

Lemma 15 (Per-round KL bound). For any j ∈ [Qk] and p ∈ [b, 1] with q = (p− b)/(1− b),

DKL
(
Ber(1− F0(p))∥Ber(1− Fj(p))

)
≤ 1

300w2m
k I {q ∈ Ij} .

Proof. If q /∈ Ij , the Bernoulli parameters coincide by Lemma 14(1). If q ∈ Ij , then the parameters
lie in [1

2 , 1
1+cf

] and their gap is ≤ 3
2cf wm

k by Lemma 14(2). Applying Lemma 12, we obtain

DKL(Ber(1− F0(pt))∥Ber(1− Fj(pt))) ≤
4

1− 4( 1
1+cf

− 1
2)2 ((1− Fj(pt))− (1− F0(pt)))2

= 9
4cf (1 + cf )2w2m

k

≤ 1
300w2m

k .

The last inequality holds as we can choose positive cf such that 0 < cf < min{10−4, 1
L1+6}.

By chain rule of KL, summing the per-round KLs from Lemma 15 and taking the corresponding
expectation, we immediately obtain the bound for pathwise KL accumulation.

Lemma 16 (Pathwise KL accumulation). For any j ∈ [Qk], we have

DKL(P0∥Pj) ≤ 1
300w2m

k EP0 [Nj ].

Lemma 17 (Bounding expectation of Nj). For all k ≥ 3,

1
Qk

Qk∑
j=1

EPj [Nj ] ≤ 1
5nk.

In particular, there exists j⋆ ∈ [Qk] with EPj⋆ [Nj⋆ ] ≤ 1
5nk.
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Proof. Note that Nj is a function of the price and response sequence unk
and is bounded by nk.

Apply Lemma 13 (with h = Nj and M = nk) and Lemma 16 to get

EPj [Nj ]− EP0 [Nj ] ≤ nk

√
1
2DKL(P0∥Pj) ≤ nkwm

k

√
1

600EP0 [Nj ].

For k ≥ 3, we sum over j ∈ [Qk] take the average to obtain

1
Qk

Qk∑
j=1

EPj [Nj ] ≤ 1
Qk

Qk∑
j=1

EP0 [Nj ] + nkwm
k

20Qk

Qk∑
j=1

√
EP0 [Nj ] = nk

Qk
+ nkwm

k

20Qk

Qk∑
j=1

√
EP0 [Nj ]

≤ nk

Qk
+ nkwm

k

20Qk

√√√√√Qk

Qk∑
j=1

EP0 [Nj ] = nk

Qk
+ nkwm

k

20Qk

√
Qknk

= nk

(
1

Qk
+ wm

k

20

√
2wk−1

w2m+1
k Qk

)

≤ nk

(
1
27 +

√
6

20

)

≤ 1
5nk.

Therefore, there exists some j⋆ ∈ [Qk] such that EPj⋆ [Nj⋆ ] ≤ 1
5nk.

B.3.5 Completing the Lower Bound Proof

Lemma 18 (Revenue gap). Let p⋆
j maximize Revj and set q⋆

j = (p⋆
j − b)/(1− b) ∈ Ij. There exists

C̃ ≜ 1−cf L1
2

cf

(1+ 3
2 cf )2 > 0 such that for any p ∈ [b, 1] with q = (p− b)/(1− b) /∈ Ij,

Revj(p⋆
j )− Revj(p) ≥ C̃wm

k .

Proof. For any p ∈ [b, 1] such that q = p−b
1−b /∈ Ij , B[ai,bi](q) is equal to zero for i ≥ k as Ij ⊃

[ak+1, bk+1] ⊃ · · · . Recall that

fj(x) = cf

k−1∑
i=0

w2m
i B[ai,bi](x) + cf w2m

i B[ak,bk](x) + cf

∞∑
i=k+1

w2m
i B[ai,bi](x).

Hence, fj(q⋆
j ) − fj(q) ≥ cf wm

k , and therefore gj(q⋆
j ) − gj(q) ≥ cf

(1+ 3
2 cf )2 wm

k . Since Revj(p) =
b + (1− b)gj(q) on [b, 1] and 1− b = (1− cf L1)/2,

Revj(p⋆
j )− Revj(p) ≥ 1− cf L1

2 · cf

(1 + 3
2cf )2 wm

k = C̃wm
k .

