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Introduction

Motivation

I The estimation of performance measures in a open network
of queues is important in many OR applications.

I Theoretical analysis are limited for queueing network with
general distributions.

I Direct simulation estimation may be computational
expensive,

I especially if doing many “what if” studies or when
performing an optimization over model parameters.
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Introduction

Background

Traditionally, queueing systems are approximated by

I Parametric-decomposition methods using variability
parameters: e.g., QNA by Whitt (1983);

I Relfected Brownian motion approximations: e.g., QNET by
Dai and Harrison (1993);

More recently,

I Robust Queueing (RQ) by Bandi et al. (2015), analyzes
the mean steady-state waiting time in a queueing network.

I Whitt and You (2017): RQ formulation for the workload
(virtual waiting time) process in G/G/1 models.

I Based on the Index of Dispersion for Work (IDW), see
Fendick and Whitt (1989) for discussion of the IDW.
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Introduction

Robust Queueing for continuous-time workload

I Aρ(t) = A(ρt): arrival counting process, A(t) with rate 1;
I {Vi}: mean-1 service times;

I Yρ(t) ≡
∑Aρ(t)

k=1 Vk ≡ Y (ρt): total input of work;
I Xρ(t) ≡ Yρ(t)− t: net-input process.

The steady-state workload at time t

Zρ ≡ Xρ(t)− inf
s≤t
{Xρ(s)}.
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Introduction

Robust Queueing for continuous-time workload

Under RQ framework, instead of probabilistic distribution for
the net-input process, we work with the uncertainty set.

Uρ ≡
{
X̃ρ : R+ → R

∣∣∣∣ X̃ρ(s) ≤ E[Xρ(s)] + b
√

Var(Xρ(s)), s ∈ R+

}
=
{
X̃ρ : R+ → R

∣∣∣ X̃ρ(s) ≤ −(1− ρ)s+ b
√
ρsIw(ρs), s ∈ R+

}
,

where
E[Xρ(s)] = −(1− ρ)s,

Var(Xρ(s)) = Var(Xρ(s)− s) = Var(Yρ(s)) = Var(Y (ρs))

and Iw(t) is the index of dispersion for work (IDW), i.e.,

Iw(t) ≡ Var(Y (t))

t
.
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Introduction

Robust Queueing for continuous-time workload

The RQ algorithm

Z∗ρ = max
X∈Uρ

Zρ(X) ≡ X(t)− inf
s≤t
{X(s)}

where the uncertainty set is defined as

Uρ =
{
X̃ρ : R+ → R

∣∣∣ X̃ρ(s) ≤ −(1− ρ)s+ b
√
ρsIw(ρs), s ∈ R+

}
,

Theorem (Whitt and You(2017))

The RQ solution is

Z∗ = sup
s>0

{
−(1− ρ)s/ρ+

√
2sIw(s)

}
.

Under regularity conditions, the RQ solution is asymptotically
exact for G/G/1 models under light-traffic and heavy-traffic
limits.
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Queues in Series

A Series of Queues

Queue 1 Queue 2 Queue 3

Regularity assumptions

I each queue is FCFS with a single server and unlimited
waiting space;

I stationary and ergodic external arrival process
I with finite rate and variance.

I service times have finite variance;

I traffic intensity at each queue is less than 1.
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Queues in Series

A Series of Queues

Simplifying assumption
I service times at each queue are i.i.d., independent of the

external arrival process.

This implies that
Iw(t) = Ia(t) + c2s,

where c2s is the service squared coefficient of variation (scv) and
Ia(t) is the index of dispersion for counts (IDC) of the arrival
process

Ia(t) ≡
V ar(A(t))

E[A(t)]
;

RQ algorithm

Z∗ = sup
s>0

{
−(1− ρ)s/ρ+

√
2sIw(s)

}
= sup

s>0

{
−(1− ρ)s/ρ+

√
2s(Ia(s) + c2s)

}
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Queues in Series

A Series of Queues

Z∗ = sup
s>0

{
−(1− ρ)s/ρ+

√
2s(Ia(s) + c2s)

}
For a series of queues, the arrival process at each queue is
exactly the departure from the previous queue.

