Background 0000	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides

A Robust Queueing Network Analyzer Based on Indices of Dispersion

Wei You (joint work with Ward Whitt)

Columbia University

INFORMS 2018, Phoenix

November 6, 2018

Background ●000	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides
Motivat	ion					

- Many complex service systems can be modeled as open queueing networks (OQN)
- The estimation of performance measures
 - important in many applications;
 - theoretical analysis is limited;
 - approximation remains an important tool.
- In this work we propose a fast and accurate Robust Queueing Network Analyzer (RQNA) to approximation performance measures in single-server OQNs.

Background 0●00	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides

Background - Previous Approximation Algorithms

Decomposition approximation methods

- Motivated by product-form solutions of Jackson Networks.
- Treat stations as independent single-server queues.
- Examples
 - The Queueing Network Analyzer (QNA) by Whitt (1983),
 - approximates each station by a GI/GI/1 queue.
 - Kim (2011a, 2011b)

- approximates each station by an MMPP(2)/GI/1 queue (Markov-Modulated Poisson Process);

Background - Previous Approximation Algorithms

Approximations using Reflected Brownian Motion (RBM)

- Approximate the steady-state queue length distribution by the stationary distribution of the limiting RBM;
- numerically calculate the steady-state mean of the RBM.

Examples

- QNET by Harrison and Nguyen (1990) for OQNs and by Dai and Harrison (1993) for CQNs;
- Sequential bottleneck decomposition (SBD) by Dai, Nguyen and Reiman (1994).

Background 000●	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides

Background - Recent Developments

Recent Developments

- Interpolation method (IR) by Wu and McGinnis (2014).
- (Parametric) Robust Queueing (RQ) by Bandi et al. (2015).
- (Non-parametric) RQ by Whitt and You (2018a).

In this talk,

 non-parametric Robust Queueing Network Analyzer (RQNA) for OQNs.

Background 0000	Dependence •0000	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides
-						

Dependence in Queues

Figure: A three-station example.

Dependence rises naturally in queueing network:

- Dependence within/between the flows¹:
 - introduced by departure, splitting and superposition;
 - also by customer feedback.

¹arrival processes, departure process, etc.

Background 0000	Dependence ○●○○○	RQ oo	RQNA 00000	Numerical Examples	References 000	Backup Slides
Depend	lence in G)ueue	S			

Dependence has significant impact on performance measures

- Dependence can have complicated temporal structure.
- The **level of impact** will depend on both the temporal structure and the traffic intensity.
- Parametric methods (QNA, QNET, parametric RQ) using first two moments to describe variability may fail.

Background 0000	Dependence 00●00	RQ oo	RQNA 00000	Numerical Examples	References 000	Backup Slides

3 Stations with Feedback

$$\lambda_{0,1} = \underbrace{0.225}_{\text{Poisson}} \underbrace{\begin{array}{c} P_{3,2} = 0.5 \\ \hline H_2, c_{s_2}^2 = 8 \\ \hline H_2, c_{s_1}^2 = 8 \end{array}}_{P_{2,3} = 0.5} \underbrace{\begin{array}{c} Queue \ 3 \\ \hline Queue \ 2 \\ \hline P_{2,1} = 0.5 \\ \hline E_2, c_{s_3}^2 = 0.25 \end{array}}$$

Table: The steady-state mean waiting time.

r = 0.5	r = 0.5, (third parameter of H2 dist, weight on one mean)								
Queue	ρ	Simu	QNET	SBD					
1	0.9	31.22	35.9 (15%)	26.0 (-17%)					
2	0.675	8.32	10.2 (23%)	11.1 (33%)					
3	0.45	2.00	1.89 (5.5%)	1.94 (3%)					
Total		138.7	161.3 (16%)	135.3 (-2.5%)					
r = 0.9	9, (third	l parame	eter of H2 dist,	weight on one mean)					
Queue	ρ	Simu	QNET	SBD					
1	0.9	27.67	35.9 (30%)	26.0 (-6.0%)					
2	0.675	2.67	10.2 (282%)	11.1 (316%)					
3	0.45	0.56	1.89 (236%)	1.94 (245%)					
Total		103.8	161.3 (55%)	135.3 (30%)					

Background	Dependence	RQ	RQNA	Numerical Examples	References	Backup Slides
0000	000●0	00	00000		000	00000000

Indices of Dispersion for Counts (IDC)

Indices of dispersion can describe the temporal structure.

