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Abstract

Transfer learning has emerged as an effective approach to accelerate learning by integrating

knowledge from related source agents. However, challenges arise due to data heterogeneity – such

as differences in feature sets or incomplete datasets – which often results in the nonidentifiability

of causal effects. In this paper, we investigate transfer learning in partially observable contextual

bandits, where agents operate with incomplete information and limited access to hidden con-

founders. To address the challenges posed by unobserved confounders, we formulate optimization

problems to derive tight bounds on the nonidentifiable causal effects. We then propose an

efficient method that discretizes the functional constraints of unknown distributions into linear

constraints, allowing us to sample compatible causal models through a sequential process of

solving linear programs. This approach takes into account estimation errors and exhibits strong

convergence properties, ensuring robust and reliable causal bounds. Leveraging these causal

bounds, we improve classical bandit algorithms, achieving tighter regret upper and lower bounds

relative to the sizes of action sets and function spaces. In tasks involving function approximation,

which are crucial for handling complex context spaces, our method significantly improves the

dependence on function space size compared to previous work. We formally prove that our

causally enhanced algorithms outperform classical bandit algorithms, achieving notably faster

convergence rates. The applicability of our approach is further illustrated through an example

of offline pricing policy learning with censored demand. Simulations confirm the superiority of

our approach over state-of-the-art methods, demonstrating its potential to enhance contextual

bandit agents in real-world applications, especially when data is scarce, costly, or restricted due

to privacy concerns.

1 Introduction

Bandit learning problems involve an agent making a series of decisions to maximize rewards or

minimize regrets (Lattimore and Szepesvári 2020). Traditional bandit algorithms typically operate

without prior knowledge. With the abundance of data collected from various sources, transfer

learning has emerged as a powerful tool to accelerate learning by leveraging knowledge from a

related source agent, as discussed in Zhuang et al. (2020). Most transfer learning methods assume

that both the source and target agents have access to the same complete information (Cai et al.

2024, Liu et al. 2018). Often, the data available from the source and target agents differ in features,
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or completeness. This heterogeneity poses a challenge when transferring knowledge because the

information isn’t directly compatible. We address this challenge by focusing on transfer learning in

partially observable contextual bandit (POCB) problems. In this setting, an agent makes a series of

decisions (such as choosing an action based on current context) to maximize rewards, but both the

source and target agents have access to possibly different and incomplete sets of information.

Transfer learning in POCB has practical applications for integrating knowledge from heteroge-

neous data sources. For example, in training personalized recommendation systems for e-commerce

platforms, the source agent learns from detailed website user behavior (full context), while the

target agent focuses on mobile app users who provide only partial data due to privacy restrictions

or technical limitations. New influencing factors may also emerge that were absent in earlier data,

making datasets from different periods or platforms heterogeneous. A similar challenge arises

in autonomous driving systems. The source agent gathers data from human drivers, including

sensor readings like steering angle and environmental conditions. However, human decision-making

involves cognitive processes that cannot be captured by sensors. The target agent aims to develop

autonomous vehicles capable of making safe and efficient decisions but faces heterogeneity because

the context of human decision-making is only partially observable. These examples highlight the

need for effective knowledge transfer across heterogeneous datasets.

In the presence of heterogeneous data, transfer learning becomes more challenging. In POCB,

agents have access only to partial contextual information, which complicate the task of accurately

estimating the rewards of actions using source data. Previous works (Bilaj et al. 2023, Chen et al.

2023, Gong and Zhang 2023, Islam et al. 2022, Nikolaev et al. 2013, Zhang and Bareinboim 2021)

have attempted to address this issue by introducing additional assumptions, such as the availability

of proxy variables or predefined causal relationships between observed and unobserved information.

While these approaches can be effective, the assumptions they rely on are often impractical in

real-world scenarios, which limits their applicability. In the absence of such assumptions, transferring

knowledge from a source domain can sometimes degrade the performance of the target model,

leading to what is known as negative transfer (Rosenstein et al. 2005).

To address these challenges, it is crucial to focus on causal effects, which capture the intrinsic

properties of the environment and remain invariant across domains (e.g., (Bareinboim et al. 2015,

Cai et al. 2024, Eberhardt et al. 2024, Lattimore et al. 2016, Liu et al. 2021)). However, identifying

causal effects is often hindered by uncertainties in the underlying causal models, which creates a

significant barrier to the effective application of transfer learning. Moreover, most existing works on

offline transfer learning rely on the availability of instrumental variables (IVs) or proxies to infer

causal relationships. As highlighted by Kallus (2018), Xu et al. (2021), obtaining such variables is

often challenging or infeasible in many applications.

In this paper, we adopt the structural causal model framework (Pearl and Mackenzie 2018).

Our approach distills information from the source agent into causal bounds that are guaranteed

to encapsulate the true causal effects of actions on rewards. By leveraging these bounds, we

reduce inefficient exploration in bandit algorithms, thereby accelerating learning and ensuring faster

convergence to optimal policies. The bounds are derived from optimization problems that identify

feasible causal effects compatible with the partially observed offline data, allowing us to effectively

transfer knowledge even when direct identification is hindered by unobserved confounding variables.

Solving the proposed optimization problem is nontrivial due to its nonconvexity. To address
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this, we introduce an innovative sampling method that generates random samples from the feasible

set of causal models compatible with the observed data. This method relies on sequentially

solving linear programs, significantly improving efficiency. Our sampling algorithms naturally

incorporate estimation and approximation errors by introducing linear constraints to account for

these uncertainties.

Our contributions.

We introduce new tight causal bounds for partially observable transfer learning algorithms and

develop efficient sampling algorithms that sequentially solve refined linear programming problems

to compute these bounds. Under mild assumptions on the sampling distribution, we prove that the

ordered statistics generated by our algorithms converge in probability to the bounds obtained from

discretized optimization problems. With the assistance of an optimization oracle, this convergence is

strengthened to almost sure convergence. Importantly, our algorithms handle estimation errors and

continuous variables—areas often neglected in previous literature (Li and Pearl 2022, Liu et al. 2021,

Zhang and Bareinboim 2021). More importantly, our methods require transferring only a few causal

bounds rather than entire datasets, which is particularly beneficial in privacy-sensitive applications.

Our causal bounds approach is broadly applicable to various causal models and target causal

effects, making it a versatile tool for transfer learning applications that extend beyond POCB. To

demonstrate, we apply our framework to offline pricing policy learning with censored demand in

Section 5.

We provide theoretical guarantees that our proposed algorithms outperform existing ones, as sum-

marized in Table 4. Our results explicitly characterize how transfer learning impacts gap-dependent

and minimax regrets in terms of bandit quantities. We extend our approach by incorporating

function approximation for continuous context spaces. Our regret analysis demonstrates an im-

provement in dependence on the policy space Π from
√
|Π| to

√
log |Π| compared with Zhang and

Bareinboim (2021). Our method accommodates general reward functions, greatly expanding the

scope compared with existing methods (Tennenholtz et al. 2021), which heavily rely on the linear

structure of rewards. These theoretical guarantees are further confirmed by numerical experiments.

Related works.

Our work is related to research on causal bounds. The do-calculus introduced by Pearl (2009)

identifies causal effects using probabilistic tools, while Tian and Pearl (2002) derived model-free causal

bounds for non-identifiable problems. Linear programming approaches for obtaining causal bounds

in discrete settings were proposed by Zhang and Bareinboim (2017) and made scalable by Shridharan

and Iyengar (2022). Extensions to non-binary outcomes and continuous variables were explored

by Li and Pearl (2024a,b), Zhang and Bareinboim (2021) using instrumental variables. However,

these LP-based methods may not yield tight bounds and often rely on structural assumptions

about hidden confounders. To address partially observable back-door and front-door criteria, Li

and Pearl (2022) employed nonlinear optimization to compute causal bounds. Although effective,

solving such nonlinear problems is computationally intensive and can get trapped in local optima.

Duarte et al. (2024) provided an automated approach for causal inference in discrete settings,

summarizing these optimization-based methods. Zhang et al. (2022) used Markov Chain Monte
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Carlo (MCMC) methods to approximate causal bounds with observational data, which rely on

structural assumptions about latent confounders.

Our work is closely related to transfer learning. Previous studies have investigated transfer

learning in multi-armed bandit problems (Lazaric et al. 2013, Zhang and Bareinboim 2017), con-

textual bandits with covariate shift where tasks share the same reward function (Cai et al. 2024),

and reinforcement learning settings (Liu et al. 2021). Similarly, Tennenholtz et al. (2021) enhance

online learning in linear bandits using a partially missing offline dataset. We extend the framework

of Tennenholtz et al. (2021) to general reward functions using our proposed adaptive inverse gap

weighting technique. While several papers (Park and Faradonbeh 2021) investigate POCB, few focus

on transfer learning within this setting. Transfer learning methods also have broad applications in

operations management, including offline pricing policy learning (Bu et al. 2020, Ren et al. 2024,

Tang et al. 2022).

Partially Observable Markov Decision Process (POMDP), including general partially observable

dynamical systems (Uehara et al. 2022), share similarities with our setting. Researchers have

developed various methods to address causal inference challenges in POMDP. For instance, Guo

et al. (2022) use instrumental variables to identify causal effects, while Lu et al. (2023), Shi et al.

(2022) extend this approach to incorporate general proxy variables in offline policy evaluation. In

online reinforcement learning, Jin et al. (2020), Wang et al. (2021) apply the backdoor criterion

to explicitly adjust for confounding bias when confounders are fully observable. These works

also incorporate uncertainty from partially observable confounders into the Bellman equation and

demonstrate provably optimal learning with linear function approximation in both fully or partially

observable datasets. Despite these advancements, transfer learning in POMDP with general function

approximation remains an open problem due to the complexity of reinforcement learning. We study

POCB with general function approximation, showing its potential to generalize to POMDP and

related settings. Additionally, Bian et al. (2024) model offline pricing-policy learning with inventory

control within the MDP framework. While existing literature (Buckman et al. 2020, Jin et al. 2021,

Yu et al. 2020) has relaxed the full coverage assumption for offline data, Bian et al. (2024) introduce

partial observability in the MDP setting, where certain price points may be absent from the offline

dataset.

Organization.

The rest of the paper is organized as follows. Section 2 introduces transfer learning problems in

POCB and discusses the inherent challenges. In Section 3, we formally present a sampling method

for computing causal bounds. Section 4 leverages these tight causal bounds to enhance transfer

learning in POCB. We further demonstrate the application of our framework to offline pricing

learning with censored demand in Section 5. In Section 6, we present our numerical results. While

we outline proof techniques throughout the paper, complete details are provided in Appendix C.

2 Preliminaries

Throughout the paper, we use capital letters to denote variables (e.g., X) and lowercase letters for

their values (e.g. x). Caligraphic fonts, such as X , to denote the domain of X, with |X | denoting its
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cardinality if X is finite and discrete. The cumulative distribution function of the random variable

X is represented by F (x), and the corresponding empirical distribution is denoted as F̂ (x).

2.1 Causal models and identifiability

We use structural causal models (SCMs, Pearl and Mackenzie 2018) as the foundational semantic

framework for our analysis. SCMs combine the graphical structure of causal diagrams with

mathematical functions to describe how variables influence one another. An SCMM consists of

a set of endogenous variables (variables determined within the model) and exogenous variables

(external, unobserved variables). The causal diagram associated with an SCM is a directed acyclic

graph where nodes represent the endogenous variables, and directed edges indicate direct causal

effects between them. Exogenous variables are typically not depicted explicitly in the graph; their

influence is incorporated via the noise terms in the structural equations. Each endogenous variable

is defined by a structural equation, which specifies its value as a function of its direct causes (parent

variables in the causal diagram) and (possibly) an exogenous noise term. This formalizes the causal

dependencies among variables.

In this paper, we focus on the SCM illustrated in Figure 1, which serves as an abstraction of

our transfer learning problem in POCB. Here, we denote the observed context variable by W , the

unobserved context variable by U , the action variable by A, and the reward variable by Y . The

causal relationships among these variables are represented by directed edges in the graph, allowing

for an arbitrary causal relationship between W and U . The action A is generated by a policy that

depends on W and U ; thus, there are edges from W and U to A. The reward Y is influenced by

both context variables and the action; therefore, there are edges from W , U and A to Y . This

causal diagram captures the dependencies in our model.

A Y

W

U

MAB

Contextual bandit

Fig. 1: The causal diagram G for transfer learning problem in POCB. The dashed double arrow between U

and W represents an arbitrary causal relationship. MAB considers only the nodes A and Y (and only the

edges between them). When including only nodes A, Y , and W , the diagram represents a CB.

A central task in causal inference is to estimate the effect of an intervention on a variable of

interest. In particular, the do-operator in causal inference, denoted as do(A = a), represents a

hypothetical operation where the action variable A is set to a specific value a through external

intervention, rather than by its natural causal dependencies within the system (e.g., in Figure 1,

the observed A is typically determined by (W,U)). The intervention do(A = a) simulates physical

manipulation by modifying the structural causal model: it replaces the structural equation for

A with the constant A = a, while keeping the rest of the model unchanged. Graphically, this

corresponds to deleting all incoming edges to the variable A in the causal diagram, effectively
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severing its dependence on its usual causes, and leaving the remaining graph intact.

The distribution resulting from this intervention is denoted as F (y|do(A = a)) representing

the distribution of the outcome Y after intervening on A. The expected value of Y under this

interventional distribution is referred to as the casual effect, denoted as EM[Y |do(A = a)]. Sometimes,

we focus on the conditional causal effect given additional variables, such as EM[Y |do(A = a), w]

and EM[Y |do(A = a), w, u].

If all endogenous variables are observed, the causal effect can be uniquely determined from

the observational data using the rules of do-calculus (Pearl 2009). However, when some variables

are unobserved, the causal effect may not always be identifiable from the data. Let O denote the

set of observed variables in the causal diagram G, e.g., O = {A, Y,W} in Figure 1. For any joint

distribution F (·), let F (O) denote the marginal distribution over O. When F (·) represents the

distribution of all endogenous variables in the SCM generating the observed data, we refer to F (O)

as the observational distribution. We say that an SCM M is compatible with the observational

distribution if FM(O) matches the observational distribution.

Definition 2.1 (Identifiability). Given an observational distribution F (O) and a causal diagram G,
a causal effect (e.g., EM[Y |do(A = a)]) is said to be identifiable if it remains the same in all SCMs

with causal diagram G that are compatible with F (O).

In plain terms, a causal effect is non-identifiable if there exist two SCMs that generate the

same observational distribution but yield different values for the causal effect of interest. The

identifiability of causal effects can be systematically determined using do-calculus (Pearl 2009). For

completeness, we refer readers to Appendix D for a brief review of do-calculus.

2.2 Motivating examples and challenges

In this section, we present motivating examples and highlight challenges in transfer learning tasks

under incomplete observational data.

Example 1: using partially observable offline dataset to warm-start online learning. Imagine

a healthcare system where offline data has been collected from historical patient records. This

dataset includes partially observable information: patients’ health outcomes Y , the treatment

administered A and observed contexts W (e.g., age, weight, baseline health conditions). However,

critical information such as genetic markers or specific health risk factors (denoted by U), is

unobserved due to limitations in past testing or incomplete records. Additionally, some features may

be intentionally masked to protect patient privacy. This expansion of the feature set or censoring of

sensitive attributes results in a partially observable dataset, summarized as an empirical distribution

F̂ (a, y, w) of (A, Y,W ).

Example 2: Autonomous driving. Consider the task of training an autonomous driving system.

During data collection, an autonomous vehicle (the agent) is operated by a human driver (the

expert), capturing the driving action A, the reward Y (e.g., driving safety), and context variables W

(e.g., radar signals). However, the expert’s judgment of the environment, represented by U , cannot

be directly observed by the vehicle’s sensors during learning. The sensor data is thus summarized

again as F̂ (a, y, w).

6



The examples above illustrate how incomplete information and unobserved factors can hinder

an agent’s ability to learn and perform effectively. We now identify key challenges posed by missing

confounders and discuss how causal inference techniques can help address these issues.

