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Review of Robust Queueing

Review of Robust Queueing

A robust optimization approach proposed by C. Bandi, D.
Bertsimas, and N. Youssef (2015)

I analyzed the steady-state mean waiting time in single
server queue with general interarrival and service
distributions

I extended to open queueing networks with possible
enhancement to Queueing Network Analyzer;

I replaced probabilistic laws by uncertainty sets;

I used deterministic optimization and regression analysis.
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Review of Robust Queueing

Review of Robust Queueing Theory

A general FCFS queue is considered in Bandi et. al. (2015)

I {(Ui, Vi)}i>1: interarrival times and service times;

I λ, µ: arrival rate and service rate.

Lindley recursion

Wn = (Wn−1 + Vn−1 − Un−1)+ = max
06k6n

{Ssk − Sak} ,

where Ss0 ≡ 0, Sa0 ≡ 0 and

Ssk ≡
n−1∑
i=n−k

Vi, Sak :=

n−1∑
i=n−k

Ui, 1 ≤ k ≤ n.
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Review of Robust Queueing

Review of Robust Queueing

The worst case waiting time in Robust Queueing Theory

W ∗n = sup
U∈Ua

sup
V∈Us

max
06k6n

{Ssk − Sak}

Ua =

{
(U1, . . . , Un)

∣∣∣∣Sak − k/λk1/2
> −Γa, 0 6 k 6 n

}
,

Us =

{
(V1, . . . , Vn)

∣∣∣∣Ssk − k/µk1/2
6 Γs, 0 6 k 6 n

}
.

I robustness is controlled by parameters Γa,Γs;

I standard CLT suggest that Γa = baσa and Γs = bsσs.
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Review of Robust Queueing

Review of Robust Queueing

With an interchange of maximum, they reduce the problem to

W ∗n = max
0≤k≤n

{mk + b
√
k}

≤ sup
x≥0
{mx+ b

√
x} =

b2

4|m|
=

λb2

4(1− ρ)
,

where m = µ−1 − λ−1 < 0, ρ = λ/µ and b ≡ Γs + Γa > 0,

I Closed-form solution depends only on ρ,Γa and Γs.

I The solution takes similar form as classical heavy-traffic
limits.
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Review of Dependence in Queues

Impact of Dependence on Queues

Dependence structures are ubiquitous in queueing systems:

I departure process is non-renewal unless all processes are
Poisson;

I superposition of different arrival streams is non-renewal
unless all processes are Poisson.

The dependence can’t be ignored

I the dependence will have huge impact on the system
performance measures;

I the level of impact will depend on the traffic intensity.
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Review of Dependence in Queues

A Queueing Model with Dependence

Last queue of 5 queues in series (tandem queues)

E10
Queue 1

H2, ρ = 0.99

Queue 2

E10, ρ = 0.98

Queue 5

M

I Consider the steady-state mean workload at the last queue;
I The variability of the external arrival and the service at the

first 4 queues are alternative between low (Erlang
distribution E10) high (hyper-exponential distribution H2);

I The external arrival rate is 1;
I The service rates/traffic intensities, at the intermediate

queues are set in a decreasing manner so as to expose
different variability.

I The service time at the last queue is exponential with
mean ρ, the traffic intensity.
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Review of Dependence in Queues

A Queueing Model with Dependence

Normalized Steady-state mean workload, 2(1− ρ)E[Wρ(∞)]/ρ
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I The level of impact on the mean workload will changes
drastically as a function of the traffic intensity;

I The complex curve of mean workload cannot be captured with
the Kingman bound or classical heavy-traffic limits.
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Robust Queueing with Dependence

Continuous-time workload process

I {(Ui, Vi)}: interarrival times and service times;
I λ, µ: arrival rate and service rate;
I A(t): arrival counting process associated with {Uk};
I Y (t): total input of work defined by Y (t) ≡

∑A(t)
k=1 Vk;

I X(t): net-input process defined by X(t) ≡ Y (t)− t;
Apply the one-sided reflection mapping to X(t) to get the
steady-state workload at time 0 in the queue staring empty at
the remote past −∞:

Z ≡ X(0)− inf
−∞≤t≤0

{X(t)}.

= sup
0≤s≤∞

{X(0)−X(−s)} ≡ sup
0≤s≤∞

{X0(s)}

I X0(s) is interpreted as the net-input over time [−s, 0].
I With an abuse of notation, we omit the subscript in X0(s).
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Robust Queueing with Dependence

Continuous-time workload process

We now insert the traffic intensity ρ into the model.

I We start with a unit-rate arrival counting process A(t).

I Assume that Aρ(t) in the ρ-th model takes a simple form:

Aρ(t) = A(ρt).

I For Poisson process, this is equivalent to changing the
arrival rate from 1 to ρ.

I The total input process and net-input process are

Yρ(t) = Y (ρt), and Xρ(t) = Y (ρt)− t.

I The steady-state workload is

Zρ = sup
0≤s≤∞

{Yρ(s)− s} = sup
0≤s≤∞

{Xρ(s)}.
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Robust Queueing with Dependence

Stochastic versus Robust Queues

Zρ = sup
0≤s≤∞

{Xρ(s)}.

Stochastic Queue

I Xρ(s) ≡
∑N(ρs)

k=1 Vk − s, where N(t) and {Vk} are stationary
point process and stationary sequence separately.

Robust Queue

I X̃ρ lies in a suitable uncertainty set Uρ of total input
functions to be defined later.