• Fendick and Whitt (1989) first applied it to queueing approximation.

Definition from Cox and Lewis (1966)

$$I_a(t) \equiv Var(A(t))/E[A(t)], \quad t \ge 0,$$

where A(t) is any stationary point process.

Background 0000	Dependence 0000●	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides

Indices of Dispersion for Counts (IDC)

Theorem (renewal process characterization theorem)

A renewal process A(t) with positive rate λ is fully characterized by the IDC of its equilibrium (stationary) version $A_e(t)$:

 $I_a(t) \equiv Var(A_e(t))/E[A_e(t)].$

- RQ-IDC, and so RQNA-IDC, utilize much more information of the underlying distribution;
- potentially more accurate and adaptive to complex distributions.

Robust Queueing for Single-Server Queues

- Let Z be the steady-state mean workload (virtual waiting time) of a single-server queue.
- RQ for the workload in Whitt and You (2018a)

$$Z \approx Z^* \equiv \sup_{N \in \mathcal{U}} \sup_{0 \leq s \leq \infty} \{N(s)\},$$

where

$$\mathcal{U} = \left\{ \mathsf{N} : \mathsf{N}(s) \leq -(1-\rho)s + \sqrt{2\rho s(l_a(s) + c_s^2)/\mu}, \ s \geq 0
ight\}.$$

and $I_a(t)$ is the IDC of the arrival process.

Robust Queueing for continuous-time workload

• Let Z be the steady-state mean workload (virtual waiting time) of a single-server queue.

The RQ-IDC algorithm

$$Z \approx Z^* = \sup_{0 \le s \le \infty} \left\{ -(1-\rho)s + \sqrt{2\rho s (I_a(s) + c_s^2)/\mu} \right\}.$$

- RQ-IDC converts the arrival IDC and the squared coefficient of variation (scv) of the service distribution into an approximation of the steady-state mean workload.
- *I_a* is defined for the stationary arrival process;

Background 0000	Dependence 00000	RQ 00	RQNA ●0000	Numerical Examples	References 000	Backup Slides
General	ization to		JA			

To extend RQ to RQNA, we need the IDC of the total arrival process

- for external flows, i.e., service processes and external arrival processes
 - calculated in special cases² (e.g. renewal process);
 - estimated by simulation or from data;
- for internal flows, i.e., internal arrival processes and departure processes.
 - approximated by RQNA.

²by numerically inverting the Laplace Transform

Background 0000	Dependence 00000	RQ 00	RQNA o●ooo	Numerical Examples	References 000	Backup Slides

Generalization to RQNA: Internal Flows

The total arrival process at any queue:

• superposition of external arrival and splitting of departure processes.

Figure: A three-station example.

Background 0000	Dependence 00000	RQ 00	RQNA oo●oo	Numerical Examples	References 000	Backup Slides
The ID	C Equatio	ons				

Notations

- $I_{a,i}$: IDC of the total arrival process at station *i*;
- *I*_{s,i}: IDC of the service process at station *i*;
- $I_{d,i}$: IDC of the total departure process at station i;

The Departure Equation

$$I_{d,i}(t) \approx w_i(t)I_{a,i}(t) + (1 - w_i(t))I_{s,i}(t),$$
 (Dep)

where w_i is a weight function with explicit expression.

- Departure IDC is a convex combination;
- Supported by Heavy-traffic (HT) limit for the stationary departure process ⇒ asymptotically exact.

Background 0000	Dependence 00000	RQ oo	RQNA ○○○●○	Numerical Examples	References 000	Backup Slides
The ID	C Equatio	ons				

One more notation

• *I_{a,i,j}*: IDC of the flow from station *i* to station *j*;

The Splitting and Superposition Equation

$$I_{a,i,j}(t) \approx p_{i,j}I_{d,i}(t) + (1 - p_{i,j}) + \alpha_{i,j}(t)$$
(Spl)
$$I_{a,i}(t) \approx \sum_{j=0}^{K} (\lambda_{j,i}/\lambda_i)I_{a,j,i}(t) + \beta_i(t)$$
(Sup)

where $\alpha_{i,j}$ and β_i are correction term with explicit expression and $\lambda_{j,i} = p_{j,i}\lambda_j$ is the rate of the flow from *i* to *j*.