Challenge 1: Unobserved confounding impedes reward estimation.

In Example 1, missing features in the offline datasets hinder direct estimation of the true reward

function. Previous work by Tennenholtz et al. (2021) addressed this challenge in the linear setting

by representing partially observable, confounded data as linear constraints for the online problem.

However, in our case, we cannot rely on specific structures or assumptions about the reward functions,

as the structural equation for Y may be arbitrary. Similarly, Zhang and Bareinboim (2021) address

the general function space by incorporating instrumental variables. Nonetheless, identifying suitable

instrumental variables remains an open research problem, and we note that their method does not

guarantee optimal regret.

Challenge 2: Negative transfer.

In Example 2, the unobserved expert context U can act as a confounder, influencing both the

action A and the reward Y . Using partial observational data on (A, Y,W ) generated by the expert –

without understanding the expert context U – can lead to negative transfer.

The complication arises from two distinct quantities: the conditional expectation E[Y |a,w] and

the causal effect E[Y |do(A = a), w]. Naive transfer methods often rely on estimating the conditional

expectation as a proxy for the causal effect. However, this approach is biased by the unknown

expert policy that generated the offline data. The following example illustrates how such a naive

approach can result in a policy that significantly deviates from the optimal one, ultimately causing

performance degradation in transfer learning.

Example. Consider a 2-arm contextual bandit problem, where the action A, and context variables

U and W are binary. At the beginning of each round, two binary context variables, U and W , are

sampled from independent Bernoulli distributions, with P(U = 1) = 0.9 and P(W = 1) = 0.5. The

context variables U,W influence the reward Y received in each round, as shown in Table 1.

The expert agent observes the contextual variables U and W and executes a context-aware

optimal policy π∗
expert : W × U → A. Consequently, the expert generates multiple data points,

resulting in an observational distribution P(A,W ) as shown in Table 2. With probability 0.9 (i.e.,

U = 1 occurs), π∗
expert will select the arm 1. We now proceed to compute the causal effect as follows:

E[Y |do(A = 0), w] = 10× 0.1 + 0.9× 0.9 = 1.81, and

E[Y |do(A = 1), w] = 0× 0.1 + 1× 0.9 = 0.9, ∀w ∈ {0, 1}.

Therefore, the optimal policy for the agent is π∗
agent(W ) = 0 with probability 1. However, this policy

differs significantly from π∗
expert as π

∗
expert primarily selects arm 1.

Upon closer examination, it becomes clear that the asymmetrical probability mass function of

the hidden context variable U creates a significant discrepancy between the optimal expert and

agent policies. Specifically, for the frequently occurring context U = 1, the rewards of the two arms

are relatively similar. In contrast, for the rare context U = 0, the rewards differ considerably. If the
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agent is aware of the distribution of U , it can infer that the observed rewards are likely influenced

by the skewness in F (u) and adjust its decision-making accordingly to make optimal choices.

(w, u) (0, 0) (1, 0) (0, 1) (1, 1)

E[Y |do(A = 1), w, u] 0 0 1 1

E[Y |do(A = 0), w, u] 10 10 0.9 0.9

Table 1: Reward function.

(a,w) (0, 0) (0, 1) (1, 0) (1, 1)

P(a,w) 0.05 0.05 0.45 0.45

Table 2: Observational distribution.

To illustrate this, we present a simple numerical experiment in Figure 4, showing how negative

transfer can occur with a naive knowledge transfer approach. This example underscores the

importance of focusing on the causal effect, as it reflects the intrinsic causal structure of the

environment. When the causal effect is properly identified and transferred, the agent can enhance

performance across various transfer learning tasks.

Challenge 3: Causal non-identifiability.

Arguably, the most significant challenge in transfer learning with incomplete data is the potential

non-identifiability of the desired causal effects.

If hypothetically, the full knowledge of F (a, y, w, u) were available for transfer, then the target

agent could directly derive the causal effect E[Y |do(A = a), w]. To see this, note that W and U

block the back-door path from A to Y , allowing us to use do-calculus rules and condition on U to

fully identify the causal effect E[Y |do(A = a), w]. Specifically, we can marginalize over (A, Y,W ) to

obtain the marginal distribution F (u) of U , and compute the conditional expectation E[Y |a,w, u]
to derive the causal effect E[Y |do(A = a), w], as shown in Proposition 2.1.

Proposition 2.1 Given F (a, y, w, u), the causal effect E[Y |do(A = a), w] is uniquely identified as

E[Y |do(A = a), w] =

∫
u∈U

E[Y |a,w, u]dF (u).

While do-calculus provides a comprehensive method for identifying causal effects, it cannot

construct an identification formula if a query is inherently non-identifiable. For example, consider a

more challenging transfer setting where both agents observe only partial information – specifically,

actions A, outcomes Y and observable contexts W . In cases of incomplete observational data, the

required causal effect may be non-identifiable, allowing us to derive only bounds on the causal effect

rather than a precise estimate.

2.3 Transfer learning tasks

To address these challenges, we leverage tools from causal inference. The fundamental idea is that,

while correlations between variables may be spurious, causal relationships are transferable due to

the shared causal structures depicted in Figure 1 between the expert and the agent.

The examples in the previous section underscore the importance of knowing F (u) in addition to

partially observed offline data. Although U is unobserved, its distribution is often known in advance
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(e.g., in Example 1, if U represents gender, genetic markers, or blood type). By leveraging the

distributional information F̂ (u) in addition to the observational distribution F̂ (a, y, w), the agent

can establish tight bounds on the causal effect in cases of causal non-identifiability. These bounds

enable the agent to rule out suboptimal actions, thereby accelerating learning and reducing regret.

Online learning problems.

We now frame online learning problems in the context of causal inference.

Multi-armed bandit. In a stochastic multi-armed bandit (MAB) problem, an agent is given

an SCM M with a decision node A representing the arm selection and an outcome variable Y

representing the reward; see the dotted box in Figure 1 for an illustration. For each arm a ∈ A,
its expected reward µa is the effect of the action do(A = a), i.e., µa ≜ E[Y |do(A = a)]. Let

µ∗ = maxa∈A µa and a∗ denote the optimal expected reward and the optimal arm, respectively. At

each round t = 1, 2, · · · , T , the agent performs an action do(At = at) and observes a reward Yt. The

objective of the agent is to minimize the cumulative regret:

Reg(T ) = Tµ∗ −
T∑
t=1

E[µat ], (1)

where the expectation is taken with respect to the randomness of the algorithm.

Contextual bandit. We now describe the contextual bandit (CB) problem within a causal

framework. Contextual bandits (Agarwal et al. 2012, Chu et al. 2011, Li et al. 2010) are an extension

of multi-armed bandits (MAB), where the expert can observe additional contextual information

W associated with the reward Y . An agent for a contextual bandit is given an SCMM with an

observed context variable W , an arm selection node A, and a reward variable Y ; see the dash-dotted

box in Figure 1 for an illustration. At each round t = 1, 2, · · · , T , the agent can observe a context

wt and performs an action do(At = at) based on the context and historical information. For each

arm a ∈ A, the expected reward given context w is defined as µa,w ≜ E[Y |do(A = a), w]. Let µ∗
w

denote the optimal expected reward with respect to context w. The objective of the agent is to

minimize the cumulative regret, defined as

Reg(T ) =

T∑
t=1

E[µ∗
wt
− µat,wt |wt], (2)

where the expectation is taken with respect to the randomness of the algorithm. We refer to this

setting as the partially observable contextual bandit (POCB) problem.

In the scenario where the agent can observe all contexts W and U during online learning, we

modify the realizability assumption as follows to incorporate the influence of context U . We refer to

this as the fully observable contextual bandit (FOCB) setting. For each arm a ∈ A, the expected

reward is now µa,w,u ≜ E[Y |do(A = a), w, u]. Let µ∗
w,u denote the optimal expected reward with

respect to context (w, u). The objective of the agent is to minimize the cumulative regret, defined as

Reg(T ) =

T∑
t=1

E[µ∗
wt,ut

− µat,wt,ut |wt, ut], (3)
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where the expectation is taken with respect to the randomness of the algorithm.

It is worth noting that in the contextual bandit setting, the regret generally scales with |W| and
|U|, as the problem can be framed as a generic reinforcement learning problem. We mitigate this

dependence using function approximation methods, as detailed in Section 4.3.

Transfer learning tasks.

We consider the case where all agents operate under the same structural causal model (SCM)M,

as depicted in Figure 1. The agents differ in the information they can observe during the learning

process and may also use different policies to generate actions. Notably, beyond the observational

distribution, we do not assume knowledge of the policy used by the source agent, as it may depend

on an unobserved context U .

Specifically, we focus on data collected by an arbitrary source agent that transfers only1 the

distributions (or their estimations) of (A, Y,W ) and U . We are interested in the following transfer

learning tasks: Task 1 with a MAB target agent; Task 2 with a POCB target agent; and Task 3

with a FOCB target agent.

Task 1 serves as a baseline, establishing the foundation for our framework, methods, and results.

We then extend our approach to show its applicability in Tasks 2 and 3, which share methodological

similarities.

3 Tight Bounds on Causal Effects

As highlighted in Section 2.2, directly estimating the reward function, determining the optimal

policy, or identifying a unique causal effect is generally infeasible with partial data alone. To

overcome these challenges, we propose transforming the partially observed dataset into tight causal

bounds. In this section, we present a general framework for obtaining these bounds, using Task 1 as

an illustrative example.

3.1 Causal bounds via linear programming

We consider an off-policy learning problem where knowledge is transferred from a POCB agent to a

MAB agent (Task 1). At each time step, the POCB agent observes the context W , follows a policy

to select an action A and observes the corresponding rewards Y . The experience of the POCB

agent is summarized as the joint distribution F̂ (a, y, w), which is then provided to the MAB agent

together with F̂ (u). The MAB agent, being unable to observe W , aims to minimize regret as defined

in equation (1) by identifying the action a∗ with the highest causal effect µa∗ = E[Y |do(A = a∗)]. In

this section, we establish algorithms to generate valid bounds on µa, using the received observational

distributions.

To isolate the core idea, we first consider two simplifying assumptions: (1) the observational

distributions F (a, y, w) and F (u) are perfectly known; and (2) all relevant random variables – A, Y ,

W and U – are finite and discrete. We will later relax these assumptions in Section 3.3.

1If the source agent also transfers full knowledge, including U , the task becomes simpler, as the causal effect can

be perfectly identified by Proposition 2.1. Thus, we omit its analysis here.
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Recall that a key challenge is the non-identifiability of the causal effect E[Y |do(A = a)] from

incomplete data, due to the unblocked back-door path A← U → Y . This implies that the causal

effect of A on Y cannot be estimated without bias, regardless of the sample size.

To obtain tight bounds on the causal effect, we consider the following optimization problem, which

seeks to maximize or minimize the causal effect over all SCMs compatible with the observational

distributions F (a, y, w) and F (u).

sup / inf EM[Y |do(A = a)],

s.t. FM(a, y, w) = F (a, y, w),

FM(u) = F (u),

(4)

where the sup/inf is taken over all causal modelsM with the causal diagram G. We denote the

solutions to (4) as h(a) and l(a) for the supremum and infimum, respectively. Since the optimization

is conducted over all compatible causal models, the resulting bounds are guaranteed to be tight. It

is worth noting that a necessary and sufficient condition for causal identifiability is that h(a) = l(a).

A formal statement of this result is provided in the appendix. This approach is inspired by related

works, such as (Pearl 2009, Tian and Pearl 2002, Zhang et al. 2022).

Note that previous works have considered similar optimization problems but often yield non-tight

causal bounds. For instance, the solutions from the nonlinear optimization problem in (Li and Pearl

2022) may not correspond to any valid causal model, resulting in non-tight bounds. We observe that

focusing solely on constraints for the specific value a of interest generally leads to looser bounds.

Therefore, to obtain tight bounds, it is essential to incorporate constraints for all a′ ∈ A, rather
than just the value a relevant to the intervention do(A = a).

The original optimization problem (4) is challenging to solve due to inefficiency and intractability.

First, the functional constraints on unknown distributions make the optimization problem inherently

complex. Second, nonlinear optimization can often get trapped in local optima, and in some

cases, narrow causal bounds that fail to encompass the true causal effects may lead to critical

misjudgments.

To address these challenges, we note that the optimization problem can be naturally simplified

by expressing it in terms of probability mass functions for discrete random variables.

Suppose the domains of the relevant random variables are discrete and partitioned into singleton

sets, i.e., A = ∪nA
i=1Ai, Y = ∪nY

j=1Yj , W = ∪nW
k=1Wk, U = ∪nU

l=1Ul. We begin by defining

θijk =

∫
a∈Ai,y∈Yj ,w∈Wk

dF (a, y, w), ∀i, j, k, θl =

∫
u∈Ul

dF (u), ∀l, (5)

and

xijkl =

∫
a∈Ai,y∈Yj ,w∈Wk,u∈Ul

dFM(a, y, w, u).

Integrating both sides of the first constraint in (4) over Ai, Yj , and Wk to obtain∑
l

xijkl = θijk.

This reformulates the first constraint in terms of integration, replacing the original pointwise equality.
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For the second constraint in (4), we rewrite it as∫
a∈A,y∈Y,w∈W

dFM(a, y, w, u) = F (u), ∀u ∈ U .

Integrating these constraints over u ∈ Ul, we get∑
ijk

xijkl = θl.

Compared with the original functional constraints on distributions, these linear constraints on xijkl
are far more tractable. Finally, using do-calculus, the objective of the original optimization problem

can be reformulated as

EM[Y |do(A = ai)] =
∑
j,k,l

yjxijkl
∑

i′,j′ xi′j′kl∑
j′ xij′kl

. (6)

Putting everything together, we can now express the optimization problem in terms of the

unknown variables xijkl as the following nonlinear programming problem

max /min
∑
j,k,l

yjxijkl
∑

i′,j′ xi′j′kl∑
j′ xij′kl

,

s.t.
∑
l

xijkl = θijk, ∀i, j, k,∑
i,j,k

xijkl = θl, ∀l,

0 ≤ xijkl ≤ 1, ∀i, j, k, l.

(7)

The transfer learning task involves obtaining causal bounds for each action a, or equivalently,

for each index i, resulting in nA separate optimization problems. This approach, however, becomes

inefficient as the number of actions grows. To address this, we propose a sampling method that

efficiently solves all optimization problems in a unified manner.

3.2 A sampling method for efficient optimization

Notably, all optimization problems share the same feasible region, suggesting that they can be

solved simultaneously. However, naively combining all optimization tasks into a single large-scale

optimization problem remains computationally expensive, as the resulting problem is non-convex.

To overcome this, we introduce a sampling method that significantly reduces the need for complex

optimization procedures. Additionally, this sampling method offers both an intuitive explanation

and numerical evidence for why the approach by Li and Pearl (2022) may fail to yield tight bounds,

and how our approach improves upon it.

The main idea is to randomly draw samples from the feasible region of the optimization

problem (7), which is a polytope defined by nAnYnW + nU − 1 linearly independent constraints.

Given that there are nAnYnWnU unknown variables, this setup requires determining the values of

nAnYnWnU − nAnYnW − nU + 1 unknowns.
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Efficiently sampling probability tables with row and column constraints, however, remains

challenging. A naive approach would be to sample each xijkl independently from a uniform

distribution supported on [0, 1], rejecting any samples that do not meet the constraints. This

approach can be highly sample-inefficient.

To improve efficiency, we can incorporate inequality constraints to narrow the sampling range

and increase the likelihood of generating valid samples.

Given that we are essentially considering all possible joint distributions with fixed marginals, Li

and Pearl (2022) used the Fréchet inequalities to reduce the search space for xijkl, as follows:

max {0, θijk + θl − 1} ≤ xijkl ≤ min {θijk, θl} . (8)

However, the solutions generated by Li and Pearl (2022), which involve sampling each variable from

the reduced interval in (8), may not satisfy all the constraints in (7), leading to a lack of tightness.

One may further improve sample efficiency by solving the following linear programming problem

to find tight bounds on each xijkl:

max /min xijkl,

s.t. linear constrains in (7).
(9)

While these bounds are tight for each individual xijkl, the Cartesian product of these bounds may

not be tight for the entire vector of xijkl values.

