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Adaptive experiments

In stochastic adaptive experiments, the decision maker

faces a finite set of alternative options;

the mean performance 𝜃𝑖 is unknown, whose uncertainty can only be reduced by costly

experiments or measurements.

We seek to allocate measurement efforts wisely to correctly answer a query about the

alternatives with high confidence.

Exploration query
An exploration query specifies a question to be answered regarding the unknown mean

vector 𝜽.
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Examples of pure exploration queries
We study pure-exploration problems in adaptive experiments with a finite set of candidates.

1. One may seek to quickly identify the best performing alternative 𝐼∗ = argmax𝑖 𝜃𝑖.

a.k.a. “best arm identification” or “ranking and selection”.

Applications: Hyperparameter tuning[1], LLM prompt optimization[2], brain-computer

interface[3].

Variants of this problem

– Finding one or all good enough alternatives, i.e., 𝑖 such that 𝜃𝑖 > 𝜃𝐼∗ − 𝜀.

– Finding the best-𝑘 alternatives.

– Finding a subset that contains the best alternative.

[1]X. Shang, E. Kaufmann, and M. Valko, “A simple dynamic bandit algorithm for hyper-parameter tuning,” in 6th ICML Workshop on Automated Machine Learning,  2019.
[2]R. Pryzant, D. Iter, J. Li, Y. T. Lee, C. Zhu, and M. Zeng, “Automatic Prompt Optimization with ``Gradient Descent'' and Beam Search,” in The 2023 Conference on Empirical Methods

in Natural Language Processing,  2023.
[3]X. Zhou, B. Hao, T. Lattimore, J. Kang, and L. Li, “Sequential Best-Arm Identification with Application to P300 Speller,” Transactions on Machine Learning Research, 2024.
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Examples of pure exploration queries

2. One may seek to compare the mean performance against some threshold

Find all alternatives above a threshold, a.k.a. thresholding bandits[1].

Variants of this problem

– Find the alternatives closest to the threshold.

– Verify if the smallest mean is lower than a threshold, a.k.a. Murphy sampling[2].

[1]A. Locatelli, M. Gutzeit, and A. Carpentier, “An optimal algorithm for the thresholding bandit problem,” in International Conference on Machine Learning,  2016, pp. 1690–1698.
[2]E. Kaufmann, W. M. Koolen, and A. Garivier, “Sequential test for the lowest mean: From Thompson to Murphy sampling,” Advances in Neural Information Processing Systems, vol.

31, 2018.
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Examples of pure exploration queries
3. Weeks before the official release of OpenAI o3 and o4-mini on April 16, 2025, they

extensively tested versions of the LLM using pure exploration in dueling bandits[1].

[1]V. Dwaracherla, S. M. Asghari, B. Hao, and B. Van Roy, “Efficient exploration for LLMs,” arXiv preprint arXiv:2402.00396, 2024.
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What is pure exploration?
We seek to answer a query about the unknown mean vector 𝜽 with high confidence, while

using as few measurements as possible. The emphasis is on end outcomes.

Costs incurred during the adaptive experimentation phase is high and does not depend on

the mean performance.

Incur potentially large costs after the experiment.

Long-term commitment of resources based on the answer to the query.

Example:

– Mass production of a product.

– Tenure promotion.

– Deploy a LLM.

– Construction of a new hospital.
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Pure exploration

Pure exploration
Exploration matters the most, whereas exploitation is unnecessary.

An inherent trade-off:

Minimizing the length of the experimentation phase.

Answering the query correctly with high confidence.

Various formulations of pure exploration:

Fixed-budget: Maximize accuracy under a fixed number of measurements¹.

Fixed-confidence: Minimize the number of measurements to guarantee a given accuracy.

¹An alternative is the posterior fixed-budget setting: minimize the large deviation rate of the posterior probability of an incorrect answer, under a fixed number of measurements.
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Motivations
We are motivated by the need of a unified algorithm design principle for

different problem formulations (fixed-budget, fixed-confidence, etc.).

different exploration queries (best arm identification, thresholding, etc.).

different noise distributions (Gaussian, Bernoulli, etc.).

We are particularly interested in variants of Thompson sampling (TS) for this purpose.

Access our full paper here:
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Thompson sampling

In bandit literature, a popular formulation is regret minimization.