- Red terms recovers **independent** splitting or superposition.
- Blue term models dependence in the splitting or superposition operation.
- Supported by Heavy-traffic (HT) limit for the **stationary flows** in OQN.

Background 0000	Dependence 00000	RQ oo	RQNA 0000●	Numerical Examples	References 000	Backup Slides
The ID	C Equatio	ons				

In summary, the IDC equations are

$$I_{d,i}(t) = w_i(t)I_{a,i}(t) + (1 - w_i(t))I_{s,i}(\rho t),$$
 (Dep)

$$I_{a,i,j}(t) = p_{i,j}I_{d,i}(t) + (1 - p_{i,j}) + \alpha_{i,j}(t), \qquad (Spl)$$

$$I_{a,i}(t) = \sum_{j=0}^{K} (\lambda_{j,i}/\lambda_i) I_{a,j,i}(t) + \beta_i(t).$$
 (Sup)

In matrix notation, we have

$$\mathbf{I}(t) = \mathbf{M}(t)\mathbf{I}(t) + \mathbf{b}(t).$$

- For each fixed *t*, the IDC equations form a system of linear equations;
- The IDC equations have unique solution if every customer eventually leave the system.

Background	Dependence	RQ	RQNA	Numerical Examples	References	Backup Slides
0000	00000	00	00000	●00	000	

3 Stations with Feedback

Figure: A three-station example.

Table: Traffic intensity.

Table: Variability (squared coefficient of variation, scv) of service-time distributions.

Case	ρ_1	ρ_2	$ ho_3$
1	0.675	0.900	0.450
2	0.900	0.675	0.900
3	0.900	0.675	0.450
4	0.900	0.675	0.675

Case	$c_{s,1}^2$	$c_{s,2}^{2}$	$c_{s,3}^2$
А	0.00	0.00	0.00
В	2.25	0.00	0.25
С	0.25	0.25	2.25
D	0.00	2.25	2.25
Е	8.00	8.00	0.25

Background	Dependence	RQ	RQNA	Numerical Examples	References	Backup Slides
0000	00000	00	00000	0●0	000	00000000

3 Stations with Feedback

Table: A comparison of four approximation methods to simulation for the total sojourn time in the three-station example.

Ca	se	Simu	QNA	QNET	SBD	RQNA
Α	1	40.39	20.5 (-49%)	diverging	43.0 (6.4%)	44.8 (11.0%)
	2	59.58	36.0 (-40%)	56.7 (-4.9%)	58.2 (-2.4%)	69.3 (16.4%)
	3	40.72	24.0 (-41%)	38.7 (-5.0%)	40.2 (-1.3%)	43.3 (6.3%)
	4	42.12	26.2 (-38%)	41.8 (-0.7%)	42.7 (1.3%)	41.2 (-2.2%)
В	1	52.40	42.0 (-20%)	52.6 (0.4%)	50.2 (-4.2%)	53.1 (1.4%)
	2	91.52	94.1 (2.8%)	83.7 (-8.5%)	95.3 (4.1%)	94.5 (3.2%)
	3	61.68	72.2 (17%)	61.9 (0.4%)	60.9 (-1.3%)	60.5 (-1.9%)
	4	63.34	75.8 (20%)	64.1 (1.3%)	64.7 (2.1%)	62.4 (-1.4%)
С	1	44.24	31.3 (-29%)	37.0 (-16%)	47.1 (6.4%)	42.1 (-4.8%)
	2	92.42	87.4 (-5.4%)	91.2 (-1.4%)	91.6 (-0.8%)	96.0 (3.8%)
	3	44.26	33.2 (-25%)	44.0 (-0.7%)	45.0 (1.7%)	44.0 (-0.6%)
	4	50.20	41.4 (-18%)	51.1 (1.7%)	52.2 (4.0%)	45.9 (-8.6%)
Е	1	134.4	265 (97%)	155 (15%)	116 (-14%)	120 (-11%)
	2	213.1	308 (45%)	228 (7.1%)	206 (-3.3%)	173 (-19%)
	3	138.7	244 (76%)	161 (16%)	135 (-2.5%)	136 (-2.0%)
	4	155.1	252 (63%)	168 (8.2%)	147 (-5.0%)	148 (-4.8%)

Background 0000	Dependence 00000	RQ oo	RQNA 00000	Numerical Examples	References 000	Backup Slides
2 Statio	ne with [Toodh	ack			

• Case E3:

$$(
ho_1,
ho_2.
ho_3) = (0.9, 0.675, 0.45)$$

 $(c_{s_1}^2, c_{s_2}^2.c_{s_3}^2) = (8, 8, 0.25)$

Table: A comparison of six approximation methods to simulation for the sojourn time at each station of the three-station example.