To support this claim, we report the proportion of valid samples (i.e., joint distributions that

satisfy the constraints) obtained using different sample spaces in Table 3 for the example discussed

in Section 6. We observed that even with the bounds derived from the individual LPs in (9), only

0.3% of the samples were valid, leading to a significant loss in sample efficiency.

sample space for xijkl proportion of valid samples

[0, 1] ≈ 0

support given by (8) < 10−4

support given by (9) 0.3%

Algorithm 1 100%

Table 3: Proportion of valid samples obtained with different sample spaces for the example in Section 6.

We introduce a sampling algorithm based on sequential linear programming to generate valid

samples from the feasible region. Let S denote a set of free variables for the linear equations in (7).

The procedure begins by selecting such a set S with cardinality nAnYnWnU − nAnYnW − nU + 1.

We then iteratively sample each variable xnr with xnr ∈ S. For the first variable xn1 , we solve

(9) to determine its support interval [ln1 , hn1 ], and then sample a value x̂n1 from a user-specified

distribution truncated to [ln1 , hn1 ]. At iteration r, with the values of xn1 , · · · , xnr−1 already sampled,

we add constraints to ensure that each of these variables is fixed to its sampled value. Specifically,

we find the support [lnr , hnr ] for xnr by solving

max /min xnr ,

s.t. linear constrains in (7),

xns = x̂ns , ∀s = 1, 2, · · · , r − 1,

(10)
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We then sample x̂nr is from the support [lnr , hnr ]. After completing all |S| steps, the remaining

xijkl /∈ S, can be uniquely determined by solving the equality constraints of (7). With necessary

adjustments for continuous variables and estimation error (see Section 3.3), we summarize this

sampling algorithm in Algorithm 1.

Each sample represents a possible joint distribution consistent with the observed marginals.

By sequentially solving linear programs (LPs), this algorithm ensures that each sample respects

the imposed constraints, thereby avoiding invalid distributions and significantly improving sample

efficiency; see Table 3 for a comparison with existing methods.

Algorithm 1 Monte-Carlo sampling for compatible causal models using sequential LP

Input: Observational distribution F (a, y, w) and F (u) and sampling distribution Fs

1: Select a set of free variables S with cardinality nAnYnWnU − nAnYnW − nU + 1

2: Compute each θijk and θl according to (5)

3: Sequentially solve LP (10) to find the support [lijkl, hijkl] of xijkl for each xijkl ∈ S

4: Sample a value x̂ijkl from Fs truncated to [lijkl, hijkl] for each xijkl ∈ S

5: Solve the remaining x̂ijkl using the equality constraints in (7) for all xijkl /∈ S

Output: Joint distribution of the endogeneous variables represented by x̂ ≜ {x̂ijkl : ∀i, j, k, l}

Algorithm 2 utilizes the samples generated by Algorithm 1 to estimate the causal bounds for

each action by calculating the smallest and largest ordered statistics.

Algorithm 2 Monte-Carlo estimation for causal bounds in Task 1

Input: Sample size B

1: for τ = 1, 2, . . . , B do

2: Call Algorithm 1 to obtain the sampled causal model x̂τ

3: For each a ∈ A, compute the causal effect bτ (a) using (6) with x̂τ

4: For each a ∈ A, compute lB(a) = minτ bτ (a) and hB(a) = maxτ bτ (a)

Output: {lB(a), hB(a) : ∀a ∈ A}

Under mild assumptions, we have convergence results for the causal bound estimates obtained

from Algorithm 2. Let D denote the feasible region of (7) and let Ps denote the sampling measure

for x under Algorithm 2. Note that our algorithm guarantees that the support of Ps belongs to D.

Proposition 3.1 (Convergence of causal bounds) Assume that the sampling measure Ps

satisfies ∀x ∈ D, and ∀δ > 0, Ps(B(x, δ) ∩ D) > 0, where B(x, δ) is a ball centered at x with radius

δ. Then, the outputs of Algorithm 2, lB(a) and hB(a), converge in probability to l(a) and h(a) as

B →∞, respectively.

The condition Ps(B(x, δ) ∩ D) > 0 ensures that the sampling distribution covers all feasible

models. This condition can be satisfied by various continuous distributions, such as the uniform

distribution, truncated Gaussian distribution, and others.

Remark 3.1 Similar to Zhang et al. (2022), we can establish a concentration result for our sampling

algorithm using Chernoff’s bound. However, this result is not as useful as Proposition 3.1. First,
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the concentration property depends on the distribution of causal bounds, which is often complex and

difficult to determine in practice. Second, when targeting tight causal bounds, convergence results

are typically more relevant than concentration results. For example, when several samples for bτ (a)

are available, the smallest order statistic converges to the true lower bound significantly faster than

the average.

Remark 3.2 Algorithm 2 can be further refined using an additional optimization procedure. This

improves the convergence rate from convergence in probability (Proposition 3.1) to almost sure

convergence (Proposition A.1). Detailed implementation and theoretical results are provided in

Appendix A.

3.3 Dealing with estimation error and continuous variables

Causal bounds with estimation error.

Let θ̂l and θ̂ijk represent the estimated values of θl and θijk, respectively, with corresponding error

terms ϵl and ϵijk. For example, one may use the empirical distributions F̂ (a, y, w) and F̂ (u) to

estimate θijk and θl as follows:

θ̂ijk =

∫
a∈Ai,y∈Yj ,w∈Wk

dF̂ (a, y, w), ∀i ∈ [nA], j ∈ [nY ], k ∈ [nW ]

θ̂l =

∫
u∈Ul

dF̂ (u),∀l ∈ [nU ].

(11)

Our framework can seamlessly incorporate these error terms into our sampling method. To

account for estimation uncertainty, we introduce the following optimization problem:

max
x,θ

/min
x,θ

∑
j,k,l

yjxijkl
∑

i′,j′ xi′j′kl∑
j′ xij′kl

,

s.t.
∑
l′

xijkl′ = θijk,
∑
i′j′k′

xi′j′k′l = θl, ∀i, j, k, l,

|θl − θ̂l| ≤ ϵl, |θijk − θ̂ijk| ≤ ϵijk, ∀i, j, k, l∑
i,j,k

θijk = 1,
∑
l

θl = 1,

0 ≤ xijkl ≤ 1, 0 ≤ θijk ≤ 1, 0 ≤ θl ≤ 1, ∀i, j, k, l.

(12)

To obtain a valid causal model that accounts for estimation error, we need to sample points from

the feasible region of (12). For this purpose, we introduce Algorithm 7, designed to generate random

samples from a simplex defined by general linear constraints. This general-purpose algorithm requires

solving nAnYnWnU + nAnYnW + nU linear programs sequentially, which may be computationally

intensive. To enhance sampling efficiency, we can focus on sampling only the free variables

corresponding to a subset of linearly independent equality constraints. The remaining variables can

then be determined by solving for them, as done in Algorithm 2.
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Dealing with continuous variables.

We now extend our approach to continuous random variables. We start by discretizing the domains

into disjoint blocks, i.e., A = ∪nA
i=1Ai, Y = ∪nY

j=1Yj , W = ∪nW
k=1Wk, U = ∪nU

l=1Ul. As the discretization
becomes finer – i.e., as the volumes of blocks Ai, Yj , Wk and Ul approach zero for all (i, j, k, l) – the

approximation error converges to zero for well-behaved distributions. In certain applications, tight

causal bounds are essential, making it necessary to account for approximation errors. To address

this, we introduce an error term:

ϵijk =
1

2

∣∣∣∣ max
a∈Ai,y∈Yj ,w∈Wk

g(a, y, w)− min
a∈Ai,y∈Yj ,w∈Wk

g(a, y, w)

∣∣∣∣ vol(Ai)vol(Yj)vol(Wk),

where g represents the probability density, and vol(·) denotes the volume of the blocks. For the

approximation error ϵl for θl, we can compute it in the same way. By introducing this error term,

we can handle approximation errors in a manner similar to estimation errors, allowing for greater

precision in determining tight causal bounds, see Appendix C.1.

The optimization problem (4) after discretization is exactly the same as the optimization problem

for discrete variables under natural discretization in (7). If all relevant random variables are discrete,

this discretization is exact. For general random variables, however, it remains an open question

whether the optimal value (denoted as l̂(a) and ĥ(a), respectively) for the discretized optimization

in (7) converge to those of the continuous version in (4) as the discretization becomes finer.

Moreover, we can explicitly account for discretization error by incorporating an error term into

the optimization problem, as demonstrated in (12).

4 Transfer Learning via Causal Bounds

In this section, we apply the tight bounds on causal effects derived in Section 3 to accelerate online

learning tasks across different transfer learning settings.

4.1 Task 1: transfer to multi-armed bandit

To begin, we consider the transfer learning problem from a POCB agent to a MAB agent, i.e., Task

1. The key idea is to use causal bounds to truncate the upper confidence bounds (UCBs) in classical

bandit algorithms, thereby eliminating suboptimal arms before the algorithm starts.

Consider a MAB agent facing a finite set of arms, i.e., |A| <∞. The POCB agent provides offline

data from which causal bounds l(a) and h(a) for each arm a ∈ A are derived using Algorithm 2.

This ensures that the true expected reward µa = E[Y |do(A = a)] ∈ [l(a), h(a)] for each arm a.

The proposed Algorithm 3 modifies the standard UCB algorithm to incorporate causal bounds,

which leads to improved performance in a transfer learning setting. First, any arm a for which

h(a) < maxi∈A l(i) is removed, as these arms are guaranteed to be suboptimal. Specifically, for such

arms, we have µa < h(a) < l(a′) < µa′ for some a′ ∈ A. We denote the remaining active arms as

A∗ ≜
ß
a ∈ A : h(a) ≥ max

i∈A
l(i)

™
.
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Next, the upper confidence bound Ua(t) for each remaining arm is truncated using the causal

bound h(a) yielding the truncated UCB Ûa(t) = min{Ua(t), h(a)}. This step is always valid since

µa < h(a), hence h(a) is the maximum feasible level of optimism given the causal bound. The

algorithm then selects the arm with the highest truncated UCB, observes the reward, and updates

the average reward for the chosen arm.

Algorithm 3 Transfer learning for multi-armed bandit

Input: time horizon T and causal bounds [l(a), h(a)] for each arm a ∈ A
1: Remove any arm a for which h(a) < maxi∈A l(i) to obtain the active arm set A∗

2: Initialize the empirical mean µ̂a(1) = 0 and the number of pulls na(1) = 0

3: for t = 1, · · · , T do

4: Compute the upper confidence bound Ua(t) = min
{
1, µ̂a(t) +

√
2 log T
na(t)

}
for each a ∈ A∗

5: Compute the truncated UCB Ûa(t) = min{Ua(t), h(a)} for each a ∈ A∗

6: Sample the arm at = argmaxa∈A∗ Ûa(t) and observe a reward yt

7: Update µ̂at(t+ 1) =
µ̂at (t)·nat (t)+yt

nat (t)+1 and nat(t+ 1) = nat(t) + 1

8: For each a ̸= at, update µ̂a(t+ 1) = µ̂a(t) and na(t+ 1) = na(t)

We upper bound the expected number of pulls for each sub-optimal arm under Algorithm 3.

Theorem 4.1 For a MAB problem with a finite action set |A| <∞ and rewards bounded within

[0, 1], the number of draws E[Na(T )] in Algorithm 3 for any sub-optimal arm a ̸= a∗ is upper bounded

as follows:

E[Na(T )] ≤



0, if a /∈ A∗, i.e., h(a) < max
i∈A

l(i) ≤ µ∗,

|A|π2

6
, if a ∈ A∗ and h(a) < µ∗,

8 log T

∆2
a

, if a ∈ A∗ and h(a) ≥ µ∗.

where ∆a = µ∗ − µa is the sub-optimality gap for the arm a.

Theorem 4.1 illustrates the benefits of incorporating causal bounds in transfer learning scenarios,

where arms can be categorized based on their optimality gap sizes. Arms that are definitively

suboptimal, as indicated by the causal bounds, are removed from consideration entirely, thereby

significantly reducing exploration. For arms with large optimality gaps that cannot be fully ruled

out by causal bounds, the algorithm pulls each of these only a constant number of times, effectively

controlling sample complexity. Finally, the remaining suboptimal arms, denoted as the effective set

of arms ›A∗ ≜ {a ∈ A | h(a) ≥ µ∗} ,

has minimal information in their causal bounds. This set represents arms with potential for optimal

performance, and thus warrant significant exploration.

A direct implication of Theorem 4.1 is that the algorithm achieves a lower regret rate compared

to standard UCB algorithms that do not utilize causal bounds. When the causal information is

strong, the algorithm efficiently eliminates suboptimal arms early, focusing exploration on promising

candidates and significantly reducing regret. Even in scenarios where causal information is weak and
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no arms can be distinguished from the optimal arm using causal bounds, the algorithm leverages

truncated UCB values. This truncation limits excessive optimism, effectively reducing unnecessary

exploration and enhancing overall performance.

As a straightforward corollary of Theorem 4.1, we formally establish the minimax upper bound

on the regret achieved by our method.

Corollary 4.1 For a MAB problem with a finite action set |A| <∞ and rewards bounded within

[0, 1], the regret of Algorithm 3 is upper bounded by

E[Reg(T )] ≤
»
8(|›A∗| − 1)T log T .

This minimax regret upper bound matches with the lower bound Ω(
»
|›A∗|T ) up to a logarithm

factor for transfer learning settings. Specifically, denote the contextual bandit instances with prior

knowledge on bounds µa ∈ [l(a), h(a)] as

M = {MAB instances with l(a) ≤ µa ≤ h(a), ∀a ∈ A} .

A minimax regret lower bound is given as follows.

Lemma 4.1 For a MAB problem with a finite action set |A| < ∞ and rewards bounded within

[0, 1], and for any algorithm A, there exists an absolute constant c > 0 such that when T > c, we

have

min
A

sup
M

Reg(T ) ≥ 1

27

»
(|›A∗| − 1)T .

4.2 Task 2: transfer to partially observable contextual bandit

We now consider the task of knowledge transfer between two POCB agents. Here, the source agent

shares partial model knowledge, specifically the empirical distributions F̂ (a, y, w) and F̂ (u), with

the target agent. Unlike in Task 1, the target agent now has access to the observed context W ,

but still lacks information about the unobserved context U . The goal of this target agent is to

identify the context-dependent optimal arm a∗(w) for each context w and minimize the cumulative

regret over time. In this setting, the causal effect µa,w = E[Y |do(A = a), w] may not be directly

identifiable.

We start by considering settings where the context space is discrete. In the following section,

we extend our approach to continuous context spaces, where we employ function approximation

techniques to handle the added complexity of continuous variables.

Causal bounds.

To obtain bounds on µa,w, we extend the approach from Section 3 by solving a context-dependent

version of the optimization problem (4):

sup / inf EM[Y |do(A = a), w],

s.t. FM(a, y, w) = F (a, y, w), FM(u) = F (u).
(13)
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Following the discretization method outlined in Section 3.3, we approximate the optimization

problem (13). Upon discretization, the objective becomes

ÊM[Y |do(A = a), w] =
∑
j,l

yjθlxijkl∑
j′ xij′kl

, (14)

where ÊM[·] denotes the expectation under the discretized distribution, and yj denotes an arbitrary

representative value in the block Yj .
Algorithm 4 provides causal bounds for discrete contexts, which can be extended across the

entire Y × W space through interpolation techniques. Alternatively, in Section 4.3, we employ

function approximation methods to directly handle scenarios with continuous context spaces.

Algorithm 4 Monte-Carlo estimation for causal bounds in Task 2

Input: Discretization of the variable domains A,Y,W,U , and sample size B

1: for τ = 1, 2, . . . , B do

2: Call Algorithm 1 to obtain the sampled causal model x̂τ

3: For each a ∈ A and w ∈ W, compute the causal effect bτ (a,w) using (14) with x̂τ

4: For each a ∈ A and w ∈ W, compute lB(a,w) = minτ bτ (a,w) and hB(a,w) = maxτ bτ (a,w)

Output: {lB(a,w), hB(a,w) : ∀a ∈ A, w ∈ W}

Transfer learning.