Lemma 19 (Regret at horizon nk). For the j⋆ in Lemma 17,

EPj⋆ [Reg(nk)] ≥ 0.8C̃wm
k nk.
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Proof. Split rounds by {qt ∈ Ij⋆}. On {qt /∈ Ij⋆}, Lemma 18 yields a per-round gap ≥ C̃wm
k ;

otherwise the gap is ≥ 0. Thus

EPj⋆ [Reg(nk)] ≥ C̃wm
k EPj⋆ [nk −Nj⋆ ] ≥ C̃wm

k (nk − 1
5nk) = 0.8C̃wm

k nk.

We are finally ready to establish the lower bound.

Proof of Theorem 2. With nk = ⌈wk−1/(kw2m+1
k )⌉ and wk = 3−k!, for all sufficiently large k,

wm
k nk ≥ n

m+1−1/k
2m+1−1/k

k ≥ n
m+1

2m+1 − m
k(2m+1)2

k . (11)

By Lemma 19 and (11), for large k,

EPj⋆ [Reg(nk)] ≥ 0.8C̃n
m+1

2m+1 − m
k(2m+1)2

k .

If a policy achieved O
(
T

m+1
2m+1 −ζ) regret for some ζ > 0 uniformly over F , then choosing k large

enough so that m
k(2m+1)2 ≤ ζ/2 would contradict the bound above at horizon T = nk:

EPj⋆ [Regπ(nk)] ≤ Cπn
m+1

2m+1 −ζ

k < Cπn
− m

k(2m+1)2

k n
1+m

2m+1 − m
k(2m+1)2

k

< 0.8C̃n
1+m

2m+1 − m
k(2m+1)2

k < EPj⋆ [Regπ(nk)].

Hence no policy can guarantee O
(
T

m+1
2m+1 −ζ) regret for any ζ > 0.

B.4 Proofs for Section 5

Corollary 2. Suppose 0 < δ < 1/(2⌈log2(T )⌉). Under Assumptions 1, 2, 3 and 6, the regret of
Algorithm 1 with T e

k = ρ
1

2+α

V (δ)ℓ
2

2+α

k satisfies

Reg(T ) = Õ
(
(ρ

1
3
V (δ)T

2
3 ) ∨ (ρ

1
2+α

V (δ)T
2

2+α )
)

with probability at least 1− 2⌈log2(T )⌉δ.

Proof. First, we analyze the regret of k-th episode on the event Γk and Assumption 6. Recall
definitions T e

k = ρ
1

2+α

V (δ)ℓ
2

2+α

k , Tk = ℓk − T e
k and Nk =

⌈
T

1
3

k /ρ
1
3
V (δ)

⌉
in Algorithm 1. From Lemma 5

and Lemma 6, we know that

1. the regret from learning F scales as Õ(
√

NkTk) = Õ(T 2
3 /ρ

1
6
V (δ));

2. the regret from discretization error scales as Õ(Tk/Nk) = Õ(ρ
1
3
V (δ)T 2

3 ), which dominates the
regret from learning F (without loss of generality we assume ρV(δ) > 1);

3. the length of the exploration phase scales as O(T e
k ) = O(ρ

1
2+α

V (δ)ℓ
2

2+α

k ); and

4. regret from estimation error of v∗ scales with

Õ(∥v̂k − v∗∥∞Tk) = Õ
(√

ρV(δ)/(T e
k )αTk

)
= Õ(ρ

1
2+α

V (δ)ℓ
2

2+α

k ).
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Combing the all terms and applying the union bounds yield the desired result.

Corollary 3. Suppose 0 < δ < 1/(2⌈log2 T ⌉). Under Assumptions 1, 2, 5 and 7, the regret of
Algorithm 3 satisfies

Reg(T ) = Õ
(
T

3
5 ∨ ρ

1
2
V (δ)T 1− α

2
)

with probability at least 1− 2⌈log2(T )⌉δ.