Regret minimization The goal is to minimize the expected regret, defined as the

difference between the expected reward of the optimal arm and the expected reward of

the chosen arm.

Thompson sampling (TS) is a popular algorithm for regret minimization.

Thompson sampling[1]

After each observation, update the posterior distribution Π𝑡 of the mean vector 𝜃.

Draw a sample 𝜽 from Π𝑡.

Choose the arm with the largest sample: 𝐼𝑡 = argmax𝑖∈[𝐾] 𝜃𝑖.

[1]W. R. Thompson, “On the likelihood that one unknown probability exceeds another in view of the evidence of two samples,” Biometrika, vol. 25, no. 3/4, pp. 285–294, 1933.
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Can we apply TS to best-arm identification?

TS is designed for regret minimization.

In minimizing the regret, TS must allocate sufficient measurements to the best-performing

arms (exploitation), however, these exploitation efforts does not contribute to the goal of

pure exploration.

Example: Consider two normal populations 𝒩(𝜃1, 1) and 𝒩(𝜃2, 1) with 𝜃1 > 𝜃2. We test

𝐻0 : 𝜃1 ≤ 𝜃2  versus 𝐻1 : 𝜃1 > 𝜃2.

Consider the 𝑍-statistics 𝑍𝑡 ≝ 𝑋𝑡−𝑌𝑡

√ 1
𝑛1,𝑡

+ 1
𝑛2,𝑡

.

The larger 𝑍𝑡 is, the more likely we reject 𝐻0.

TS has 𝑍𝑡 = 𝑂(log(𝑡)). But equal allocation result in 𝑍𝑡 = 𝑂(𝑡).
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A simple modification of TS for BAI
Thompson sampling

Update posterior Π𝑡.

Sample 𝜽 from Π𝑡.

Choose greedily 𝐼𝑡 = argmax𝑖∈[𝐾] 𝜃𝑖.

When the tuning parameter 𝛽 is set to 1, top-

two TS is equivalent to TS.

The name top-two refers to the two

candidates, leader and challenger.

Top-two Thompson sampling[1]

Update posterior Π𝑡.

Leader: Sample 𝜽 from Π𝑡 and let

𝐼 (1)
𝑡 = argmax𝑖∈[𝐾] 𝜃𝑖.

Challenger: Sample repeatedly from

Π𝑡 until 𝜽′ such that 𝐼 (2)
𝑡 =

argmax𝑖∈[𝐾] 𝜃′
𝑖 ≠ 𝐼 (1)

𝑡 .

Tuning: play the leader with

probability 𝛽 and the challenger with

probability 1 − 𝛽.

[1]D. Russo, “Simple Bayesian Algorithms for Best-Arm Identification,” Operations Research, vol. 68, no. 6, pp. 1625–1647, 2020.
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Research questions and contributions

1. How to remove the tuning parameter 𝛽? Open problem[1].

We provide a parameter-free algorithm.

2. How to modify TS to solve other pure exploration problems?

We provide surprisingly simple variants of TS for other pure-exploration problems.

3. Is the parameter-free algorithm optimal?

Yes, optimality is established for Gaussian BAI.

4. How to obtain computationally efficient TS variants?

As posterior concentrates, the repeated sampling step takes a long time.

We provide two computationally efficient variants that are optimal.

[1]D. Russo, “Simple Bayesian Algorithms for Best-Arm Identification,” Operations Research, vol. 68, no. 6, pp. 1625–1647, 2020.
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Learning objective
Correct answer
The pure-exploration query induces a correct answer ℐ(𝜽), which we assume is unique.

Fixed-confidence performance criteria Given a confidence level 𝛿 ∈ (0, 1). At each time,

Stopping rule: the DM check if a stopping condition is met.

Decision rule: If met, the DM stops and outputs the answer ℐ̂𝜏𝛿
.

Selection rule: Otherwise, the DM selects an arm 𝐼𝑡.

𝛿-correct
A policy is said to be 𝛿-correct if the probability of correct selection (PCS) upon stopping at

time 𝜏𝛿 is at least 1 − 𝛿, i.e.,

ℙ𝜽(𝜏𝛿 < ∞, ℐ̂𝜏𝛿
= ℐ(𝜽)) ≥ 1 − 𝛿, for all 𝜽.
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Learning objective

We seek to find the policy that is 𝛿-correct, while minimizing the expected stopping time.