With Algorithm 4, we can identify bounds µa,w ∈ [l(a,w), h(a,w)] on the true causal effect µa,w =

E[Y |do(A = a), w]. We define the set A∗(w) as follows:

A∗(w) ≜
ß
a ∈ A|h(a,w) > max

i∈A
l(i, w)

™
.

This set includes actions that could potentially outperform others for a given context w based on

the causal bounds and excludes context-action pairs that are definitively suboptimal. Recall that

the optimal expected reward for context w is denoted by µ∗
w = maxa∈A E[Y |do(A = a), w].

The following theorem generalizes the results of Theorem 4.1 to the contextual bandit setting,

as MAB is a special case when |W| = 1. This extension allows us to evaluate the benefit of causal

bounds in controlling the exploration of suboptimal arms across different contexts. Let na,w(t)

denote the number of pulls of arm a under context w up to time t, and let µ̂a,w(t) represent the

corresponding sample mean.

Theorem 4.2 Consider a contextual bandit problem with a finite action set |A| <∞ and a finite

context set |W| <∞, and rewards bounded within [0, 1]. For any given context w ∈ W, suppose w

occurs for Tw times. Then the conditional expected number of draws E[Na(Tw)] in Algorithm 3 for

any sub-optimal arm a ̸= a∗w is upper bounded as:

E[Na(Tw)] ≤



0, if a /∈ A∗(w), i.e., h(a,w) < max
i∈A

l(i, w) ≤ µ∗
w,

|A|π2

6
, if a ∈ A∗(w) and h(a,w) < µ∗

w,

8 log Tw

∆2
a,w

+ |A|, if a ∈ A∗(w) and h(a,w) ≥ µ∗
w.
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Algorithm 5 Transfer learning for contextual bandit

Input: time horizon T and causal bound l(a,w) and h(a,w) for each arm-context pair

1: for w ∈ W do

2: Remove any arm a for which h(a,w) < maxi∈A l(i, w) to obtain the active arm set A∗(w)

3: Initialize µ̂a,w(1) = 0 and na,w(1) = 0

4: for t = 1, 2, · · · , T do

5: Observe the context wt

6: Compute the UCB Ua,wt(t) = min
{
1, µ̂a,wt(t) +

√
log t

na,wt (t)

}
for each a ∈ A∗(wt)

7: Compute the truncated UCB Ûa,wt(t) = min{Ua,wt(t), h(a,wt)} for each a ∈ A∗(wt)

8: Sample the arm at = argmaxa∈A∗(wt) Ûa,wt(t) and observe a reward yt
9: Update the empirical mean µ̂a,wt(t) and the number of pulls na,wt(t)

The classical agent, lacking causal bounds, minimizes regret over |W| independent bandit

instances, treating each context w ∈ W as a separate problem. Theorem 4.2 demonstrates how

incorporating causal bounds improves the efficiency of classical bandit algorithms by significantly

limiting the exploration of suboptimal arms. With these bounds, the agent can establish tight

constraints on causal effects for each context-action pair, enabling early elimination of certain arms

and focusing exploration on the following subset of arms requiring further examination›A∗(w) ≜ {a ∈ A|h(a,w) ≥ µ∗
w}.

Theorem 4.3 For a contextual bandit problem with a finite action set |A| <∞ and a finite context

set |W| <∞, and rewards bounded within [0, 1], the regret of Algorithm 5 satisfies:

lim sup
T→∞

E[Reg(T )]√
T log T

≤
∑
w∈W

»
8(|›A∗(w)| − 1)P(W = w).

The regret bound in this result scales with
»
|›A∗(w)| rather than

√
|A∗(w)|. Although Al-

gorithm 5 does not explicitly eliminate suboptimal arms in ›A∗(w) − A∗(w), the truncation by

causal upper bounds enables the UCB approach to effectively control the number of pulls for these

suboptimal arms. This implicit filtering improves sample efficiency, as arms with high upper causal

bounds remain prioritized for exploration, reducing the need to explore less promising arms.

Using the Cauchy-Schwarz inequality, we derive the following upper bound for the cumulative

regret: ∑
w∈W

»
8(|›A∗(w)| − 1)P(W = w) ≤

 
8
∑
w∈W

(|›A∗(w)| − 1). (15)

This inequality reveals that eliminating suboptimal arms enhances the performance of transfer

learning.

Denote the contextual bandit instances with prior knowledge l(a,w) and h(a,w) as

M = {contextual bandit instances with l(a,w) ≤ µa,w ≤ h(a,w),∀a ∈ A,∀w ∈ W}.
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Theorem 4.4 Suppose |A| <∞ and |W| <∞. Then for any algorithm A, there exists an absolute

constant c > 0 such that

sup
M

lim sup
T→∞

Reg(T )√
T
≥ 1

27

∑
w∈W

»
(|›A∗(w)| − 1)P(W = w).

The lower bound result indicates that Algorithm 4 is near-optimal up to logarithmic terms in T .

Remark 4.1 (Connection to Dann et al. 2021) Dann et al. (2021) presents gap-dependent regret

upper bounds for tabular reinforcement learning (RL) by excluding state-action pairs not visited by

an optimal policy. Their regret scales as

O

Ñ∑
w∈W

∑
a∈›A∗(w)

log T

∆a,w

é
.

Contextual bandits can be viewed as a special case of general RL by treating each context as a separate

state, so their method is also applicable here. However, RL methods seek to optimize over state-action

(context-action) pairs, an objective that is not fully realizable in our setup since contexts evolve

independently of the actions taken. Consequently, we define regret in the contextual bandit framework

relative to a context-dependent optimal action, as specified by (2), rather than pursuing a unified

state-action optimization as in standard RL. Tailored specifically to POCB, our approach leverages

causal bounds to focus exploration on contextually relevant actions, thereby reducing unnecessary

pulls for suboptimal actions within each context. Moreover, Theorem 4.3 suggests that our regret

bounds outperform those in Dann et al. (2021) for minimax regret, as the regret in Dann et al.

(2021) scales with the right-hand side term of (15).

4.3 Dealing with continuous context space: function approximations

As suggested by Theorem 4.4, the regret of contextual bandit algorithms scales with the size |W|
of the context space. In this section, we address the case where the context space is continuous,

requiring function approximation techniques to handle the infinite set of possible contexts. Learning

an optimal policy across all contexts is generally infeasible unless the reward function exhibits

specific structures, such as linearity. Therefore, we adopt a function approximation setting under

realizability assumptions. We assume that valid causal bounds [l(a,w), h(a,w)] have been obtained

using algorithms presented in Section 3.

4.3.1 Function approximation

A practical approach to mitigate dependence on |W| is to use function approximation methods. We

assume the agent has access to a class of reward functions F ⊂ A×W → [0, 1] (e.g., linear functions)

that characterizes the mean reward distribution for a given context-action pair. We impose the

following assumption on the realizability of the reward function µa,w = E[Y |do(A = a), w] within

this functional class.

Assumption 4.1 There exists a function f∗ ∈ F such that f∗(a,w) = µa,w, for all (a,w) ∈ A×W.
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This assumption is standard in the contextual bandit literature (Foster and Rakhlin 2020, Foster

et al. 2020, Simchi-Levi and Xu 2022). Let πf (w) = argmaxa∈A f(a,w) denote the policy induced

by the regression function f ∈ F . The set of all induced policies is denoted by Π = {πf | f ∈ F},
which forms the policy space. The objective of the agent is to achieve low regret with respect to the

optimal policy πf∗ , and the cumulative regret in (2) reduces to:

Reg(T ) =
T∑
t=1

E[f∗(πf∗(wt), wt)− f∗(at, wt)|wt]. (16)

In the scenario where the agent can observe both contexts W and U during online learning, we

modify the realizability assumption as follows to incorporate the influence of context U . Recall that

µa,w,u = E[Y |do(A = a), w, u].

Assumption 4.2 There exists a function f∗ ∈ F such that f∗(a,w, u) = µa,w,u for all (a,w, u).

With a slight abuse of notation, we continue to denote the function space and policy space as F
and Π, respectively. The cumulative regret in (3) can be rewritten as:

Reg(T ) =

T∑
t=1

f∗(πf∗(wt, ut), wt, ut)− f∗(at, wt, ut). (17)

4.3.2 Transfer learning with function approximation

In the function approximation setting, causal bounds can help refine the set of plausible reward

functions, excluding any that fall outside the estimated range. This restricted set of functions is

defined as

F∗ = {f ∈ F | l(a,w) ≤ f(a,w) ≤ h(a,w)}.

Furthermore, the candidate action set for context w can also be refined using causal bounds:

A∗(w) =

ß
a ∈ A | a = argmax

i∈A
f(i, w) for some f in F∗

™
.

We propose Algorithm 6 to integrate causal bounds and function approximation in transfer

learning for contextual bandits, using the inverse gap weighting (IGW) technique (Agarwal et al.

2012, Foster et al. 2018, 2020, Simchi-Levi and Xu 2022). Unlike prior IGW approaches, which use a

fixed action set size |A| and a non-adaptive learning rate γ (Foster et al. 2018, Simchi-Levi and Xu

2022), our algorithm has three key distinctions. First, we apply the IGW scheme only to functions

and actions that remain active based on causal bounds, focusing exploration on promising areas.

Second, our learning rate γt adapts to each context, capturing the effect of causal bounds on the

action set and improving efficiency in online learning. Third, unlike (Foster et al. 2020), our regret

rate in T achieves O(
√
T log(δ−1 log T )), improving upon the standard O(

√
T log(δ−1T 2) log T ).

By eliminating suboptimal functions using causal bounds rather than data-driven confidence bounds

on the policy space, we effectively avoid the extra log T factor.

In Algorithm 6, calculating F∗ and A∗(w) can be computationally intensive. A straightforward

approach has a time complexity of O(|F|), which becomes inefficient for large or infinite |F|. To
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Algorithm 6 Transfer learning for contextual bandit with function approximation

Input: time horizon T , function space F , confidence parameter δ, tuning parameters η, and causal

bounds [l(a,w), h(a,w)]

1: Eliminate function space F and obtain F∗ via causal bound

2: Set epoch schedule {τm = 2m, ∀m ∈ N}
3: for epoch m = 1, 2, · · · , ⌈log2 T ⌉ do

4: Compute the least square estimation f̂m = argminf∈F∗
∑τm−1

t=1 (f(at, wt)− yt)
2

5: for round t = τm−1 + 1, · · · , τm do

6: Observe the context wt

7: Compute the best action candidate set A∗(wt)

8: Compute γt =
√

η|A∗(wt)|τm−1

log(2δ−1|F∗| log T )
(for the first epoch, γ1 = 1)

9: Compute f̂m(a,wt) for each action a ∈ A∗(wt) and the following probabilities

pt(a) =


0, for all a ∈ A−A∗(wt),

1
|A∗(wt)|+γt(f̂m(ât,wt)−f̂m(a,wt))

, for all a ∈ A∗(wt)− {ât}

1−
∑

a̸=ât
pt(a), for a = ât,

where ât = maxa∈A f̂m(a,wt).

10: Sample at ∼ pt(·), take action at, and observe a reward yt

address this, we compute F∗ implicitly via clipping, using min{max{f̂m(a,w), l(a,w)}, h(a,w)}
as the estimator at each epoch m. As the estimated function f̂m converges to the true reward

function f∗, which lies within the causal bounds, the effect of the bounds diminishes over time. To

compute A∗(w), we refer to Section 4 of (Foster et al. 2020), which outlines a systematic approach

to approximate A∗(w) with a specified accuracy.

An alternative approach to implementing Algorithm 6 is to use expert knowledge F (a, y, w) to

compute EW [|A∗(W )|], the expected size of the optimal action set over the context distribution.

Using this expectation, we can set γt =
√

ηEW [|A∗(W )|]τm−1

log(2δ−1|F∗| log T )
, allowing γt to remain constant within

each epoch. Our proof remains valid with this choice, and the regret bound aligns with the

one presented in Theorem 4.5. Intuitively, |A(wt)| represents a sample drawn from an induced

distribution with mean EW [|A∗(W )|], ensuring that, on average, the regrets of both methods are of

the same order.

Theorem 4.5 Consider a contextual bandit problem with |A| < ∞ and |F| < ∞ under Assump-

tion 4.1. Assume that the agent has access to the function space F . With probability at least 1− δ,

the expected regret E[Reg(T )] of Algorithm 6 is upper bounded by

O
(»

EW [A∗(W )]T log(δ−1|F∗| log T )
)
.

As noted by Foster et al. (2020), gap-dependent regret bounds are generally not feasible for

contextual bandits, so our focus remains on minimax regret. Previous works, including Liu et al.

(2021), Zhang and Bareinboim (2021), have explored transfer learning within general contextual

bandits. However, the approach in Zhang and Bareinboim (2021) relies on instrumental variables,
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resulting in regret bounds that scale with
√
|Π| instead of the more preferable

√
log |Π|. Additionally,

identifying instrumental variables remains an open problem in the field. Moreover, (Zhang and

Bareinboim 2021) treats each basis policy as an independent arm in bandit settings, a methodology

that may overlook the interdependence among policies. In practice, similar policies can provide

mutual information. For example, exploring the optimal policy can yield insights into the second-best

policy, as these two are likely to differ only in less significant contexts. This understanding explains

why their regret scales with
√
|Π| (as |Π| = |F|) rather than the more efficient

√
log |Π|.

We now demonstrate that the upper bound in Theorem 4.5 aligns with the minimax lower bound

for transfer learning. Define the set of contextual bandit instances with prior knowledge l(a,w) and

h(a,w) as

M = {contextual bandit instances with l(a,w) ≤ f∗(a,w) ≤ h(a,w), ∀(a,w) ∈ A×W}.

Theorem 4.6 Consider a contextual bandit problem with |A| < ∞ and |F| < ∞ under Assump-

tion 4.1. Then for any algorithm A with access to the function space F , we have

sup
M

lim sup
T→∞

Reg(T )√
T
≥
»

EW [|A∗(W )|] log |F∗|.

4.4 Task 3: transfer to fully observable contextual bandit

Our approach to Task 3 follows a similar structure to those for Task 1 and Task 2, with modifications

to incorporate the additional observability of U . For Task 3, the causal effect in FOCB is estimated

as follows:

ÊM[Y |do(A = a), w, u] =
∑
j

yjθlxijkl∑
j′ xij′kl

. (18)

With the same optimization framework as (4), but set (18) as the objective function, we can estimate

bounds on the causal effect E[Y |do(A = a), w, u] by sampling valid causal models using Algorithm 1.

With the causal bounds available, we can filter out functions that cannot represent the true

reward function. Specifically, we define the set of feasible reward functions as:

F∗ = {f ∈ F|l(a,w, u) ≤ f(a,w, u) ≤ h(a,w, u)}.

This allows us to redefine the candidate set of optimal arms based on F∗:

A∗(w, u) = {a ∈ A|a = argmax
i∈A

f(i, w, u) for some f in F∗}.

Finally, we apply the adaptive inverse gap weighting method from Algorithm 6 to select actions,

yielding the following regret upper bounds. The complete algorithm is presented in Algorithm 9.

Theorem 4.7 Consider a contextual bandit problem with |A| < ∞ and |F| < ∞ under Assump-

tion 4.2. Assume that the agent has access to the function space F . With probability at least 1− δ,

the expected regret E[Reg(T )] of Algorithm 9 is upper bounded by

O
(»

EW,U [A∗(W,U)]T log(δ−1|F∗| log T )
)
.
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4.5 Summary of our results.

Table 4 provides a summary of our theoretical results alongside classical benchmarks. The table

illustrates how integrating causal bounds effectively reduces the regret rate by utilizing additional in-

formation about the action set size and the function space size. We also discuss some implementation

details in Appendix A.