Proof. Since we invoke a classification oracle, no separate exploration phase is needed: we use samples
of size Tk−1 = 1

2Tk from the previous episode. By Assumption 7, this guarantees ∥v̂k − v∗∥∞ =
O(ρ

1
2
V (δ)T − α

2
k ) with probability at least 1− δ. In what follows, we focus on the asymptotic order of

the regret, omitting constant factors and logarithmic terms for brevity.
From Lemma 5, the learning regret is bounded by

⌈log2 T ⌉∑
k=1

[
16B

√
2NkTk ln(2SkTkNk/δ) ln Tk + 9BL∥v̂k − v∗∥∞Tk ln Tk

+ 4BT
1
2

k + 64BNk ln(2SkTkNk/δ)
]

with probability at least 1− ⌈log2 T ⌉δ.

Substituting Nk = ⌈T
1
5

k ⌉ and the error bound ∥v̂k − v∗∥∞ = O(ρ
1
2
V (δ)T − α

2
k ), the dominant term

in the summation simplifies to Õ(T 3
5 ∨ ρ

1
2
V (δ)T 1− α

2 ), with other terms (e.g., BL
√

T , T
1
5 ) being

asymptotically negligible. The discretization regret is bounded by Õ
(∑⌈log2 T ⌉

k=1 Tk/N2
k

)
= Õ(T 3

5 ),
due to Assumption 5. Combining the learning regret and discretization regret, we thus obtain the
desired bound Reg(T ) = Õ(T 3

5 ∨ ρ
1
2
V (δ)T 1− α

2 ).

Assumption 8 (Differentiability). The function F is twice continuously differentiable.

Assumption 9 (Concavity). The function F and 1− F is log-concave.

Corollary 4. Assume that the noise distribution F is twice continuously differentiable, and that
both F and 1− F are log-concave. Under Assumptions 1 and 4, the regret of Algorithm 4 satisfies

Reg(T ) = O
(
ρV(δ) ln T

)
with probability at least 1− ⌈log2 T ⌉δ.

Proof. Fix an episode k ≥ 2. By the first-order optimality condition, the optimal price in episode k

is pt = g
(
v̂k(xt)

)
, where g(v) = v + ϕ−1(−v) and ϕ(v) = v − 1−F (v)

F ′(v) . Since 1− F is log-concave, the
hazard h(v) = F ′(v)

1−F (v) is increasing, hence ϕ′(v) = 1 + h′(v)
h(v)2 ≥ 1, so ϕ is strictly increasing and g is

1-Lipschitz: |g(v)− g(w)| ≤ |v − w|.
Given v̂k (fit on the previous episode), the random variables {(xt, pt, yt)} in episode k are i.i.d.

because pt depends only on xt and the covariates are i.i.d. We temporarily abuse the revenue
function notation and write Revq(p) = p

(
1− F (p− q)

)
. Let qt = v∗(xt) and p∗

t = g(qt) denote the
episode-k optimal price. By Taylor’s theorem around p∗

t ,

Revt(p∗
t )− Revt(pt) = −1

2Rev′′
qt

(χt)(pt − p∗
t )2 ≤ 1

2C|pt − p∗
t |2,
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for some χt between pt and p∗
t , where

C ≜ sup
q,p∈[0,B]

|Rev′′
q (p)| <∞

is finite because F ∈ C2 and (p− q) ranges over a compact set (by boundedness of p and v∗). Since
g is 1-Lipschitz, |pt − p∗

t | ≤ ∥v̂k − v∗∥∞ and thus

Revt(p∗
t )− Revt(pt) ≤ 1

2C∥v̂k − v∗∥2∞.

Let ℓk−1 = 2k−2 be the size of the previous episode used to fit v̂k. Under the known-F offline
regression oracle, for δ > 0 we have with probability at least 1− δ,

∥v̂k − v∗∥∞ ≤
√

ρV(δ)/ℓk−1.

Therefore, on this event,

Revt(p∗
t )− Revt(pt) ≤ 1

2C
ρV(δ)
ℓk−1

= 1
2C

ρV(δ)
2k−2 .

Summing over the 2k−1 rounds of episode k gives

2k∑
t=2k−1

(
Revt(p∗

t )− Revt(pt)
)
≤ CρV(δ).

Apply the union bound over episodes k = 2, . . . , ⌈log2 T ⌉ to get that, with probability at least
1− ⌈log2 T ⌉δ,

Reg(T ) ≤ B +
⌈log2 T ⌉∑

k=2
CρV(δ) = O

(
ρV(δ) log T

)
.