Queue 1 Queue 2 Queue 3

Hence, extending to a series of queues simplifies to analyzing
the IDC of the departure process of a single-server queue.
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Departure Process

Historical Remarks on Departure Processes

I In general, departure processes are complicated, even for
M/GI/1 or GI/M/1 special cases;

I Even more, the IDC we used is defined for stationary
version of the departure process, instead of the departure
from a system starting empty.

I It is important that we use stationary version of the IDC
(IDW), otherwise RQ does not yield the correct light-traffic
limit.
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Departure Process

Historical Remarks on Departure Processes

Exact characterizations
I Burke (1956): M/M/1 departure is Poisson;
I Takács (1962): the Laplace transform (LT) of the mean of

the departure process under Palm distribution;
I Daley (1976): the LT of the variance function of the

stationary departure from M/G/1 and GI/M/1 models;
I BMAP/MAP/1 departure is a MAP with infinite order, see

discussion in Green’s dissertation (1999) and Zhang (2005).
I MAP with infinite order is intractable in practice, one need

to resort to truncation.

Heavy-traffic limits
I Iglehart and Whitt (1970), HT limits for departure process

starting with empty system;
I Gamarnik and Zeevi (2006) and Budhiraja and Lee (2009),

HT limit for stationary queue length process.
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Departure Process

Historical Remarks on Departure Processes

Approximations

I Whitt (1982, 1983, 1984): QNA and related papers:
I the asymptotic method: matching the long-run property

of a point process
c2d ≈ c2a

I the stationary interval method: matching the stationary
interval distribution, but ignore dependence between
successive departures

c2d = c2a + 2ρ2c2s − 2ρ(1− ρ)E[W ] ≈ ρ2c2a + (1− ρ2)c2s
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Departure Process

Departure IDC: A GI/GI/1 Example
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Departure Process

Approximation for Departure IDC

I The numerical experiment suggests:

Id,ρ(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(t).

I To justify, we develop a heavy-traffic limit theorem for the
weight function defined as

wρ(t) ≡
Id,ρ(t)− Is(t)
Ia(t)− Is(t)

.

I To this end, consider the HT-scaled weight function

w∗ρ(t) = wρ((1− ρ)−2t).

I classical HT-scaling: scale time by (1− ρ)−2, scale space by
1− ρ, but space scaling canceled out.
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Departure Process

Main Theorem for Stationary Departure Processes

Theorem (HT limit for the weight function)

For GI/GI/1 stationary departure process, under regularity
conditions, we have

w∗ρ(t)⇒ w∗(t/c2x),

where c2x = c2a + c2s and

w∗(t) =
1

2t

((
t2 + 2t− 1

) (
2Φ(
√
t)− 1

)
+ 2
√
tφ(
√
t) (1 + t)− t2

)
for standard Normal cdf Φ and pdf φ.

I w∗ is monotonically increasing and 0 ≤ w∗ ≤ 1;
I The limiting weight depend on interarrival and service

distribution only through their scv’s c2a and c2s.
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Departure Process

Approximation for Departure IDC

I Conjecture: the Theorem holds for a general class of
G/G/1 models, which is supported by extensive simulation
experiments.

The theorem supports the following approximation

wρ(t) ≈ w∗((1− ρ)2t/c2x),

and

Id,ρ(t) = wρ(t)Ia(t) + (1− wρ(t))Is(t)
≈ w∗((1− ρ)2t/c2x)Ia(t) + (1− w∗((1− ρ)2t/c2x))Is(t).
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Departure Process

The GI/GI/1 Example Revisited
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RQ for a Series of Queues

RQ for a Series of Queues

I Ia1(t): the IDC of the external arrival process to the first
queue.

