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Review of Robust Queueing
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Review of Robust Queueing

A robust optimization approach proposed by C. Bandi, D.
Bertsimas, and N. Youssef (2015)

» analyzed the steady-state mean waiting time in single
server queue with general interarrival and service
distributions

» extended to open queueing networks with possible
enhancement to Queueing Network Analyzer;

» replaced probabilistic laws by uncertainty sets;

» used deterministic optimization and regression analysis.
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Review of Robust Queueing
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Review of Robust Queueing Theory

A general FCFS queue is considered in Bandi et. al. (2015)
» {(Ui, Vi) }iz1: interarrival times and service times;

> A, p: arrival rate and service rate.

Lindley recursion

Wn = (Wn—l o Vn—l - Un—1)+ - OIEI??n {S,i - SZ},

AU

where S§ =0, S§ =0 and

Sk

n—1 n—1
Svi, S¢=Y Ui, 1<k<n.
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Review of Robust Queueing

The worst case waiting time in Robust Queueing Theory

W* = sup sup max {S; — S¢
" UeLIl)a VeLI{)S 0<k<n{ g )

S¢— k/A
11/2 Z -

Sk—k/n
k1/2

ur ={(©1.....0)

usz{(vl,...,vn)

grs,ogkgn}.

» robustness is controlled by parameters 'y, ['s;
» standard CLT suggest that I'y, = by0, and I'y = bs0.
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Review of Robust Queueing

With an interchange of maximum, they reduce the problem to
W = max {mk + bVk}
0<k<n

< sup {mz + b\/z} = L
= o0 T 4fm| 41— p)’

where m = ' — A1 <0, p=A/pand b=Ts+ T, >0,
» Closed-form solution depends only on p,I', and I';.

» The solution takes similar form as classical heavy-traffic
limits.
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Review of Dependence in Queues
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Impact of Dependence on Queues

Dependence structures are ubiquitous in queueing systems:

» departure process is non-renewal unless all processes are
Poisson;

» superposition of different arrival streams is non-renewal
unless all processes are Poisson.

The dependence can’t be ignored

» the dependence will have huge impact on the system
performance measures;

» the level of impact will depend on the traffic intensity.
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Review of Dependence in Queues
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A Queueing Model with Dependence

Last queue of 5 queues in series (tandem queues)

Hs, p=0.99 Eio,p = 0.98

M
E
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» Consider the steady-state mean workload at the last queue;

» The variability of the external arrival and the service at the
first 4 queues are alternative between low (Erlang
distribution Ejg) high (hyper-exponential distribution Hy);

» The external arrival rate is 1;

» The service rates/traffic intensities, at the intermediate
queues are set in a decreasing manner so as to expose
different variability.

» The service time at the last queue is exponential with

mean p, the traffic intensity.
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A Queueing Model with Dependence

Normalized Steady-state mean workload, 2(1 — p) E[W,(c0)]/p
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Normalized mean workload 2(1- p)E[Zﬂ]/p

o4
o

o

015 ‘; 1,‘5 é 2.‘5 3
-log,,(1-p)
» The level of impact on the mean workload will changes
drastically as a function of the traffic intensity;

o

» The complex curve of mean workload cannot be captured with
615 the Kingman bound or classical heavy-traffic limits.
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Robust Queueing with Dependence
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Continuous-time workload process

{(U;,V;)}: interarrival times and service times;

A, p: arrival rate and service rate;

A(t): arrival counting process associated with {Uy};
Y (t): total input of work defined by Y (t) = Zﬁfl) Vi
X (t): net-input process defined by X (t) = Y (t) — t;
Apply the one-sided reflection mapping to X (¢) to get the

steady-state workload at time 0 in the queue staring empty at
the remote past —oo:

Z=X0)- inf {X()}.

—00<t<0
= sup {X(0) - X(=s)} = sup {Xo(s)}

0<s<0 0<s<00

vV VYY

» Xo(s) is interpreted as the net-input over time [—s, 0].
» With an abuse of notation, we omit the subscript in Xo(s).
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Robust Queueing with Dependence
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Continuous-time workload process

We now insert the traffic intensity p into the model.
» We start with a unit-rate arrival counting process A(t).
» Assume that A,(t) in the p-th model takes a simple form:

A,(t) = Apt).

» For Poisson process, this is equivalent to changing the
arrival rate from 1 to p.

» The total input process and net-input process are
Y,(t) =Y (pt), and X,(t) =Y (pt) —t.
» The steady-state workload is

Zp = Ofgfoo{yp(s) —st= sup {X,(s)}.