Classical results Our results

M
A
B

Gap-dependent UB
∑

a∈A,∆a>0
log T
∆a

∑
a∈Ã∗,∆a>0

log T
∆a

Minimax UB
√
|A|T log T

»
|›A∗|T log T

Minimax LB Ω
Ä√
|A|T

ä
Ω
(»
|›A∗|T

)
Note ›A∗ := {a ∈ A|h(a) ≥ µ∗} ⊂ A

C
B

w
it
h

fi
n
it
e
co
n
te
x
ts

Gap-dependent UB
∑

w∈W
∑

a∈A,∆w,a>0
log T
∆w,a

∑
w∈W

∑
a∈Ã∗(w),∆w,a>0

log T
∆w,a

Minimax UB
√
|W||A|T log T

∑
w∈W

»
|›A∗(w)|P(W = w)T log T

Minimax LB Ω
Ä√
|W||A|T

ä
Ω
(∑

w∈W

»
|›A∗(w)|P(W = w)T

)
Note

∑
w∈W

»
|›A∗(w)|P(W = w) ≤

»∑
w∈W |A∗(w)| ≤

√
|W||A|

C
B

w
it
h

fu
n
ci
to
n
a
p
p
ro
x
.

Gap-dependent UB Not applicable Not applicable

Minimax UB
√
|A|T log(δ−1|F| log T )

√
EW [|A∗(W )|]T log(δ−1|F∗| log T )

Minimax LB Ω
Ä√
|A|T log(|F|)

ä
Ω
Ä√

EW [|A∗(W )|]T log(|F∗|)
ä

Note F∗ ⊂ F and A∗(w) ⊂ A for each w ∈ W
Table 4: Comparison of classical complexity bounds with our approach. Absolute constants are omitted for

clarity. The results for contextual bandit with funciton approximation is stated for Task 2. For Task 3, one

can replace EW [A∗(W )] with EW,U [A∗(W,U)].

5 Application to Offline Dynamic Pricing

Our causal bounds framework extends seamlessly to a variety of causal graph structures beyond the

one depicted in Figure 1, accommodating a wide range of observational distributions and target

causal effects.

To illustrate its practical applicability, we consider the offline pricing policy learning problem

with censored demand. In this setting, the offline dataset records observed prices P , inventory levels

I, and sales S, while the true demand D is unobservable and censored by inventory constraints. In

(Tang et al. 2022), the authors propose using an indicator variable to represent the censoring event,

presuming that this indicator is observable in the offline data. While this assumption simplifies the

identification of the target causal effect, it is quite restrictive and may not hold in many real-world
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applications, where such indicators are not recorded. We do not require the availability of such

indicators.

Our method can be implemented in a streamlined manner to address this problem, as follows:

Step 1: Identify the causal relationships. The first step is to identify the causal relationships

among the observed random variables based on the data generation process. Inventory influences

price, as pricing decisions are typically adjusted based on observed inventory levels. Inventory also

affects sales, as it constrains the fulfillment of demand. Price indirectly influences sales through its

impact on the true (but unobserved) demand. This causal structure is depicted in Figure 2.

P SD

I

Fig. 2: The causal diagram for offline pricing policy learning with censored demand. Here, P , D, I, and S

represent price, demand, inventory, and sales, respectively.

Step 2: Specify the observational distributions and the target causal effect. In

practice, the joint distribution F (p, i, s) can be directly estimated from the offline dataset, as all

variables are observable. Moreover, the causal relationship among I, D and S is often known a

priori, allowing us to assume that the conditional distribution F (s|d, i) is given a priori.

The central goal of offline pricing policy learning is to estimate E[D|do(P = p)] using the

observational distribution F (p, i, s) and the prior knowledge F (s|d, i). By do-calculus, we can

simplify the causal effect E[D|do(P = p)] to the conditional expectation E[D|p] since the backdoor

path between P and D is blocked by the variable S, as depicted in Figure 2.

Step 3: Formulate the causal bound optimization problem. Optimizing over all possible

causal models compatible with the observational distributions, we obtain the causal bounds for the

causal effect E[D|p]:

sup / inf EM[D|p],
s.t. FM(p, i, s) = F (p, i, s), FM(s|d, i) = F (s|d, i).

(19)

Our framework provides an efficient Monte Carlo sampling method for generating compatible causal

models, ensuring estimates that converge to valid and tight causal bounds, even in the presence of

data censoring.

Building on these causal bounds, we can incorporate pessimistic (Jin et al. 2021) or opportunistic

(Stoye 2012) strategies to truncate the confidence bounds. Following the approach in (Bian et al.

2024), finite-sample regret guarantees can be rigorously analyzed for both strategies.

6 Numerical Experiments

Causal bounds.

We compare our proposed Algorithm 2 with the nonlinear optimization method proposed by Li and

Pearl (2022) when all variables are binary. Specifically, we randomly generate joint distributions
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P(A, Y,W ), as shown in Table 5, and set P(U = 1) = 0.1.

(A, Y,W ) (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

P(a, y, w) 0.2328 0.1784 0.1351 0.1467 0.0304 0.1183 0.0149 0.1433

Table 5: Observational distribution P(A, Y,W ) for POCB.

We implemented Algorithm 2 with a batch size of 20000, and set error term ϵ = 0, following Li

and Pearl (2022)’s assumption that the given distributions are accurate. The results are presented

in Table 6. Our method produces tighter bounds than those obtained by Li and Pearl (2022), as

evidenced by the narrower ranges of the estimated causal effects. Additionally, we observed that

solving the nonlinear optimization problem is quite unstable and often leads to local optima. To

obtain global solutions, we repeated the nonlinear optimization with randomly initialized starting

points.

causal effect Li and Pearl (2022) Algorithm 2

E[Y |do(A = 0)] [0.283, 0.505] [0.352, 0.471]

E[Y |do(A = 1)] [0.240, 0.807] [0.265, 0.768]

Table 6: Comparison of causal bounds obtained by Algorithm 2 and Li and Pearl (2022) for POCB.

Estimation error.

In this numerical experiment, we assess the convergence properties of our proposed method under

estimation errors. We utilize the scipy.optimize.minimize function from the SciPy library for

optimization. The error term ϵ is initialized at 0.1 and applied equally to all probability estimators.

As ϵ is gradually reduced towards zero, the optimal values of the optimization problem with error

terms steadily converge to those of the original problem, as shown in Figure 3. This observation

demonstrates the convergence behavior of our method.
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Fig. 3: Estimation for causal bounds E[Y |do(A = 0)] with estimation errors of different levels.

Transfer learning in MAB.

We compare our proposed transfer learning algorithm (Algorithm 3) with standard multi-armed

bandit (MAB) algorithms that do not utilize causal bounds. We also include a UCB- algorithm
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that naively transfer knowledge by calculating the conditional expectation E[Y |a,w] as a surrogate

for the true the causal effect E[Y |do(A = a), w].

Our simulations involve 5-armed Bernoulli bandits with success probabilities of 0.1, 0.2, 0.3, 0.6, 0.8.

The experiments consist of T = 105 trials, averaged over 50 repetitions. For each task, we collect

1000 samples generated by a source agent to compute the empirical joint distribution.

The estimated causal bounds without knowledge of F (u) (denoted as CUCB in Figure 3) are

h(a) = 0.9, 0.35, 0.92, 0.96, 0.92, and l(a) = 0, 0.08, 0.1, 0.3, 0.4 following the method proposed by

Zhang and Bareinboim (2017). In contrast, our method, which incorporates knowledge of F (u) yields

significantly tighter bounds: h(a) = 0.2, 0.25, 0.77, 0.7, 0.9, and l(a) = 0.01, 0.08, 0.19, 0.38, 0.71.

This substantial narrowing highlights the advantage of our approach in providing more precise

estimates of causal effects.

The regret curves, as shown in Figure 4, reveal key insights. The regret of UCB- initially

grows linearly before transitioning to a sublinear trend, highlighting the negative transfer effect

where the agent spends many trials mitigating the impact of incorrect knowledge. Additionally,

we observe that causal bounds can improve regret performance even when no arms are eliminated,

as evidenced by the comparison between CUCB and UCB. Most notably, our proposed algorithm

achieves significantly faster convergence rates by leveraging tighter causal bounds to effectively

eliminate suboptimal arms. These findings validate our approach and demonstrate that offline data

can be effectively used to improve the target agent’s performance, even in situations where causal

identifiability is not achievable.

0 0.2 0.4 0.6 0.8 1

·105

0

100

200

300

400

time t

re
gr
et

UCB-
UCB
CUCB
ours

Fig. 4: Comparison of classical and causally enhanced algorithms. The solid curves represent the average

cumulative regret over time for each algorithm. The top and bottom dashed curves correspond to one

standard deviation added to and subtracted from the mean cumulative regret.

Transfer learning in contextual bandits.

We generate function space F = (w − w0)
⊤(a− a0) of size 50 by sampling parameters w0 and a0 in

Rd from N (0, 0.1), where d = 10. A true reward function f∗ is randomly selected from the first 5

functions in F . The reward is then generated as

Y = f∗(W,A) +N (0, 0.1),

where the context W is drawn i.i.d. from a standard normal distribution, and A is the selected

action. The action set A is initialized uniformly at random from [−1, 1]d with a size of 10. Each

experiment is repeated 50 times to smooth the regret curves.
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We compare the performance of our algorithm with FALCON (Simchi-Levi and Xu 2022),

a well-known implementation of IGW. The numerical results in Figure 5 demonstrate that our

algorithm significantly outperforms FALCON, even without explicitly removing infeasible functions.

In the experiments, the average size of the action subset A(w) is 3.254, highlighting the substantial

performance gains achieved by reducing the size of the action space. Additionally, our algorithm

excels with homogeneous functions, which often attain their maximum values at the same points.

In such scenarios, adaptively eliminating suboptimal actions proves to be a highly effective strategy

for minimizing regrets.
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Fig. 5: Comparison of classical and causally enhanced algorithms in function approximation settings. The

solid curves represent the average cumulative regret over time for each algorithm. The top and bottom dashed

curves correspond to one standard deviation added to and subtracted from the mean cumulative regret.

7 Conclusions

In this paper, we explored a practical transfer learning setting where incomplete offline datasets

hinder direct reward estimation. We demonstrated that naive approaches in such scenarios can

result in negative transfer, emphasizing the need to focus on transferring causal effects. Given the

challenges posed by the non-identifiability of causal effects in the presence of unobserved confounders,

we instead derived tight causal bounds as a more robust alternative.

We proposed a series of optimization problems to compute these causal bounds. To ensure

computational feasibility, we introduced a method based on solving a sequence of linear programs

to generate valid causal models. Our framework is designed to accommodate both estimation and

approximation errors effectively. Moreover, we showed that incorporating optimization procedures

enhances convergence rates. In transfer learning tasks, leveraging causal bounds allowed us to

eliminate suboptimal actions, achieving consistent improvements over classical bandit algorithms

and significantly accelerating convergence.

There are several future research directions worth exploring. While the approximation error is

zero for discrete random variables, it remains an open question under what conditions on general

random variables and discretization methods the solutions to the discretized optimization converge

to those of the original continuous problem. Our numerical results indicate convergence for specific

discrete distributions, and we hypothesize that this behavior may be tied to the sensitivity of the

underlying nonlinear optimization problem. Additionally, an extension of our IGW-based algorithm

to settings with continuous action spaces would be valuable. IGW has shown promise in such
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contexts and demonstrated practical advantages in large action spaces. This extension could involve

exploring complexity measures from machine learning to guide the design of efficient algorithms for

continuous action settings.
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A Discussions

Acceleration of sampling.

To accelerate the convergence of Algorithm 2, we incorporate an optimization procedure OPT that

accepts the objective function to minimize or maximize, the feasible domain D, and an initial guess

x0. The procedure OPT seeks a local optimum xloc ∈ D that optimizes the objective function locally.

We present the algorithm for general causal effect targets in Algorithm 8. In each iteration of

Algorithm 2, we use the sampled value xτ as the initial guess x0 and input it into OPT. The output

of OPT then serves as an updated estimate of the causal bounds. By leveraging this optimization

procedure, we can enhance the convergence results in Proposition 3.1 under the following assumption

on OPT.

Assumption A.1 OPT is deterministic and satisfies the following property: For any local optimum

xloc within the feasible domain D, there exists a δ > 0 such that, for any initial guess x0 ∈
B(xloc, δ) ∩ D, the procedure OPT will output xloc.

Proposition A.1 Assume that the sampling measure Ps satisfies ∀x ∈ D, and ∀δ > 0,

Ps(B(x, δ) ∩ D) > 0,

where B(x, δ) is a ball centered at x with radius δ. Let lB(a), hB(a) be the outputs of Algorithm 8

with the target (6) and an optimization procedure OPT that satisfies Assumption A.1, then lB(a) and

hB(a) converge almost surely to l(a) and h(a) as B →∞, respectively.

These results suggest that the modified algorithm incorporating OPT converges to the optimal

solution at a faster rate than the original algorithm. Intuitively, the optimization procedure OPT

concentrates the sampling probability around the local optima rather than spreading it over the

entire feasible domain. Since optimization procedures typically perform effectively in local regions

and can guarantee local optimality for sufficiently close initial guesses, our assumption on OPT is

reasonable and not overly restrictive. Similar convergence results also apply to the causal bounds in

(14). For detailed proofs, please refer to Proposition C.2 and Proposition C.3 in the Appendix.

Infinite function classes.

We note that Algorithm 6 and Theorem 4.5 naturally extend to infinite function classes F . In such

cases, the dependence on log |F∗| in the algorithm’s parameters and regret bounds is replaced by

standard learning-theoretic complexity measures, such as metric entropy. Suppose F is equipped

with a maximum norm ∥ · ∥. Consider an ϵ-covering F∗
ϵ of F∗ so that for any reward function f∗,

there exists a function f∗
ϵ ∈ F∗

ϵ such that ∥f∗
ϵ − f∗∥ ≤ ϵ. Since |F∗

ϵ | is finite, we can replace F∗ with

F∗
ϵ without altering any algorithmic procedures. Hence, the regret can be bounded by

Reg(T ) ≤ 8
»

EW [A(W )]T log(2δ−1|F∗
ϵ | log T ) + ϵT

By setting ϵ = 1
T , we obtain a result similar to Theorem 4.5.
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Definition A.1 (Fan 1953) Let (F , ∥ · ∥) be a normed space. A set {f1, · · · , fN} is an ϵ-covering

of F if, for every f ∈ F , there exists an i such that ∥f − fi∥ ≤ ϵ. The covering number N(F , ∥ · ∥, ϵ)
is defined as the minimal cardinality N over all ϵ-coverings of F .

It clear that Reg(T ) scales with
√
logN(F∗, ∥ · ∥, ϵ). Note that N(F∗, ∥ · ∥, ϵ) ≤ N(F , ∥ · ∥, ϵ)

since F∗ ⊂ F . The covering number explicitly shows how causal bounds help improve the algorithm’s

performance by reducing the search space.

Let m = infw,a l(w, a) and M = supw,a h(w, a). These bounds chip away the surface of the unit

sphere and scoop out the concentric sphere of radius m. Therefore, the transfer learning algorithm

only needs to search within a “spherical shell” of thickness M −m at most.

Implementation details.

Computing F∗ and A(w) directly can be computationally intensive. A naive approach has a time

complexity of O(|F|), which becomes inefficient for large or infinite function classes |F| and infeasible

for infinite |F|. To address this, we can implicitly compute F∗ by applying clipping to the estimator

f̂m(w, a) at each epoch m:

f̂ ′
m(w, a) ≜ min{max{f̂m(w, a), l(w, a)}, h(w, a)}.

This approach ensures that f̂ ′
m(w, a) remains within the causal bounds [l(w, a), h(w, a)]. As f̂m(w, a)

converges to the true reward function f∗, which lies within these bounds, the influence of the clipping

diminishes. For computing A(w), we refer to Section 4 of Foster et al. (2020), which provides a

systematic method for determining A(w) with a specified accuracy.

An alternative approach to implement Algorithm 6 is to estimate EW [|A(W )|] using expert

knowledge F (a, y, w). We can then set the learning rate γt =
√

ηEW [|A(W )|]τm−1

log(2δ−1|F∗| log T )
, ensuring that γt

remains constant within each epoch. Our proof remains valid with this choice, and the regret bound

is the same as in Theorem 4.5. Intuitively, |A(wt)| is a sample from a distribution with mean

EW [|A(W )|], so on average, the regrets of both methods are of the same order.