	Case E3, r = 0.5									
Queue	Simu	QNET	SBD	RQNA						
1	31.22	35.9 (15%)	26.0 (-17%)	26.0 (-17%)						
2	8.32	10.2 (23%)	11.1 (33%)	11.8 (42%)						
3	2.00	1.89 (5.5%)	1.94 (3%)	0.93 (-54%)						
Sum	138.7	161.3 (16%)	135.3 (-2.5%)	136.1 (-1.9%)						
		Case E3,	r = 0.99							
Queue	Simu	QNET	SBD	RQNA						
1	27.67	35.9 (30%)	26.0 (-6.0%)	26.0 (-6.0%)						
2	2.67	10.2 (282%)	11.1 (316%)	6.03 (125%)						
3	0.56	1.89 (236%)	1.94 (245%)	0.50 (-11%)						
Sum	103.8	161.3 (55%)	135.3 (30%)	112.1 (8%)						

Background 0000	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References ●00	Backup Slides

Thanks!

Background 0000	Dependence 00000	RQ oo	RQNA 00000	Numerical Examples	References 0●0	Backup Slides
Referen	Ces					

References on Robust Queueing:

- [BBY15] C. Bandi, D. Bertsimas, and N. Youssef, Robust Queueing Theory, Operations Research, 2015.
- [WY18a] W. Whitt, W. You, Using Robust Queueing to Expose the Impact of Dependence in Single-Server Queues, Operations Research, 2018.
- [WY18c] W. Whitt, W. You, A Robust Queueing Network Analyzer Based on Indices of Dispersion, submitted to INFORMS Journal on Computing, 2018.
- [WY18e] W. Whitt and W. You, The Advantage of Indices of Dispersion in Queueing Approximations, submitted to Operations Research Letters, 2018.
- [WY17] W. Whitt, W. You, Time-Varying Robust Queueing, submitted to Operations Research, 2017.

References on queueing network approximations:

- [DH93] J. G. Dai and J. M. Harrison, The QNET method for two-moment analysis of closed manufacturing systems, Annals of Applied Probability, 1993.
- [FW89] K. W. Fendick, W. Whitt, Measurements and Approximations to Describe the Offered Traffic and Predict the Average Workload in a Single-Server Queue, *Proceedings of the IEEE*, 1989.
- [HN90] J. M. Harrison, V. Nguyen, The QNET Method for Two-Moment Analysis of Open Queueing Networks, Queueing Systems, 1990.
- [SW86] K. Sriram, W. Whitt, Characterizing Superposition Arrival Processes in Packet Multiplexers for Voice and Data, IEEE Journal on Selected Areas on Communications, 1986.
- [SW90] S. Suresh, W. Whitt, The Heavy-Traffic Bottleneck Phenomenon in Open Queueing Networks, Operations Research Letters, 1990.
- [WM12] K. Wu, L. McGinnis, Interpolation Approximations for Queues in Series, IIE Transactions, 2012.
- [WW82] W. Whitt, Approximating a Point Process by a Renewal Process: Two Basic Methods, Operations Research, 1982.
- [WW83] W. Whitt, The Queueing Network Analyzer, Bell System Technical Journal, 1983.
- [ZHS05] Q. Zhang, A. Heindl, E. Smirni, Characterizing the BMAP/MAP/1 Departure Process via the ETAQA Truncation, Stochastic Models, 2005.

Background 0000	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References 00●	Backup Slides
Defense						
Referen	ices					

References on HT limits:

- [GZ06] D. Gamarnik, A. Zeevi, Validity of heavy traffic steady-state approximations in generalized Jackson Networks, The Annals of Applied Probability, 2006.
- [IW70] D.L. Iglehart, W. Whitt, Multiple Channel Queues in Heavy Traffic II: Sequences, Networks and Batches. Advanced Applied Probability, 1970.
- [Loy62] R. M. Loynes, The Stability of A Queue with Non-independent Inter-arrival and Service Times, Mathematical Proceedings of the Cambridge Philosophical Society, 1962.
- [WY18b] W. Whitt, W. You, Heavy-traffic limit of the GI/GI/1 stationary departure process and its variance function, Stochastic Systems, 2018.
- [WY18d] W. Whitt and W. You, Heavy Traffic Limits for the Stationary Flows in Generalized Jackson Networks, submitted to Stochastic Systems, 2018.