0<s<00
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Robust Queueing with Dependence
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Stochastic versus Robust Queues

Zy= sup {X,(s)}

0<s<00
Stochastic Queue
» X,(s) = ;Cvz(’fs) Vi — s, where N (t) and {V}} are stationary
point process and stationary sequence separately.
Robust Queue

» X p lies in a suitable uncertainty set U, of total input
functions to be defined later.

» There is no distribution involved, we hence focus on the
deterministic worse-case scenario

Z,= sup sup {(X,(s)}.
X,cu, 0<s<o0
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Robust Queueing with Dependence
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Robust Queueing for continuous-time workload

Now, we define the uncertainty set for the net-input process.

U, = {Xp :RT - R ' X,(s) < E[X,(s)] +by/Var(X,(s)),s € R+}
_ {X,, .R* >R ’ X,(5) < —(1 — p)s + by/psIu(ps), s € R+} :
where I,,(t) is the index of dispersion for work (IDW), i.e.,

Var(Y (t)) ‘

I,(t) = ;
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Robust Queueing with Dependence
[e]e]e]e] Telelele)

Robust Queueing for continuous-time workload

RQ for workload

Zy = sup sup {X,(s)},
XpeU, 0<s<co
where

U, = {Xp ‘RoR | X,(s) <—(1— p)s—i—b\/pslw(ps)}.

The infinite-dimensional RQ problem can be reduced to
one-dimensional

Z, = sup sup {X,(s)}

0<s<00 X,€Uy
= sup {—(1 —p)s+ b\/pst(ps)} .
0<s<0

615 Furthermore, if p <1 and I,,(t)/t — 0 as t — oo, then Z; < cc.
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Robust Queueing for continuous-time workload

In summary, the RQ optimization for steady-state workload
process reduces to one dimensional optimization problem

Z, = sup {—(l—p)s—i-b\/psT(ps)}

0<s<oco

» above specifies the RQ algorithm;
> in application, we
» estimate I, (x) from data;

» create a finite grid and search for the approximated
optimum over the finite grid.
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Analyzing the Robust Queueing with Dependence

Theorem (Closed-from RQ solution)

The worst-cast RQ workload Z7 for the model with traffic
mtensity p s

Z*

7 22(1-p) I

. 2
_ P plu(@) [ (x21w<xz>>
14

where x¥ satisfies the equation

P
. DL, L 3L (2%) 2
T I (z})
Moreover, the associated optimal solution s to the RQ problem

g * * o —1,.%
is related to x, by s, = p~ @y,

&
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Robust Queueing with Dependence
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Analyzing the Robust Queueing with Dependence

Implication I: The choice of parameter b in the uncertainty set.

How to choose parameter b7

U, = {Xp ‘R—=R ‘ X,(s) < —(1 —p)s-l-b\/pst(ps)},

. 2
p_ E pr(a:;) - l‘:[w(l':;)
P =3a1-p) To(})

» We choose b = /2 so that RQ is exact for all M/GI/1
models.

» This choice of b is independent of model detail and traffic
intensity.

8]
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Robust Queueing with Dependence
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Analyzing the Robust Queueing with Dependence

Implication II: Asymptotically correct in heavy-traffic limit and light-traffic limit.

Theorem (RQ correct in Heavy-traffic and light-traffic)

For G/G/1 model, our RQ yields the exact steady-state mean
workload in both light-traffic and heavy-traffic limits.
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Numerical Examples
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Numerical Example: 5 queues in series

Last queue of 5 queues in series (tandem queues)
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Numerical Examples
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Numerical Examples - 5 Queues in series

Normalized mean workload

0 05 1 15 2 25 3
-log,,(1-p)

» RQ automatically “matches” IDW to the mean workload

&5 for all traffic intensities.
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Summary

» develop new version of RQ for continuous-time workload
process in G/G/1 model to capture dependence among
interarrival times and service times;

» show that RQ for continuous-time workload that are exact
for M/GI/1 queue and asymptotically correct for G/G/1
in both light and heavy traffic;

» conduct simulation study and observe good approximation
even with extremely complex dependence structure.
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Analyzing the Robust Queueing with Dependence

Implication III: Connection to Fenick and Whitt (1989).

» Fendick and Whitt (1989) observed that the IDW I,,(¢) is
intimately related to the scaled mean workload c%(p);

» they proposed a deterministic time transformation (DTT)
method with variability-fixed-point approximation (VFP).

> The red part below also acts as a heuristic refinement to
there result, we call it RQ-derived DTT and VFP.

» The RQ approach provided a variation of the DTT method
and the VFP approximation, i.e.,

. 2
oo PLu(@p) (o (x;;fw(x;;))

P 2(1—p) TES)

. 2
o pZIw(l‘;) 3 x;Iw(m;) .
615 P21 -p)2 Iw(mf:)
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