Corollary 5. Under Assumptions 1, 3 and 4, the regret of Algorithm 4 satisfies

Reg(T ) = O
(√

ρV(δ)T ln T
)

with probability at least 1− ⌈log2 T ⌉δ.

Proof. We first consider one-step regret:

Revt(p∗
t )− Revt(pt)

= p∗
t (1− F (p∗

t − v∗(xt)))− pt(1− F (pt − v∗(xt)))
= p∗

t (1− F (p∗
t − v∗(xt)))− p∗

t (1− F (p∗
t − v̂k(xt))) + p∗

t (1− F (p∗
t − v̂k(xt)))

− pt(1− F (pt − v̂k(xt))) + pt(1− F (pt − v̂k(xt)))− pt(1− F (pt − v∗(xt)))
≤ p∗

t (1− F (p∗
t − v∗(xt)))− p∗

t (1− F (p∗
t − v̂k(xt))) + pt(1− F (pt − v̂k(xt)))

− pt(1− F (pt − v∗(xt)))
≤ 2BL|v∗(xt)− v̂k(xt)|.
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The first inequality is due to the optimality of pt with respect to v̂k. Therefore, we have

Revt(p∗
t )− Revt(pt) ≤ 2BL|v∗(xt)− v̂k(xt)| ≤ 2BL∥v∗ − v̂k∥∞.

Recall the estimation guarantee of ∥v̂k − v∗∥∞ ≤
√

ρV(δ)/ℓk−1 with probability at least 1− δ

for episode k. Applying the union bound over episodes k = 1, . . . , ⌈log2 T ⌉, and summing over all
rounds in all episodes and plugging in the estimation guarantee, we obtain the desired result.

Algorithm Algorithm 5 requires an offline regression oracle for i.i.d. samples {(xt, vt)} that
satisfy the moment condition E[vt | xt] = v∗(xt). We state this assumption formally below.

Assumption 10 (Adjusted Offline Regression Oracle). Under realizability Assumption 1, let
{(xt, vt)}t∈[n] be i.i.d. samples from a fixed but unknown distribution, satisfying E[vt | xt] = v∗(xt).
Given these samples and any confidence level δ > 0, an offline regression oracle returns a predictor
v̂ ∈ V such that

∥v̂ − v∗∥∞ ≤
√

ρV(δ)/n with probability at least 1− δ.

Corollary 6. Suppose 0 < δ < 1/(2⌈log2 T ⌉). Under Assumptions 1, 2, 10 and 5, the regret of
Algorithm 5 satisfies

Reg(T ) = Õ
(
T

3
5 ∨ ρ

1
2
V (δ)T

1
2
)

with probability at least 1− 2⌈log2(T )⌉δ.

Proof. Since vt is directly observable, exploration phase is unnecessary so no additional regret arises.
The sample size for the adjusted offline regression oracle at the episode k is Tk−1 = 1

2Tk. This
ensures the estimation error bound ∥v̂k − v∗∥∞ = O(ρ

1
2
V (δ)T − 1

2
k ). In what follows, we focus on the

asymptotic order of the regret, omitting constant factors and logarithmic terms for brevity.
From Lemma 5, the learning regret is bounded by

⌈log2 T ⌉∑
k=1

[
16B

√
2NkTk ln(2SkTkNk/δ) ln Tk + 9BL∥v̂k − v∗∥∞Tk ln Tk

+ 4BT
1
2

k + 64BNk ln(2SkTkNk/δ)
]

with probability at least 1− ⌈log2 T ⌉δ.

Substituting Nk = ⌈T
1
5

k ⌉ and the error bound ∥v̂k−v∗∥∞ = O(ρ
1
2
V (δ)T − 1

2
k ), the dominant term in the

summation simplifies to Õ(T 3
5 ), with other terms (e.g., BL

√
T , T

1
5 ) being asymptotically negligible.

The discretization regret is bounded by Õ
(∑⌈log2 T ⌉

k=1 Tk/N2
k

)
= Õ(T 3

5 ), due to Assumption 5.
Combining the learning regret and discretization regret, we thus obtain the desired bound Reg(T ) =
Õ(T 3

5 ∨ ρ
1
2
V (δ)T 1

2 ).
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