References on departure processes:

- [D76] D. Daley, Queueing Output Processes, Advances in Applied Probability, 1976.
- [B56] P. Burke, The Output of a Queuing System, Operations Research, 1956.
- [G99] D. Green, Departure Processes from MAP/PH/1 Queues, thesis, 1999.
- [T62] L. Takács, Introduction to the Theory of Queues, Oxford University Press, 1962.
- [HKNT13] S. Hautphenne, Y. Kerner, Y. Nazarathy, P. Taylor, The Second Order Terms of the Variance Curves for Some Queueing Output Processes, arXiv:1311.0069, 2013.
 - [W84] W. Whitt, Approximations for Departure Processes and Queues in Series, Naval Research Logistics Quarterly, 1984.

Background	Dependence	RQ	RQNA	Numerical Examples	References	Backup Slides
0000	00000	00	00000		000	•0000000

Other Performance Measures

$$Z^*_
ho = \sup_{0 \le s \le \infty} \Big\{ -(1-
ho)s + \sqrt{2
ho s I_w(s)/\mu} \Big\}.$$

This RQ formulation give approximation of the mean steady-state workload. For other performance measures, we have

• Mean steady-state waiting time:

$$E[W] \approx \max\{0, Z^*/\rho - (c_s^2 + 1)/2\mu\}.$$

- obtained by Brumelle's formula:

$$E[Z] =
ho E[W] +
ho rac{E[V^2]}{2\mu} =
ho E[W] +
ho rac{(c_s^2 + 1)}{2\mu}.$$

• Mean steady-state queue length, by Little's law,

$$E[Q] = \lambda E[W] = \rho E[W]$$

Background	Dependence	RQ	RQNA	Numerical Examples	References	Backup Slides
0000	00000	00	00000		000	0●000000
3 Static	ons with F	- eedb	ack			

Table: A comparison of six approximation methods to simulation for the sojourn time at each station of the three-station example.

	Case D1, r = 0.5								
Queue	Simu	QNA	QNET	SBD	RQNA				
1	1.478	1.24 (-16%)	1.48 (0.1%)	1.47 (-0.5%)	1.69 (14%)				
2	10.22	13.9 (36%)	10.6 (3.7%)	10.4 (1.8%)	10.4 (1.8%)				
3	1.563	1.53 (-2.1%)	1.54 (-1.5%)	1.59 (1.7%)	1.53 (-2.1%)				
Sum	57.42	71.4 (24%)	58.8 (2.4%)	58.2 (1.4%)	58.7 (2.2%)				
		Ca	ase D1, $r = 0.99$						
Queue	Simu	QNA	QNET	SBD	RQNA				
1	1.145	1.24 (8.3%)	1.48 (29%)	1.47 (28%)	1.28 (12%)				
2	10.15	13.9 (37%)	10.6 (4.4%)	10.4 (2.5%)	10.4 (2.5%)				
3	1.119	1.53 (37%)	1.54 (38%)	1.59 (42%)	1.28 (14%)				
Sum	55.26	71.4 (29%)	58.8 (6.4%)	58.2 (5.3%)	57.0 (3.1%)				

Background	Dependence	R Q	RQNA	Numerical Examples	References	Backup Slides
0000	00000	00	00000		000	00●00000

The Heavy-Traffic Bottleneck Phenomenon

Figure: The heavy-traffic bottleneck example in Suresh and Whitt (1990).

Arrival Pr	ocess	$H_2, c_a^2 = 8$	$H_2, c_a^2 = 8$
		<i>r</i> = 0.5	<i>r</i> = 0.95
Queue 8	Simulation	1.44	0.92
	M/M/1	0.90 (-38%)	0.90 (-2.1%)
	QNA		1.04 (13%)
	SBD	1.01 (-29%)	1.01 (10%)
Queue 9	Simulation	29.15	8.94
	M/M/1	8.1 (-72%)	8.1 (-9.4%)
	QNA	8.9 (-69%)	8.9 (-0.4%)
	SBD	36.5 (25%)	36.5 (308%)

Table: Mean steady-state waiting times at Queue 8 and 9, compared with M/M/1 values and approximations.