I Isi(t): the IDC of the service process at queue i.
I For i = 1, 2, . . . , n:

I c2x,i = Ia,i(∞) + Isi(∞);
I ρ = 1/µi;
I w∗

i (t) = w∗((1− ρi)2t/c2x,i)
I Ia,i+1(t) = Id,i(t) = w∗

i (t)Ia,i(t) + (1− w∗
i (t))Is,i(t)

I Return {Ia,i : i = 1, 2, . . . , n}
For any Queue i, apply the RQ algorithm

Z∗ = sup
s>0

{
−(1− ρ)s/ρ+

√
2s(Ia,i(s) + c2s)

}
to produce approximation of the mean steady-state workload.
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RQ for a Series of Queues

Numerical example: 4 Queues in Series

E4

c2a = 0.25
1

M, c2s,1 = 1

ρ1 = 0.7

2

H2, c
2
s,2 = 4

ρ2 = 0.9

3
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ρ3 = 0.7

4

M, c2s,4 = 1

ρ4 = 0.95

Workload RQ Approx. Relative Error

Queue 1 1.09613 1.0583 -3.45%
Queue 2 17.6133 17.2884 -1.84%
Queue 3 2.89796 3.1702 9.39%
Queue 4 24.0131 23.5623 -1.18%

Total 45.6205 45.0792 -1.19%
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RQ for a Series of Queues

Numerical example: 4 Queues in Series

E4

c2a = 0.25
1

M, c2s,1 = 1

ρ1 = 0.7

2

H2, c
2
s,2 = 4

ρ2 = 0.9

3

M, c2s,3 = 1

ρ3 = 0.7

4

M, c2s,4 = 1

ρ4 = 0.95

By Brumelle’s formula, we have

E[Z] = ρE[W ] + ρ
E[V 2]

2µ
= ρE[W ] + ρ

(c2s + 1)

2µ
.

Waiting Time RQ Approx. Relative Error

Queue 1 0.86584 0.8119 -6.23%
Queue 2 17.3204 16.9593 -2.08%
Queue 3 3.43984 3.8289 20.78%
Queue 4 24.3252 23.8524 -1.94%

Total 45.9513 45.4525 -1.09%
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Thank you!
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Back up slides

Dependent Service Times

Iw(t) ≡ V ar(Y (t))

E[V ]E[Y (t)]
=
µ2

λt
V ar

N(t)∑
i=1

Vi


=
µ2

λt

V ar
E

N(t)∑
i=1

Vi

∣∣∣∣∣∣N(t)

+ E

V ar
N(t)∑

i=1

Vi

∣∣∣∣∣∣N(t)


=
µ2

λt

(
1

µ2
V ar (N(t)) + E

[
1

µ2
N(t)IsN(t)

])
= Ia(t) +

1

λt
E
[
N(t)IsN(t)

]
,

where

Isk =
kV ar(Ssk)

(E[Ssk])
2

=
µ2

k
V ar(Ssk)

is the index of dispersion for intervals (IDI) for the service
sequence and V ar(Ssk) =

∑k
i=1 Vi.
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Back up slides

Corollary (Asymptotic behavior of the departure variance)

V ∗d (t) ∼ c2aλt+
(c2s − c2a)c2x

2γ2
−8(c2s − c2a)c5x

γ5
1√

2πλ3t3
e
−λγ

2t

2c2x as t→∞.

Compare to Hautphenne et al. (2013):

Vd(t) = c2at+ bθ + o(1), as t→∞.

I they have explicit expression for bθ under all ρ in M/G/1;

I our have more detailed remainder for GI/GI/1 as ρ ↑ 1;

I the two coincide as ρ ↑ 1 in M/G/1.

Of course, our limit holds for all t, not just asymptotically.
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Back up slides

An Artificial Example
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Back up slides

A Path to RQNA

The total arrival process at any queue:

I superposition of external arrival and splittings of
departure processes.

Queue 1
p1,o

Superposition

Queue 2
λo,2

λo,1

Departure
p2,o

p2,1

Splitting
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Back up slides

Three Network Operators

In summary,

I Splitting under Markovian routing:

Ia,j,i(t) = pj,iId,j(t) + (1− pj,i), for j ≥ 1

I Superposition of independent streams:

Ia,i(t) =

k∑
i=0

λj,i
λi
Ia,j,i(λj,it).