B Additional Algorithms

In this section, we extend the sampling method presented in Algorithm 2 to a more general algorithm,

Algorithm 7, which samples a random point within a simplex D ⊂ Rd defined by

D ≜ {x ∈ Rd : Ax ≤ b,x ≥ 0}.

Without loss of generality, we always assume D is not empty.
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Algorithm 7 A sampling algorithm for the given simplex

Input: A simplex D = {x : Ax ≤ b,x ≥ 0} and a sampling distribution Fs supported on [0, 1]

1: Solving the following LP to find the bound [l1, h1] for x1

max /min x1,

s.t. Ax ≤ b,x ≥ 0.

2: Sample a value x̂1 from the truncated Fs supported on [l1, h1]

3: for i = 2, · · · , d do

4: Solving the follow LP to find the bound [li, hi] for xi

max /min x1,

s.t. Ax ≤ b,x ≥ 0,

xj = x̂j , j = 1, · · · , i− 1.

5: Sample a value x̂i from the truncated Fs supported on [li, hi]

Output: The sample x̂ = (x̂1, · · · , x̂d) ∈ D

Algorithm 8 Monte-Carlo estimation for causal bounds with an extra optimization procedure

Input: Sample size B, optimization procedure OPT, target causal effect CE

1: for τ = 1, 2, . . . , B do

2: Call Algorithm 1 to obtain the sampled causal model x̂τ

3: Use the obtained feasible sample x̂τ as the initial guess into OPT and obtain samples of

causal effects CEτ through minimization/maximization problems

4: Compute LB = minτ CEτ and UB = maxτ CEτ

Output: {LB,UB}
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Algorithm 9 Transfer learning for contextual bandit with function approximation

Require: time horizon T , function space F , confidence parameter δ, tuning parameters η, and

causal bounds [l(a,w, u), h(a,w, u)]

1: Eliminate function space F and obtain F∗ via causal bound

2: Set epoch schedule {τm = 2m, ∀m ∈ N}
3: for epoch m = 1, 2, · · · , ⌈log2 T ⌉ do

4: Compute the least square estimation

f̂m = argmin
f∈F∗

τm−1∑
t=1

(f(at, wt, ut)− yt)
2

5: for round t = τm−1 + 1, · · · , τm do

6: Observe the context wt, ut
7: Compute the best action candidate set A∗(wt, ut)

8: Compute γt =
√

η|A∗(wt,ut)|τm−1

log(2δ−1|F∗| log T )
(for the first epoch, γ1 = 1)

9: Compute f̂m(wt, uta) for each action a ∈ A∗(wt, ut) and the following probabilities

pt(a) =


0, for all a ∈ A−A∗(wt, ut),

1
|A∗(wt,ut)|+γt(f̂m(ât,wt,ut)−f̂m(a,wt,ut))

, for all a ∈ A∗(wt, ut)− {ât}

1−
∑

a̸=ât
pt(a), for a = ât,

where ât = maxa∈A f̂m(a,wt, ut).

10: Sample at ∼ pt(·), take action at, and observe a reward yt

C Proofs

C.1 Proof of the mentioned facts

Fact C.1.1 Given a series of known observational distributions F 1, · · · , Fn, consider the following

optimization problem to determine bounds on the causal effect:

sup / inf CE(M),

s.t. F i
M = F i, i = 1, · · · , n,

where CE(M) represents the desired causal effect, and F i
M denotes the distribution induced by the

causal modelM corresponding to the observational distribution F i. Here, the sup/inf is taken with

respect to all causal models M that are compatible with the given observational distributions. A

causal effect CE(M) is identifiable if and only if if the lower bound (LB) and upper bound (UB)

solutions to the optimization problem are equal, i.e., LB = UB.

Proof. If LB = HB, then for any compatible modelM1 andM2, we have

LB = CE(M1) = CE(M2) = UB.

According the definition of causal identification, the required causal effect CE(M) can be fully

identified.
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On the contrary, suppose CE(M) is causal identifiable. Then for any compatible model pairM1

andM2, we have CE(M1) = CE(M2). Traveling over all compatible models immediately yields

LB = CE(M1) = CE(M2) = UB.

□

Fact C.1.2 If the estimator θ̂x for θx ∈ [0, 1] has nx i.i.d. samples, then the variance of θ̂x is at

most 1
4nx

.

Proof. Since θ2x ≤ θx, then

Var(θx) = E[θ2x]− (E[θx])2 ≤ E[θx]− (E[θx])2 ≤
1

4
.

Hence, we have

Var(θ̂x) =
1

nx
Var(θx) ≤

1

4nx
.

□

C.2 Optimization problem for general distributions

Theorem C.1 Given a causal diagram G and a distribution compatible with G, let (W,U) be a set

of variables satisfying the back-door criterion in G relative to an ordered pair (A, Y ), where (W,U)

is partially observable, i.e., only probabilities F̂ (a, y, w) and F̂ (u) with the maximum estimation

error ϵ are observed, then the causal effects of A on Y are bounded as follows:

l(a0) ≤ E[Y |do(A = a0)] ≤ h(a0),

where l(a0) and h(a0) are solutions to the following functional optimization problem for any given a0

l(a0) = inf

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w, u)dF (w, u)

h(a0) = sup

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w, u)dF (w, u)

s.t.

∫
u∈U

dF (a, y, w, u) = F (a, y, w),∀(a, y, w) ∈ A×W × U∫
a∈A,y∈Y,w∈W

dF (a, y, w, u) = F (u), ∀u ∈ U∫
y∈Y

dF (a, y, w, u) = F (a,w, u), ∀(a,w, u) ∈ A×W × U∫
a∈A

dF (a,w, u)du = F (w, u),∀(w, u) ∈ W × U

F (y|a,w, u)F (a,w, u) = F (a, y, w, u),∀(a, y, w, u) ∈ A× Y ×W × U

|F (a, y, w)− F̂ (a, y, w)| ≤ ϵ,∀(a, y, w) ∈ A× Y ×W

|F (u)− F̂ (u)| ≤ ϵ,∀u ∈ U .

Here the inf/sup is taken with respect to all unknown cumulative distribution functions F (a, y, w, u),

F (a,w, u), F (y|a,w, u), F (w, u), F (a, y, w) and F (u).
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The functional optimization problem presented in (4) provides tight lower and upper bounds

on the average causal effect l(a) and h(a), respectively, for any given a ∈ A. This optimization

problem can be applied to both parametric and non-parametric cases. We first consider the accurate

observational distribution, and further discuss how to incorporate the influence of estimation errors.

Proof. Since W and U satisfies the back-door criterion, we can condition on W,U to identify the

causal effect E[Y |do(A = a0)] We have

E[Y |do(A = a0)] =

∫
w∈W,u∈U

E[Y |do(A = a0), w, u]dF (w, u)

=

∫
w∈W,u∈U

E[Y |a0, w, u]dF (w, u)

=

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w, u)dF (w, u).

The equalities come from the normalization properties of distribution functions. The inequalities

come from the estimation error. □

For continuous random variables, we can discrete distributions as the same way in Section 3.3.

During discretization, equality constraints in Theorem C.1 are automatically satisfied in the sense

of integration.

For the first constraint, we integrate over Ai × Yj ×Wk and have∫
a∈Ai,y∈Yj ,w∈Wk

dF (a, y, w)du =

∫
a∈Ai,y∈Yj ,w∈Wk,u∈U

dF (a, y, w, u)du

=
∑
l

∫
a∈Ai,∈Yj ,w∈Wk,u∈U

dF (a, y, w, u)du

=
∑
l

xijkl.

For the second equality, we integrate over Ul and have∫
u∈Ul

dF (u)du =

∫
a∈A,y∈Y,w∈W,u∈Ul

dF (a, y, w, u)du

=
∑
ijk

∫
a∈Ai,∈Yj ,w∈Wk,u∈Ul

dF (a, y, w, u)du

=
∑
ijk

xijkl.

Hence, the second equality constraint holds in the sense of integration.

For the third and the fourth equality constrains, we can do integration over corresponding blocks

and check the equality in the same way. The conditional distribution in the fifth equality can be

approximated by xijkl. We now discuss the object in Theorem C.1 after discretization, which is

approximately equal to (6).

We use the average values to approximate distributions at certain points. First, we only need to

consider the value ∫
y∈Yj ,w∈Wk,u∈Ul

y
dF (a, y, w, u)dF (w, u)

dF (a,w, u)
,

39



as summing over j, k, l can yield the object.

Suppose the given a ∈ Ai and let vol(·) denote the volume of the given block. For the values of

distributions in Ai × Yj ×Wk × Ul, we have

dF (a, y, w, u) ≈ dadydwdu

vol(Ai)vol(Yj)vol(Wk)vol(Ul)

∫
a∈Ai,y∈Yj ,w∈Wk,u∈Ul

dF (a, y, w, u)

=
xijkldadydwdu

vol(Ai)vol(Yj)vol(Wk)vol(Ul)
,

dF (a,w, u) ≈ dadwdu

vol(Ai)vol(Wk)vol(Ul)

∫
a∈Ai,w∈Wk,u∈Ul

dF (a,w, u)

=
dadwdu

vol(Ai)vol(Wk)vol(Ul)

∫
a∈Ai,y∈Y,w∈Wk,u∈Ul

dF (a, y, w, u)

=

∑
j′ xij′kldadwdu

vol(Ai)vol(Wk)vol(Ul)
,

dF (w, u) ≈ dwdu

vol(Wk)vol(Ul)

∫
w∈Wk,u∈Ul

dF (w, u)

=
dwdu

vol(Wk)vol(Ul)

∫
a∈A,y∈Y,w∈Wk,u∈Ul

dF (a, y, w, u)

=

∑
i′,j′ xi′j′kldwdu

vol(Wk)vol(Ul)
.

Plugging all above equalities yields∫
y∈Yj ,w∈Wk,u∈Ul

y
dF (a, y, w, u)dF (w, u)

dF (a,w, u)

≈
xijkl

∑
i′,j′ xi′j′kl∑

j′ xij′kl

∫
y∈Yj ,w∈Wk,u∈Ul

=
xijkl

∑
i′,j′ xi′j′kl∑

j′ xij′kl

∫
y∈Yj ,w∈Wk,u∈Ul

ydydydu/vol(Yj)vol(Wk)vol(Ul)

≈
yjxijkl

∑
i′,j′ xi′j′kl∑

j′ xij′kl
.

If yj is chosen to be

∫
y∈Yj

ydy∫
y∈Yj

dy
, then the last symbol of approximation can be replaced with the

symbol of equal. If Yj is an interval, yj can be chosen as the midpoint of Yj .
The step of approximating dF is crucial in reducing the approximation error. For absolutely

continuous cumulative distribution functions, the approximation error will converge to zero as the

diameter of each block approaches zero. Furthermore, if all random variables are discrete, the

approximation error can be exactly zero when using the natural discretization. In this case, the

original objective can be expressed as∑
y∈Y,w∈W,u∈U

y
P (A = a, Y = y,W = w,U = u)P (W = w,U = u)

P (A = a,W = w,U = u)
.

Our discretization method can be regarded as approximating probability mass functions.
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C.3 Proof of convergence results of Algorithm 2

We first prove the following lemma to show that our sampling algorithm can cover all values in the

feasible region D. We denote the truncated distribution to [l, h] from the user-given distribution Fs

when xi is given in sequential LPs as Fs(x|xi, [l, h]).

Lemma C.1 The Algorithm 7 induces a distribution on the given simplex D.

Proof. We need to prove the sample generated by Algorithm 7 can exactly cover the region of D.
On the one hand, for any output x, the feasibility of each component of x indicates that x must lie

in D. On the another hand, for any x̂ ∈ D, we show that this point can be generated by solving

sequential LPs. Since x̂ ∈ D, x̂ is a feasible solution to the first LP

max /min x1,

s.t. Ax ≤ b,x ≥ 0.

One can check the feasibility of x̂ in the following LPs

max /min xi,

s.t. Ax ≤ b,x ≥ 0,

x1 = x̂1, · · · , xj = x̂j , j = 1, 2, · · · , i− 1,

because x̂ ∈ D and the previous i components are exactly equal to those of x̂.

Suppose that the number of components of x̂ is d. Then the induced distribution is

F (x̂) = Fs(x1|[l1, h1])
d∏

i=2

Fs(xi|[li, hi], xj , j = 1, 2, · · · , i− 1).

□

We now give the proof for Proposition 3.1.

Proof. The optimization problem (7) has one-to-one correspondence between x and each causal model

where all random variables are discrete. From Lemma C.1, we know the one-to-one correspondence

between each model and x. Therefore, [l(a), h(a)] is the support of the induced distribution on

casual bounds.

As shown in (6), the objective can be regarded as a function of x. We define ϕ = EM[Y |do(A = a)]

which is a continuous mapping from D to [0, 1]. The continuity of ϕ is clear for
∑

j′ xij′kl > 0. When∑
j′ xij′kl = 0, the non-negativity of xijkl implies

∑
i′,j′ xi′j′kl = 0. In this case, we can set the value

of
yjxijkl

∑
i′,j′ xi′j′kl∑

j′ xij′kl
to be 0 to maintain continuity.

Given that D is a compact set, there exists xl such that ϕ(xl) = l(a). Let b(a) be a sample

generated by Algorithm 2. Then the continuity of ϕ indicates that ∀ϵ > 0, there exists δ > 0 such

that ϕ(x) < l(a) + ϵ for all x ∈ B(xl, δ), then

P (b(a) < l(a) + ϵ) = Ps

Ñ ⋃
b(a)<l(a)+ϵ

{x ∈ D|ϕ(x) = b(a)}

é
≥ Ps(B(xl, δ)) > 0.
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Suppose that b(1)(a), · · · , b(B)(a) is the ordered statistics for the output of Algorithm 2. Then we

have

P (lB(a) < l(a) + ϵ) = P
(
b(1)(a) < l(a) + ϵ

)
= 1− (1− P (b(a) < l(a) + ϵ))B → 1

as B →∞. Since lB(a) is a feasible solution to the discrete optimization problem, we have

P (l(a) ≤ lB(a) < l(a) + ϵ) = 1− (1− P (b(a) < l(a) + ϵ))B → 1

which implies lB(a)→ l(a) in probability.

Similarly, we can prove that P (hB(a) > h(a)− ϵ) < 1 and thus hB(a)→ h(a) in probability.

□

Proof. The one-to-one correspondence between x and each causal model has been proved in

Lemma C.1. Therefore, [l(a), h(a)] is the support of the induced distribution on casual bounds. As

shown in the proof of Proposition 3.1, the defined ϕ = EM[Y |do(A = a)] is a continuous mapping

from D to [0, 1].

Given that D is a compact set, there exists xl such that ϕ(xl) = l(a). The property of OPT

implies that there exists δ > 0 such that

OPT(min /max, (6),D,x) = xl,∀x ∈ B(xl, δ) ∩ D.

Hence, we have

P (lB(a) = l(a)) ≥ Ps(B(xl, δ) ∩ D) > 0.

Due to Borel-Cantelli lemma we can prove that lB(a)→ l(a) almost surely, because each sample

b(a) is i.i.d. generated by Algorithm 8. Similarly, we can prove that hB(a)→ h(a) almost surely.

□

C.4 Proof of regrets in Section 3.1

We first prove Theorem 4.1.

Proof. Case 1: h(a) < maxi∈A l(i)

From the algorithmic construction, we know that such arm a is removed and thus

E[Na(T )] = 0.

Case 2: maxi∈A l(i) ≤ h(a) < µ∗.