Universal efficiency
A policy 𝜋∗ is said to be universally efficient if 𝜋∗ is 𝛿-correct and for any other 𝛿-correct

policy 𝜋, we have

𝔼𝜋∗

𝜽 [𝜏𝛿]
𝔼𝜋

𝜽 [𝜏𝛿]
≤ 1, for all 𝜽.
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Decomposition of pure exploration tasks

💡 Observation
A pure exploration task can often be decomposed into simpler tasks.

Example (Best-arm identification):

We test if arm 𝐼∗ is indeed the true best arm. It is equivalent to testing multiple two-arm

hypotheses:

𝐻0,𝑥 : 𝜃𝑥 > 𝜃𝐼∗  versus 𝐻1,𝑥 : 𝜃𝑥 ≤ 𝜃𝐼∗ , for all 𝑥 ∈ [𝐾] \ {𝐼∗}.

Each pair of hypotheses checks if a sub-optimal arm 𝑥 is better than 𝐼∗.

If we fail to reject 𝐻0,𝑥, then 𝑥 is the reason that 𝐼∗ does not appear as the best arm under

the data. Hence, we refer to 𝑥 as a possible pitfall.
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Decomposition of pure exploration tasks

Let ℐ(𝜽) denote the unique correct answer.

For an algorithm to correctly answer the pure-exploration query, it must distinguish

between problem instances that yield different answers.

We collect all alternative parameters that leads to a different answer as the alternative set.

Pitfalls and decomposition of alternative set
We assume that Alt(𝜽) can be decomposed into the union of a finite set of convex sets:

Alt(𝜽) ≝ {𝝑 : ℐ(𝝑) ≠ ℐ(𝜽)} = ∪𝑥∈𝒳 Alt𝑥(𝜽).

We refer to 𝒳 the set of pitfalls.

Example (Best-arm identification): 𝒳 = [𝐾] \ {𝐼∗}, and Alt𝑥(𝜽) = {𝝑 : 𝜗𝑥 > 𝜗∗
𝐼}
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A hypothesis testing perspective for general pure exploration

We test if arm ℐ is indeed the correct answer. It is equivalent to testing multiple hypotheses:

𝐻0,𝑥 : 𝜽 ∈ Alt𝑥(𝜽)  versus 𝐻1,𝑥 : 𝜽 ∉ Alt𝑥(𝜽), for all 𝑥 ∈ 𝒳.

The generalized log-likelihood ratio test (GLRT) statistic is given by

ln sup𝝑 𝐿(𝝑)
sup𝝑∈ Alt𝑥(𝜽) 𝐿(𝝑)

= 𝑡 ⋅ inf
𝝑∈ Alt𝑥(𝜽)

∑
𝑖∈[𝐾]

𝑝𝑖𝑑(𝜃𝑖, 𝜗𝑖),

where 𝑝𝑖 is the proportion of samples allocated to arm 𝑖 and 𝑑(⋅, ⋅) is the Kullback-Leibler

(KL) divergence.

Generalized Chernoff information (information gain per sample)

𝐶𝑥(𝒑; 𝜽) ≝ inf
𝝑∈ Alt𝑥(𝜽)

∑
𝑖∈[𝐾]

𝑝𝑖𝑑(𝜃𝑖, 𝜗𝑖), for all 𝑥 ∈ 𝒳.
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Problem complexity

Recall that

All 𝐻0,𝑥 : 𝜽 ∈ Alt𝑥(𝜽) must be rejected simultaneously to declare ℐ the answer.

𝐶𝑥(𝒑; 𝜽) quantifies the information gathered to reject 𝐻0,𝑥.

The DM seek to solve

Γ∗
𝜽 ≝ max

𝒑∈𝒮𝐾
min
𝑥∈𝒳

𝐶𝑥(𝒑; 𝜽), 𝒑∗ ∈ argmax
𝒑∈𝒮𝐾

min
𝑥∈𝒳

𝐶𝑥(𝒑; 𝜽),¹

where 𝒮𝐾 ⊂ ℝ𝐾  denote the probability simplex.

💡 Idea
Wisely allocate the measurement efforts to maximize the smallest test statistic.

¹⚠ For general problems, it is possible that the optimal solution is non-unique. Is this especially true for bandit with structures, such as linear bandits.
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A sufficient condition for optimality

Theorem (Y. and Qin, 2024[1])
Using appropriate stopping rule, if a algorithm ensures that

𝒑𝑡 →
𝕄

𝒑∗,

then it is universally efficient. In particular,

lim
𝛿→0

𝔼𝜽[𝜏𝛿]
log(1/𝛿)

= 1
Γ∗
𝜽

.