Background	Dependence	RQ	RQNA	Numerical Examples	References	Backup Slides
						00000000

The Heavy-traffic Bottleneck Phenomenon

H_2	$(8) \xrightarrow{l} 1$	$M, \rho_1 = 0.6$	→ 8 → C	$M, \rho_1 = 0.9$
λ =	=1 —		$\overline{M}, \rho_1 =$	= 0.6
	Arrival Pr	ocess	$H_2, c_a^2 = 8$	$H_2, c_a^2 = 8$
			<i>r</i> = 0.5	r = 0.99
	Queue 8	Simulation	1.44	0.92
		M/M/1	0.90 (-38%)	0.90 (-2.1%)
		QNA	1.04 (-28%)	1.04 (13%)
		SBD	1.01 (-29%)	1.01 (10%)
		IR	1.20 (-17%)	1.20 (7.1%)
		RQ	1.27 (-12%)	0.92 (-0.5%)
	Queue 9	Simulation	29.15	8.94
		M/M/1	8.1 (-72%)	8.1 (-9.4%)
		QNA	8.9 (-69%)	8.9 (-0.4%)
		SBD	36.5 (25%)	36.5 (308%)
		IR	21.1 (-28%)	21.1 (136%)
		RQ	37.0 (27%)	16.5 (84%)

Background	Dependence	RQ	RQNA	Numerical Examples	References	Backup Slides
0000	00000	00	00000	000	000	0000€000

10 Stations with Feedback

Figure: A ten-station with customer feedback example.

- The traffic intensity vector is (0.6, 0.4, 0.6, 0.9, 0.9, 0.6, 0.4, 0.6, 0.6, 0.4).
- The scv's at these stations are (0.5, 2, 2, 0.25, 0.25, 2, 1, 2, 0.5, 0.5)

Background 0000	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides
100						

10 Stations with Feedback

Table: A comparison of five approximation methods to simulation for the mean steady-state sojourn times at each station.

Q	Simu	QNA	QNET	SBD	RQ	RQNA
1	0.99	0.97 (-2.8%)	1.00 (0.2%)	1.00 (0.4%)	0.97 (-2.0%)	1.00 (0.4%)
2	0.55	0.58 (6.0%)	0.56 (2.6%)	0.55 (0.2%)	0.55 (-0.1%)	0.56 (1.4%)
3	2.82	2.93 (4.2%)	2.90 (3.2%)	2.76 (-2.0%)	2.96 (5.0%)	2.75 (-2.5%)
4	1.79	1.34 (-25%)	1.41 (-21%)	1.76 (-1.6%)	2.34 (31%)	2.11 (18%)
5	2.92	2.49 (-15%)	2.44 (-17%)	2.81 (-3.6%)	3.77 (29%)	3.35 (15%)
6	0.58	0.64 (10%)	0.62 (7.4%)	0.59 (2.2%)	0.60 (3.8%)	0.49 (-16%)
7	0.24	0.24 (-1.7%)	0.26 (7.1%)	0.27 (11%)	0.23 (-3.0%)	0.24 (-1.3%)
8	0.58	0.64 (9.6%)	0.61 (4.6%)	0.60 (1.7%)	0.61 (3.9%)	0.59 (0.6%)
9	0.34	0.32 (-6.1%)	0.35 (2.0%)	0.43 (26%)	0.33 (-4.2%)	0.42 (21%)
10	0.29	0.30 (2.4%)	0.29 (1.4%)	0.28 (-1.7%)	0.28 (-1.5%)	0.26 (-8.7%)
sum	22.0	20.3 (-7.9%)	20.4 (-7.3%)	22.4 (1.7%)	26.1 (18%)	24.2 (9.9%)

Background 0000	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides 000000€0
Eadhar	L Elimin	tion				

Figure: Immediate feedback.

- Normally, the immediate feedback returns the customer back to the end of the line at the same station.
- In the immediate feedback elimination procedure, the approximation step is to put the customer back at the head of the line.

- The overall service time is then a geometric sum of the original service times.

• This does not alter the queue length process or the workload.

Background 0000	Dependence 00000	RQ 00	RQNA 00000	Numerical Examples	References 000	Backup Slides 0000000●
Foodback Elimination						

Figure: A three-station example.

For the general case,

- Near immediate feedback is defined as a feedback customer that does not go through a station with higher traffic intensity than the current station.
- For each station with feedback, we eliminate all near immediate feedback flows, the nadjust the service times just as in the single-station case.