Let a∗ = argmaxa∈A E[Y |do(A = a)] be the optimal action with respect to w. Define the

following event

E(t) =
ß
µ̂a ∈

ï
µa −

log t

na(t)
, µa +

log t

na(t)

ò
, ∀a ∈ A

™
Then the Chernoff’s bound yields

P
Ä
E(t)
ä
≤
∑
a∈A

exp(−2na(t)×
log t

na(t)
) ≤ |A|

t2
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For any given w, the event {At = a} implies Ûa(t) > Ûa∗(t). However,

µ∗ > h(a) ≥ Ûa(t)

and

Ûa∗(t) ≥ µ∗

if E(t) holds. This leads to contradiction. Therefore,

E[Na(T )] =

T∑
t=1

P (At = a)

=

T∑
t=1

P (At = a|E(t))P (E(t)) + P
Ä
At = a|E(t)

ä
P
Ä
E(t)
ä

≤
T∑
t=1

P
Ä
E(t)
ä

≤
T∑
t=1

|A|
t2

≤ |A|π
2

6
.

Case 3: h(a) ≥ µ∗

We reuse the notation E(t) in the case 2. Condition on the event
⋂T

t=1 E(t), if na(t) ≥ 8 log T
∆2

a
,

then

Ûa(t) ≤ Ua(t) = µa +

 
2 log t

na(t)
≤ µa +

1

2
∆a = µ∗ ≤ Ûa∗(t),

so Algorithm 5 will not choose the action a at the round t. Therefore,

E[Na(T )] ≤ E

[
Na(T )

∣∣∣∣ T⋂
t=1

E(t)

]
+ TP

Ñ
T⋂
t=1

E(t)

é
≤ 8 log T

∆2
a

+ TP

Ñ
T⋃
t=1

E(t)

é
.

We conclude the proof by showing

TP

(⋃
t=1

E(t)

)
≤ T

T∑
t=1

|A|
t2

< T × |A|
T

= |A|.

□

Actually, the proof is just a simple modification of that in Theorem 4.2, because MAB can be

regarded as a special case of contextual bandits.

Theorem C.2 Consider a MAB bandit problem with |A| <∞. Denote›A∗ = A− {a ∈ A|h(a) < µ∗}.

Then the regret of Algorithm 3 is upper bounded by

E[Reg(T )] ≤
»
8(|›A∗| − 1)T log T .
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Proof. Theorem 4.1 shows that

E[Reg(T )] =
∑
a∈A

∆aE[Na(T )]

≤
∑
a∈›A∗

8 log T

∆a
I {∆a ≥ ∆}+ T∆+O(|A|)

≤ 8(|›A∗| − 1) log T

∆
+ T∆+O(|A|).

Specifying ∆ =

√
8(|›A∗|−1) log T

T concludes the proof. □

Denote the contextual bandit instances with prior knowledge l(a) and h(a) as

M = {MAB bandit instances with l(a) ≤ µa ≤ h(a), ∀a ∈ A}.

Theorem C.3 Suppose |A| < ∞. Then for any algorithm A, there exists an absolute constant

c > 0 such that

min
A

sup
M

Reg(T ) ≥ 1

27

»
(|›A∗| − 1)T .

Proof. This is a direct corollary of MAB regret lower bound, because any arm in›A∗ cannot be the

optimal one. □

C.5 Proof of Proposition 2.1

Proof. From the rule of do-calculus, we have

E[Y |do(A = a), w] =

∫
u∈U

E[Y |do(A = a), w, u]dF (u)

=

∫
u∈U

E[Y |a,w, u]dF (u).

The last equality is due to the rule of do-calculus as W and U is sufficient to block all back-door

paths from A to Y . □

C.6 Epsilon-indentifiction

In Section 2.2, we consider the fully identifiable case, with the objective E[Y |do(A = a), w].

Given that the expert provides F (a, y, w, u), it is possible to compute F (y|a,w, u) and F (u) from

observation data. However, in practical scenarios, estimating F (y|a,w, u) and F (u) can result in

uncertainties. Recent research in causal inference, such as Li et al. (2022, 2023), has investigated

the impact of estimation error from finite samples. In particular, Li et al. (2023) introduced the

concept of ϵ-identification, which extends the original identification concept and accounts for the

influence of estimation error from finite samples. To address this, we establish an ϵ-identification

result using finite samples.
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Proposition C.1 Suppose A, Y , W , and U are all discrete random variables with bounded support.

Assume that the samples are independently and identically distributed. For given a,w and each

tuple (y, u), the fraction of samples containing (y, u) is at least κ, where κ is an absolute positive

constant. Then, for a sample size of n ≥ 2|U|2|Y|2
κδ2

ln
(
2|U|

∑
y∈Y y

ϵ

)
, one can achieve ϵ-identification

for E[Y |do(A = a), w], meaning that |E[Y |do(A = a), w]− Ê[Y |do(A = a), w]| ≤ ϵ with probability

at least 1− δ. Here, Ê[Y |do(A = a), w] is the sample estimate of the causal effect.

Proof. In the discrete setting, the causal effect can be written as

E[Y |do(A = a), w] =
∑

u∈U ,y∈Y
yP (y|a,w, u)P (u) .

The sample size of P̂(u) and P̂(y|a,w, u) is at least κn. Due to i.d.d. assumption of each tuple (y, u)

and Hoeffding’s inequality, then with probability at least 1− δ/(2|U||Y|), we have

|P̂(u)− P (u) | ≤ exp(−κnδ2/(2|U|2|Y|2)), |P̂(y|a,w, u)− P (y|a,w, u) | ≤ exp(−κnδ2/(2|U|2|Y|2)).

Therefore, since

Ê[Y |do(A = a), w] =
∑

u∈U ,y∈Y
yP̂(y|a,w, u)P̂(u),

with probability at least 1− δ, we have

|Ê[Y |do(A = a), w]− E[Y |do(A = a), w]|

=

∣∣∣∣∣∣ ∑
u∈U ,y∈Y

y(P̂(y|a,w, u)P̂(u)− P(y|a,w, u)P(u))

∣∣∣∣∣∣
≤

∑
u∈U ,y∈Y

y|P̂(y|a,w, u)P̂(u)− P(y|a,w, u)P(u)|

≤
∑

u∈U ,y∈Y
y
Ä
|P̂(y|a,w, u)− P(y|a,w, u)|P(u) + P̂(y|a,w, u)|P̂(u)− P(u)|

ä
≤2|U|(

∑
y∈Y

y) exp(−κnδ2/(2|U|2|Y|2)).

Let the RHS be equal to ϵ. Then we have

n ≥ 2|U|2|Y|2

κδ2
ln

Ç
2|U|

∑
y∈Y y

ϵ

å
.

□

C.7 Theorems in Task 2

Theorem C.4 Given a causal diagram G and a distribution compatible with G, let (W,U) be a set

of variables satisfying the back-door criterion in G relative to an ordered pair (A, Y ), where (W,U)

is partially observable, i.e., only probabilities F̂ (a, y, w) and F̂ (u) with the maximum estimation

error ϵ, the causal effects of A = a0 on Y when W = w0 occurs are then bounded as follows:

l(a0, w0) ≤ E[Y |do(A = a0), w0] ≤ h(a0, w0),
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where l(w0, a0) and h(w0, a0) are solutions to the following functional optimization problem for any

given a0 and w0

l(a0, w0) = inf

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w0, u)dF (u)

h(a0, w0) = sup

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w0, u)dF (u)

s.t. F (y|a,w, u)F (a,w, u) = F (a, y, w, u), ∀(a, y, w, u) ∈ A× Y ×W × U∫
y∈Y

dF (a, y, w, u) = F (a,w, u),∀(a,w, u) ∈ A×W × U∫
a∈A,y∈Y,w∈W

dF (a, y, w, u) = F (u),∀u ∈ U∫
u∈U

dF (a, y, w, u) = F (a, y, w),∀(a, y, w) ∈ A×W × U

|F (a, y, w)− F̂ (a, y, w)| ≤ ϵ, ∀(a, y, w) ∈ A× Y ×W

|F (u)− F̂ (u)| ≤ ϵ, ∀u ∈ U .

Here the inf/sup is taken with respect to all unknown cumulative distribution functions F (a, y, w, u),

F (a, y, w), F (a,w, u), F (u).

Proof. The object is shown in the proof of Proposition 2.1. The equalities come from the

normalization properties, and inequalities follow from estimation error. □

Denote the followng optimization problem

max /min ÊM[Y |do(A = a), w]

s.t.
∑
l

xijkl = θijk,∀i ∈ [nA], j ∈ [nY ], k ∈ [nW ]∑
ijk

xijkl = θl, ∀l ∈ [nU ].

(20)

where the objective ÊM[Y |do(A = a), w] after discretization is defined as

ÊM[Y |do(A = a), w] =
∑
jkl

yjθlxijkl∑
j′ xij′kl

. (21)

Denote the solutions to (20) as l(a,w) and h(a,w). Note that the optimization problem (13) shares

the same feasible region with that of (4).

Proposition C.2 Assume that the sampling measure Ps satisfies ∀x ∈ D, and ∀δ > 0,

Ps(B(x, δ) ∩ D) > 0,

where B(x, δ) is a ball centered at x with radius δ. Then lB(a,w) and hB(a,w) converge in probability

to l(a,w) and h(a,w) for B →∞, respectively.
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Proof. As shown in (14), the object can also be regarded as a function of x. We define ϕ =

ÊM[Y |do(A = a), w] which is a continuous mapping from D to [0, 1]. The continuity of ϕ holds

similarly.

Given that D is a compact set, there exists xl such that ϕ(xl) = l(a,w). Suppose that b(a,w) is

a sample generated by Algorithm 4. The continuity of ϕ indicates that ∀ϵ > 0, there exists δ > 0

such that ϕ(x) < l(a,w) + ϵ for all x ∈ B(xl, δ), then

P (b(a,w) < l(a,w) + ϵ) = Ps

Ñ ⋃
b<l(a,w)+ϵ

{x ∈ D|ϕ(x) = b}

é
≥ Ps(B(xl, δ)) > 0.

This implies that

P
(
b(1)(a,w) < l(a,w) + ϵ

)
= 1− (1− P (b(a,w) < l(a,w) + ϵ))B → 1

as B →∞. Since b(1)(a,w) is a feasible solution to the discrete optimization problem, we have

P
(
l(a,w) ≤ b(1)(a,w) < l(a,w) + ϵ

)
= 1− (1− P (b(a,w) < l(a,w) + ϵ))B → 1

which implies lB(a,w)→ l(a,w) in probability.

Similarly, we can prove that P
(
b(B)(a,w) > h(a,w)− ϵ

)
< 1 and thus hB(a,w) → h(a,w) in

probability.

□

We can also incorporate the optimization procedure OPT. Let the objective in Algorithm 8 be

(14). We can also prove the similar almost surely convergence result.

Proposition C.3 Assume that the sampling measure Ps satisfies ∀x ∈ D, and ∀δ > 0,

Ps(B(x, δ) ∩ D) > 0,

where B(x, δ) is a ball centered at x with radius δ. Given a deterministic procedure OPT which

satisfies for any local optima xloc, there exists δ > 0 such that for any initial guess x0 ∈ B(xloc, δ)∩D,
OPT can output xloc as a result. Suppose that lB(a,w) and hB(a,w) are the outputs of Algorithm 8

with the target (14). Then lB(a,w) and hB(a,w) converge almost surely to l(a,w) and h(a,w) for

B →∞, respectively.

Proof. The one-to-one correspondence between x and each causal model has been proved in

Lemma C.1. Therefore, [l(a,w), h(a,w)] is the support of the induced distribution on casual bounds.

As shown in the proof of Proposition 3.1, the defined ϕ = EM[Y |do(A = a), w] is a continuous

mapping from D to [0, 1].

Given that D is a compact set, there exists xl such that ϕ(xl) = l(a,w). The property of OPT

implies that there exists δ > 0 such that

OPT(min /max, (6),D,x) = xl,∀x ∈ B(xl, δ) ∩ D.

Hence, we have

P (b(a,w) = l(a,w)) ≥ Ps(B(xl, δ) ∩ D) > 0.

Due to Borel-Cantelli lemma we can prove that lB(a,w) → l(a,w) almost surely, because each

bi(a,w) is independently sampled by Algorithm 8. Similarly, we can prove that hB(a,w)→ h(a,w)

almost surely.

□
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C.8 Proof of Theorem 4.2

Proof. We consider any given w in the following proof.

Case 1: h(a,w) < maxi∈A l(i, w)

From the algorithmic construction, we know that such arm a is removed and thus

E[Na(Tw)] = 0.

Case 2: maxi∈A l(i, w) ≤ h(a,w) < µ∗
w.

Let a∗w = argmaxa∈A E[Y |do(A = a), w] be the optimal action with respect to w. Define the

following event

Ew(t) =
ß
µ̂a,w ∈

ï
µa,w −

log t

na,w(t)
, µa,w +

log t

na,w(t)

ò
, ∀a ∈ A

™
Then the Chernoff’s bound yields

P
Ä
Ew(t)

ä
≤
∑
a∈A

exp

Å
−2na,w(t)×

log t

na,w(t)

ã
≤ |A|

t2

For any given w, the event {At = a} implies Ûa,w(t) > Ûa,w∗
w
(t). However,

µ∗
w > h(a,w) ≥ Ûa,w(t)

and

Ûa,w∗
w
(t) ≥ µ∗

w

if Ew(t) holds. This leads to contradiction. Therefore,

E[Na(Tw)] =

Tw∑
t=1

P (At = a|wt = w)

=

Tw∑
t=1

P (At = a|wt = w, Ew(t))P (Ew(t)) + P
Ä
At = a|wt = w, Ew(t)

ä
P
Ä
Ew(t)

ä
≤

Tw∑
t=1

P
Ä
Ew(t)

ä
≤

Tw∑
t=1

|A|
t2

≤ |A|π
2

6
.

Case 3: h(a,w) ≥ µ∗
w

We reuse the notation Ew(t) in the case 2. Condition on the event
⋂Tw

t=1 Ew(t), if na,w(t) ≥ 8 log Tw

∆2
a,w

,

then

Ûa,w(t) ≤ Ua,w(t) = µa,w +

 
2 log t

na,w(t)
≤ µa,w +

1

2
∆a,w = µ∗

w ≤ Ûa,w∗
w
(t),
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so Algorithm 5 will not choose the action a at the round t. Therefore,

E[Na(Tw)] ≤ E

[
Na(Tw),

Tw⋂
t=1

Ew(t)

]
+ TwP

Ñ
Tw⋂
t=1

Ew(t)

é
≤ 8 log Tw

∆2
a,w

+ TwP

Ñ
Tw⋃
t=1

Ew(t)

é
.

We conclude the proof by showing

TwP

Ñ
Tw⋃
t=1

Ew(t)

é
≤ Tw

Tw∑
t=1

|A|
t2

< Tw ×
|A|
Tw

= |A|.

□

C.9 Proof of Theorem 4.3

Proof. Let ∆w be the constant with respect to w that we will specify later. From the proof of

Theorem 4.2, we know that the expected regret can be upper bounded as

E[Reg(T )] =
∑
w∈W

∑
a∈A

∆a,wE[Na(Tw)]

≤
∑
w∈W

Ñ ∑
a∈›A∗(w)

8 log Tw

∆a,w
I {∆a,w ≥ ∆w}+ T∆w

é
+O(|A|)

≤
∑
w∈W

Ç
8(|›A∗(w)| − 1) log T

∆w
+ Tw∆w

å
+O(|A|).

We select ∆w =

…
8fi|A∗(w)| log T

Tw
so

E[Reg(T )] ≤
∑
w∈W

»
8(|›A∗(w)| − 1)Tw log T .

By strong law of large numbers, we have

lim sup
T→∞

E[Reg(T )]√
T log T

≤
∑
w∈W

 
8(|›A∗(w)| − 1) lim sup

T→∞

Tw

T

=
∑
w∈W

»
8(|›A∗(w)| − 1)P (W = w).

□

Proof. Consider |W| MAB instances. For any given context w, the set that the optimal arm will be

in is A∗(w). For any algorithm A, let Aw be the induced algorithm of A when w occurs. From the

minimax theorem for MAB instances Lattimore and Szepesvári (2020), we know that there exists a
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MAB instance for each w such that the regret of Aw is at least 1
27

»
(|›A∗(w)| − 1)Tw, where Tw is

the number of occurrence of w. Hence,

Reg(T ) ≥
∑
w∈W

1

27

»
(|›A∗(w)| − 1)Tw.

and thus

lim sup
T→∞

Reg(T )√
T
≥ 1

27

∑
w∈W

 
(|›A∗(w)| − 1) · lim sup

T→∞

Tw

T

=
1

27

∑
w∈W

»
(|›A∗(w)| − 1)P (W = w).