I There is no distribution involved, we hence focus on the
deterministic worse-case scenario

Z∗ρ ≡ sup
X̃ρ∈Uρ

sup
0≤s≤∞

{X̃ρ(s)}.
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Robust Queueing with Dependence

Robust Queueing for continuous-time workload

Now, we define the uncertainty set for the net-input process.

Uρ ≡
{
Xρ : R+ → R

∣∣∣∣ Xρ(s) ≤ E[Xρ(s)] + b
√

Var(Xρ(s)), s ∈ R+

}
=
{
Xρ : R+ → R

∣∣∣ Xρ(s) ≤ −(1− ρ)s+ b
√
ρsIw(ρs), s ∈ R+

}
,

where Iw(t) is the index of dispersion for work (IDW), i.e.,

Iw(t) ≡ Var(Y (t))

t
.
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Robust Queueing with Dependence

Robust Queueing for continuous-time workload

RQ for workload

Z∗ρ = sup
Xρ∈Uρ

sup
0≤s≤∞

{Xρ(s)},
where

Uρ =
{
Xρ : R→ R

∣∣∣ Xρ(s) ≤ −(1− ρ)s+ b
√
ρsIw(ρs)

}
.

Lemma (Dimensionality reduction)

The infinite-dimensional RQ problem can be reduced to
one-dimensional

Z∗ρ = sup
0≤s≤∞

sup
Xρ∈Uρ

{Xρ(s)}

= sup
0≤s≤∞

{
−(1− ρ)s+ b

√
ρsIw(ρs)

}
.

Furthermore, if ρ < 1 and Iw(t)/t→ 0 as t→∞, then Z∗ρ <∞.
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Robust Queueing with Dependence

Robust Queueing for continuous-time workload

In summary, the RQ optimization for steady-state workload
process reduces to one dimensional optimization problem

Z∗ρ = sup
0≤s≤∞

{
−(1− ρ)s+ b

√
ρsIw(ρs)

}
I above specifies the RQ algorithm;

I in application, we
I estimate Iw(x) from data;
I create a finite grid and search for the approximated

optimum over the finite grid.
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Robust Queueing with Dependence

Analyzing the Robust Queueing with Dependence

Theorem (Closed-from RQ solution)

The worst-cast RQ workload Z∗ρ for the model with traffic
intensity ρ is

Z∗ρ =
b2

2

ρIw(x∗ρ)

2(1− ρ)

1−

(
x∗ρİw(x∗ρ)

Iw(x∗ρ)

)2
 ,

where x∗ρ satisfies the equation

x∗ρ =
b2ρ2Iw(x∗ρ)

4(1− ρ)2

(
1 +

x∗ρİw(x∗ρ)

Iw(x∗ρ)

)2

.

Moreover, the associated optimal solution s∗ρ to the RQ problem
is related to x∗ρ by s∗ρ = ρ−1x∗ρ.
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Robust Queueing with Dependence

Analyzing the Robust Queueing with Dependence
Implication I: The choice of parameter b in the uncertainty set.

How to choose parameter b?

Uρ =
{
Xρ : R→ R

∣∣∣ Xρ(s) ≤ −(1− ρ)s+ b
√
ρsIw(ρs)

}
,

Z∗ρ =
b2

2

ρIw(x∗ρ)

2(1− ρ)

1−

(
x∗ρİw(x∗ρ)

Iw(x∗ρ)

)2
 .

I We choose b =
√

2 so that RQ is exact for all M/GI/1
models.

I This choice of b is independent of model detail and traffic
intensity.
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Robust Queueing with Dependence

Analyzing the Robust Queueing with Dependence
Implication II: Asymptotically correct in heavy-traffic limit and light-traffic limit.

Theorem (RQ correct in Heavy-traffic and light-traffic)

For G/G/1 model, our RQ yields the exact steady-state mean
workload in both light-traffic and heavy-traffic limits.
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Numerical Examples

Numerical Example: 5 queues in series

Last queue of 5 queues in series (tandem queues)

E10
Queue 1

H2

Queue 2

E10
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M
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Numerical Examples

Numerical Examples - 5 Queues in series
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Simulation

RQ

I RQ automatically “matches” IDW to the mean workload
for all traffic intensities.

W. Whitt, W. You Robust Queueing with Dependence 20 / 22



Summary

We

I develop new version of RQ for continuous-time workload
process in G/G/1 model to capture dependence among
interarrival times and service times;

I show that RQ for continuous-time workload that are exact
for M/GI/1 queue and asymptotically correct for G/G/1
in both light and heavy traffic;

I conduct simulation study and observe good approximation
even with extremely complex dependence structure.
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Analyzing the Robust Queueing with Dependence
Implication III: Connection to Fenick and Whitt (1989).

I Fendick and Whitt (1989) observed that the IDW Iw(t) is
intimately related to the scaled mean workload c2

Z(ρ);
I they proposed a deterministic time transformation (DTT)

method with variability-fixed-point approximation (VFP).
I The red part below also acts as a heuristic refinement to

there result, we call it RQ-derived DTT and VFP.
I The RQ approach provided a variation of the DTT method

and the VFP approximation, i.e.,

Z∗ρ =
ρIw(x∗ρ)

2(1− ρ)

1−

(
x∗ρİw(x∗ρ)

Iw(x∗ρ)

)2
 ,

x∗ρ =
ρ2Iw(x∗ρ)

2(1− ρ)2

(
1 +

x∗ρİw(x∗ρ)

Iw(x∗ρ)

)2

.
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