I adds nonlinearity

I Departure IDC

Id,ρ(t) = w∗((1− ρ)2t/c2x)Ia(t) + (1−w∗((1− ρ)2t/c2x))Is(t).
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Back up slides

The RQNA Algorithm

I Traffic-rate equations

λi = λo,i +

n∑
j=1

λj,i = λo,i +

n∑
j=1

λjpj,i,

I Total-arrival-IDC equations

Ia,i(t) =
λo,i
λi
Ia,o,i(λo,it) +

n∑
j=1

λj,i
λi

(pj,iId,j(λj,it) + (1− pj,i))
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Back up slides

The RQNA Algorithm

Ia,i(t) =
λo,i
λi
Ia,o,i(λo,it) +

n∑
j=1

λj,i
λi

(pj,iId,j(λj,it) + (1− pj,i))

I Departure IDC, define ρi = λi/µi and c2x,i = c2a,i + c2s,i, then

Id,i(t) = w∗((1−ρi)2t/c2x,i)Ia,i(t)+(1−w∗((1−ρi)2t/c2x,i))Is,i(t),

I Asymptotic-variability-parameter equations

c2a,i =
λo,i
λi
c2a,o,i +

n∑
j=1

λj,i
λi

(
pj,ic

2
a,j + (1− pj,i)

)
I obtained by letting t→∞ in the total-arrival-IDC

equations.
I coincides with (24) in Whitt (1983), where we take wj = 1

and vij = 1 there.
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Back up slides

Solving the Total-Arrival-IDC equations

I Both the traffic-rate equations and asymptotic-variability
equations are linear equations.

I Total-arrival-IDC equations
I nonlinear due to the superposition operator;
I simpler case: feed-forward queueing network, can be

solved explicitly by iteration;
I general case: forms a contraction mapping, so unique

solution can be found by fixed-point-iteration method.
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Back up slides

Extension to GI/GI/1 model

Proof sketch. From the HT limit

D∗(t) = caBa(t) +Q∗(0)−Q∗(t)

plus u.i. condition,

V ∗d (t) = Var(caBa(t)) + Var(Q∗(0)) + Var(Q∗(t))

+ cov(Q∗(0), Q∗(t)) + cov(caBa(t), Q
∗(t)),

I Var(caBa(t)) = c2at;
I Var(Q∗(t)) = Var(Q∗(0)) = c4x/4;

I cov(Q∗(0), Q∗(t)) = c4x
4 c
∗(t/c2x), where c∗ is the correlation

function discussed in Abate and Whitt (1987,1988).
I w∗ is closely related to c∗

w∗(t) = 1− 1− c∗(t)

2t
.
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Back up slides

HT limit theorem for GI/GI/1 departure variance

Proof sketch contd. The remaining term

cov(caBa(t), Q
∗(t)).

is treated by scaling techniques. Recall that

Q∗(t) = ψ(Q∗(0) + caBa − csBs − e)

I Scale the original system so that we have a modified
system with the same drift −1 but c̃2a = 1.

{Q∗(0), caBa(t), csBs(t),−t}
d
= c2a

{
Q∗(0)

c2a
, Ba(t/c

2
a),

cs
ca
Bs(t/c

2
a),−

t

c2a

}
≡ c2a

{
Q∗(0)

c2a
, Ba(u),

cs
ca
Bs(u),−u

}
,

where u = t/c2a.
I Apply results for special case M/GI/1 where c2a = 1.
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Back up slides

The Heavy-traffic Bottleneck Phenomenon

Table: The heavy-traffic bottleneck example

High variability Low variability

Queue 9 Simulation 29.1480± 0.0486 5.2683± 0.0025
QNA 8.9 (-69.47%) 8.0 (51.85%)
M/M/1 8.1 (-72.21%) 8.1 (53.75%)
Asymp. Method 36.5 (25.22%) 4.05 (-23.13%)
RQNA 26.88 (-7.79%) 5.44 (3.26%)
RQ 36.98 (26.86%) 4.9509 (-6.02%)

Queue 8 Simulation 1.4403± 0.0005 0.7716± 0.0001
QNA 1.04 (-27.79%) 0.88 (14.05%)
M/M/1 0.9 (-37.51%) 0.9 (16.64%)
Asymp. Method 4.05 (181.19%) 0.45 (424.88%)
RQNA 0.9 (-37.51%) 0.895 (15.99%)
RQ 1.267 (-12.03%) 0.853 (10.51%)
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