□

C.10 Proof of Theorem 4.5

The framework presented in Foster et al. (2020), Simchi-Levi and Xu (2022) provides a method

to analyze contextual bandit algorithms in the universal policy space Ψ. In this paper, we mainly

focus on a subspace of Ψ shaped by causal bounds. We demonstrate that the action distribution pm
selected in Algorithm 6 possesses desirable properties that contribute to achieving low regrets.

For each epoch m and any round t in epoch m, for any possible realization of γt, f̂m, we define

the universal policy space of Ψ:

Ψ =
∏
w∈W

A∗(w).

With abuse of notations, we define

R(π) = EW [f∗(π(W ),W )] and Reg(π) = R(πf∗)−R(π).

The above quantities do not depend on specific values of W . The following empirical version of

above quantities are defined as“Rt(π) = f̂m(t)(π(w), w) and‘Regt(π) = EW

[“Rt(πf̂m(t)
)− “Rt(π)

]
,

where m(t) is the epoch of the round t.

Let Qm(·) be the equivalent policy distribution for pm(·|·), i.e.,

Qm(π) =
∏
w∈W

pm(π(w)|w), ∀π ∈ Ψ.

The existence and uniqueness of such measure Qm(·) is a corollary of Kolmogorov’s extension

theorem. Note that both Ψ and Qm(·) are Hτm−1-measurable, where Ht is the filtration up to the

time t. We refer to Section 3.2 of Simchi-Levi and Xu (2022) for more detailed intuition for Qm(·)
and proof of existence. By Lemma 4 of Simchi-Levi and Xu (2022), we know that for all epoch m

and all rounds t in epoch m, we can rewrite the expected regret in terms of our notations as

E[Reg(T )] =
∑
π∈Ψ

Qm(π)Reg(π).
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For simplicity, we define an epoch-dependent quantities

ρ1 = 1, ρm =

…
ητm−1

log(2δ−1|F∗| log T )
,m ≥ 2,

so γt =
√
|A∗(wt)|ρm(t) for m(t) ≥ 2.

Lemma C.2 (Implicit Optimization Problem). For all epoch m and all rounds t in epoch m, Qm

is a feasible solution to the following implicit optimization problem:∑
π∈Ψ

Qm(π)R̂egt(π) ≤ EW [
»
|A∗(W )|]/ρm (22)

EW

ï
1

pm(π(W )|W )

ò
≤ EW [A∗(W )] + EW [

»
|A∗(W )|]ρmR̂egt(π), ∀π ∈ Ψ. (23)

Proof. Let m and t in epoch m be fixed. Denote P(W) as the context distribution. We have∑
π∈Ψ

Qm(π)‘Regt(π)
=
∑
π∈Ψ

Qm(π)Ewt

î
(f̂m(πf̂m(wt), wt)− f̂m(π(wt), wt))

ó
=Ewt∼P(W)

 ∑
a∈A∗(wt)

∑
π∈Ψ

I {π(wt) = a}Qm(π)(f̂m(πf̂m(wt), wt)− f̂m(a,wt))


=Ewt∼P(W)

 ∑
a∈A∗(wt)

pm(a|wt)(f̂m(πf̂m(wt), wt)− f̂m(a,wt))

 .

The first and second equalities are the definitions of‘Regt(π) and Qm(π), respectively.

Now for the context wt, we have∑
a∈A∗(wt)

pm(a|w)(f̂m(πf̂m(wt), wt)− f̂m(a,wt))

=
∑

a∈A∗(wt)−{πf̂m
(wt)}

f̂m(πf̂m(wt), wt)− f̂m(a,wt)

|A∗(wt)|+ γt(f̂m(πf̂m(wt), wt)− f̂m(a,wt))

≤ [|A∗(wt)| − 1]/γt

≤
»
|A∗(wt)|/ρm.

We plug in the above term and apply the i.d.d. assumption on wt to conclude the proof of the first

inequality.

For the second inequality, we first observe that for any policy π ∈ Ψ, given any context w ∈ W,

1

pm(π(w)|w)
= |A∗(w)|+ γt(f̂m(πf̂m(w), w)− f̂m(a,w)),

if a ̸= πf̂m(w), and

1

pm(π(w)|w)
≤ 1

1/|A∗(w)|
= |A∗(w)|+ γt(f̂m(πf̂m(w), w)− f̂m(a,w)),
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if a = πf̂m(w). The result follows immediately by taking expectation over w. □

Compared with IOP in Simchi-Levi and Xu (2022), the key different part is that EW [|A∗(W )|]
is replaced by the cardinality |A| of the whole action set. Another different part is the universal

policy space Ψ. We define Ψ as
∏

w∈W A∗(w) rather than
∏

w∈W A. These two points highlight the

adaptivity to contexts and show how causal bound affects the action selection.

Define the following high-probability event

Γ =

{
∀m ≥ 2,

1

τm−1

τm−1∑
t=1

Eat,wt [(f̂m(t)(at, wt)− f∗(at, wt))
2|Ht−1] ≤

1

ρ2m

}
.

The high-probability event and its variants have been proved in literatures Foster et al. (2018, 2020),

Simchi-Levi and Xu (2022). Our result is slightly different from them as the whole function space is

eliminated to F∗. Since these results share the same form, it is straightforward to show Γ holds

with probability at least 1 − δ/2. This is the result of the union bound and the property of the

Least Square Oracle that is independent of algorithm design.

Our setting do not change the proof procedure of the following lemma Simchi-Levi and Xu

(2022), because this lemma does not explicitly involve the number of action set. This lemma bounds

the prediction error between the true reward and the estimated reward.

Lemma C.3 Assume Γ holds. For all epochs m > 1, all rounds t in epoch m, and all policies

π ∈ Ψ, then ∣∣∣“Rt(π)−Rt(π)
∣∣∣ ≤ 1

2ρm

Ã
max

1≤m′≤m−1
EW

[
1

pm′(π(W )|W )

]
.

The third step is to show that the one-step regret Regt(π) is close to the one-step estimated

regret‘Regt(π). The following lemma states the result.

Lemma C.4 Assume Γ holds. Let c0 = 5.15. For all epochs m and all rounds t in epoch m, and

all policies π ∈ Ψ,

Reg(π) ≤ 2R̂egt(π) + c0
»
EW [A∗(W )]/ρm, (24)

R̂egt(π) ≤ 2Reg(π) + c0
»
EW [A∗(W )]/ρm. (25)

Proof. We prove this lemma via induction on m. It is easy to check

Reg(π) ≤ 1,‘Regt(π) ≤ 1,

as γ1 = 1 and c0EW

[
A∗(W )

]
≥ 1. Hence, the base case holds.

For the inductive step, fix some epoch m > 1 and assume that for all epochs m′ < m, all rounds

t′ in epoch m′, and all π ∈ Ψ, the inequalities (24) and (25) hold. We first show that for all rounds

t in epoch m and all π ∈ Ψ,

Reg(π) ≤ 2‘Regt(π) + c0
»

EW [A∗(W )]/ρm.
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We have

Reg(π)−‘Regt(π)
=[R(πf∗)−R(π)]− [“Rt(πf̂m)−

“Rt(π)]

≤[R(πf∗)−R(π)]− [“Rt(πf∗)− “Rt(π)]

≤|R(πf∗)− “Rt(πf∗)|+ |R(π)− “Rt(π)|

≤ 1

ρm

Ã
max

1≤m′≤m−1
EW

[
1

pm′(πf∗(W )|W )

]
+

1

ρm

Ã
max

1≤m′≤m−1
EW

[
1

pm′(π(W )|W )

]

≤
max

1≤m′≤m−1
EW

[
1

pm′ (πf∗ (W )|W )

]
5ρm

√
EW [A∗(W )]

+

max
1≤m′≤m−1

EW

[
1

pm′ (π(W )|W )

]
5ρm

√
EW [A∗(W )]

+
5
√

EW [A∗(W )]

8ρm
.

The last inequality is by the AM-GM inequality. There exists an epoch i such that

max
1≤m′≤m−1

EW

[
1

pm′(π(W )|W )

]
= EW

[
1

pi(π(W )|W )

]
.

From Lemma C.2 we know that

EW

[
1

pi(π(W )|W )

]
≤ EW [A∗(W )] + EW [

»
|A∗(W )|]ρi‘Regt(π),

holds for all π ∈ Ψ, for all epoch 1 ≤ i ≤ m− 1 and for all rounds t in corresponding epochs.

Hence, for epoch i and all rounds t in this epoch, we have

max
1≤m′≤m−1

EW

[
1

pm′ (π(W )|W )

]
5ρm

√
EW [A∗(W )]

=

EW

[
1

pi(πf∗ (W )|W )

]
5ρm

√
EW [A∗(W )]

, (Lemma C.2:(25))

≤EW [A∗(W )] + EW [
√
|A∗(W )|]ρi‘Regt(π)

5
√
EW [A∗(W )]ρm

, (inductive assumption)

≤EW [A∗(W )] + EW [
√
|A∗(W )|]ρi[2Reg(π) + c0

√
EW [A∗(W )]/ρi]

5
√
EW [A∗(W )]ρm

, (Jensen’s inequality)

≤EW [A∗(W )] +
√

EW [|A∗(W )|]ρi[2Reg(π) + c0
√

EW [A∗(W )]/ρi]

5
√
EW [A∗(W )]ρm

, (ρi ≤ ρm for i ≤ m)

≤2

5
Reg(π) +

1 + c0
5ρm

»
EW [|A∗(W )|].

We can bound

max1≤m′≤m−1 EW

[
1

pm′ (π(W )|W )

]
5ρm
√

EW [A∗(W )]
in the same way.
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Combing all above inequalities yields

Reg(π)−‘Regt(π) ≤2(1 + c0)
√
EW [A∗(W )]

5ρm
+

4

5
‘Regt(π) + 5

√
EW [A∗(W )]

8ρm

≤‘Regt(π) + (
2(1 + c0)

5
+

5

8
)

√
EW [A∗(W )]

ρm

≤‘Regt(π) + c0

√
EW [A∗(W )]

ρm
.

Similarly, we have ‘Regt(π)− Reg(π)

=[“Rt(πf̂m)−
“Rt(π)]− [R(πf∗)−R(π)]

≤[“Rt(πf̂m)−
“Rt(π)]− [R(πf̂m)−R(π)]

≤|R(πf̂m)−
“Rt(πf̂m)|+ |R(π)−

“Rt(π)|.

We can bound the above terms in the same steps.

□

Proof. Our regret analysis builds on the framework in Simchi-Levi and Xu (2022).

Step 1: proving an implicit optimization problem for Qm in Lemma C.2.

Step 2: bounding the prediction error between “Rt(π) and Rt(π) in Lemma C.3. Then we can

show that the one-step regrets‘Regt(π) and Reg(π) are close to each other.

Step 3: bounding the cumulative regret Reg(T ).

By Lemma 4 of Simchi-Levi and Xu (2022),

E[Reg(T )] =
T∑
t=1

∑
π∈Ψ

Qm(t)(π)Reg(π).

From Lemma C.4, we know

Reg(π) ≤ 2‘Regt(π) + c0
»

EW [A∗(W )]/ρm
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so

E[Reg(T )] =
T∑
t=1

∑
π∈Ψ

Qm(t)(π)Reg(π)

≤2
T∑
t=1

∑
π∈Ψ

Qm(t)(π)‘Regt(π) + T∑
t=1

c0
»
EW [A∗(W )]/ρm(t)

≤(2 + c0)
»
EW [A∗(W )]

T∑
t=1

1

ρm(t)

≤(2 + c0)
»
EW [A∗(W )]

⌈log T ⌉∑
m=1

»
log(2δ−1|F∗| log T )τm−1/η

≤(2 + c0)
»

EW [A∗(W )]

⌈log T ⌉∑
m=1

»
log(2δ−1|F∗| log T )τm−1/η

≤(2 + c0)

Ã
EW [A∗(W )] log(2δ−1|F∗| log T )

⌈log T ⌉∑
m=1

τm−1/η

≤(2 + c0)
»

EW [A∗(W )] log(2δ−1|F∗| log T )T/η.

□

C.11 Proof of Theorem 4.4

Proof. We first consider |W| < ∞. Since the agent have knowledge about causal bound, any

function in F − F∗ can not be the true reward function. For any given context w, the set that the

optimal arm will be in is A∗(w). For any algorithm A, let Aw be the induced algorithm of A when

w occurs. Namely, the agent has access to a function space Fw = {f(w, ·)|∀f ∈ F∗} and an action

set A∗(w).

From the minimax theorem 5.1 in Agarwal et al. (2012), we know that there exists a contextual

bandit instance such that the regret of Aw is at least
√
A∗(w)Tw log |Fw| =

√
A∗(w)Tw log |F∗|,

where Tw is the number of occurrence of w. Hence,

Reg(T ) ≥
∑
w∈W

»
|A∗(w)|Tw log |F∗|

≥
 ∑

w∈W
|A∗(w)|Tw log |F∗|.

and thus

lim sup
T→∞

Reg(T )√
T
≥
√∑

w∈W
|A∗(w)| log |F∗| · lim sup

T→∞

Tw

T

=
 ∑

w∈W
|A∗(w)| log |F∗|P (W = w)

=
»
EW [|A∗(W )|] log |F∗|.
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Now assume |W| = ∞. Thanks to Glivenko-Cantelli theorem, the empirical distribution

converges uniformly to the true reward distribution. We conclude the proof by applying the

dominated convergence theorem and the Fubini’s theorem, because A∗(w) is uniformly bounded by

|A|.
□

C.12 Proof of Theorem 4.7

Since any function outside F cannot be the true reward function, we can take the same steps in the

proof of Theorem 4.5. One can simply replace W as W and U in the proof and obtain the final

results.

D Related Materials

Definition D.1 (Back-Door Criterion) Given an ordered pair of variables (X,Y ) in a directed

acyclic graph G, a set of variables Z satisfies the back-door criterion relative to (X,Y ), if no node in

Z is a descendant of X, and Z blocks every path between X and Y that contains an arrow into X.

Definition D.2 (d-separation) In a causal diagram G, a path P is blocked by a set of nodes Z

if and only if

1. P contains a chain of nodes A← B ← C or a fork A→ B ← C such that the middle node B

is in Z (i.e., B is conditioned on), or

2. P contains a collider A ← B → C such that the collision node B is not in Z, and no

descendant of B is in Z.

If Z blocks every path between two nodes X and Y , then X and Y are d-separated conditional on

Z, and thus are independent conditional on Z.

If X is a variable in a causal model, its corresponding intervention variable IX is an exogenous

variable with one arrow pointing into X. The range of IX is the same as the range of X, with one

additional value we can call “off”. When IX is off, the value of X is determined by its other parents

in the causal model. When IX takes any other value, X takes the same value as IX , regardless of

the value of X’s other parents. If X is a set of variables, then IX will be the set of corresponding

intervention variables. We introduce the following do-calculus rules proposed in Pearl (2009).

Rule 1 (Insertion/deletion of observations)

P (Y |do(x),Z,W ) = P (Y |do(x),W )

if Y and IZ are d-separated by x ∪W in G∗, the graph obtained from G by removing all arrows

pointing into variables in x.

Rule 2 (Action/observation exchange)

P (Y |do(x), do(Z),W ) = P (Y |do(x),Z,W )
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if Y and IZ are d-separated by x∪Z ∪W in G†, the graph obtained from G by removing all arrows

pointing into variables in x and all arrows pointing out of variables in z.

Rule 3 (Insertion/deletion of actions)

P (Y |do(x), do(Z),W ) = P (Y |do(x),W )

if Y and IZ are d-separated by x ∪W in G∗, the graph obtained from G by removing all arrows

pointing into variables in x.
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