Matching lower bound established in[2][3].

The problem is then reduced to finding sampling rules that rapidly converges to 𝒑∗.

[1]C. Qin and W. You, “Dual-directed algorithm design for efficient pure exploration,” arXiv preprint arXiv:2310.19319, 2024.
[2]A. Garivier and E. Kaufmann, “Optimal best arm identification with fixed confidence,” in Conference on Learning Theory,  2016, pp. 998–1027.
[3]P.-A. Wang, R.-C. Tzeng, and A. Proutiere, “Fast Pure Exploration via Frank-Wolfe,” Advances in Neural Information Processing Systems, vol. 34, 2021.
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The optimal allocation problem

Γ∗
𝜽 = max

𝒑∈𝒮𝐾
min
𝑥∈𝒳

𝐶𝑥(𝒑; 𝜽)

Theorem (Optimality conditions, Y. and Qin, 2024[1])

[Stationarity] 𝑝𝑖 = ∑
𝑥∈𝒳

𝜇𝑥ℎ𝑥
𝑖 (𝒑), ∀𝑖 ∈ [𝐾],

[Complementary slackness] 𝜇𝑥(min
𝑥′∈𝒳

𝐶𝑥′(𝒑; 𝜽) − 𝐶𝑥(𝒑; 𝜽)) = 0, ∀𝑥 ∈ 𝒳,

where 𝜇𝑥 is the dual variable for the inner minimization problem, and

ℎ𝑥
𝑖 (𝒑) =

𝑝𝑖
𝜕𝐶𝑥(𝒑)

𝜕𝑝𝑖

𝐶𝑥(𝒑)
.

[1]C. Qin and W. You, “Dual-directed algorithm design for efficient pure exploration,” arXiv preprint arXiv:2310.19319, 2024.
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The first design principle: the complementary slackness condition

Now we are ready to present our algorithm design principle.

First, consider the complementary slackness condition

𝜇𝑥(min
𝑥′∈𝒳

𝐶𝑥′(𝒑; 𝜽) − 𝐶𝑥(𝒑; 𝜽)) = 0, ∀𝑥 ∈ 𝒳.

Interpretation for the dual variables 𝜇𝑥: the proportion of iterations where 𝑥 is

identified as the hardest alternative hypothesis (i.e., the principal pitfall).

💡 The first algorithm design principle (asymptotic version)
We identify 𝑥 as the principal pitfall if

𝑥 = argmin
𝑥′∈𝒳

𝐶𝑥′(𝒑; 𝜽).

Wei You (HKUST) Dual-Directed Algorithm Design for Efficient Pure Exploration 25 / 40



Connection to top-two TS

TTTS for BAI
Challenger: Sample repeatedly from Π𝑡 until 𝜽′ such that 𝐼 (2)

𝑡 = argmax𝑖∈[𝐾] 𝜃′
𝑖 ≠ 𝐼 (1)

𝑡 .

Proposition 5[1]

TTTS asymptotically samples the arm with the smallest 𝐶𝑥(𝒑; 𝜽) as challenger.

This observation provides the foundation of our modification to TS.

💡 The first algorithm design principle (Thompson sampling version)
Repeatedly sample from the posterior distribution untial an alternative answer emerges.

[1]D. Russo, “Simple Bayesian Algorithms for Best-Arm Identification,” Operations Research, vol. 68, no. 6, pp. 1625–1647, 2020.
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Examples of TS variants for pure exploration

Example (Best-𝑘 identification)
We wish to find the exact set of 𝑘 arms whose mean is the best-𝑘.

Suppose the current sample mean tell us that the empirical best-𝑘 arms are ℐ(𝜽) =
{1, 2, …, 𝑘}. Then we repeatedly sample 𝜽 from the posterior distribution until ℐ(𝜽) ≠
{1, 2, …, 𝑘}, e.g., ℐ(𝜽) = {1, 2, …, 𝑘 − 1, 𝑘 + 1}.

TS variant: The reason that ℐ(𝜽) leads to a different answer is because the order of arm

𝑘 is swapped with 𝑘 + 1. Hence, the pair (𝑘, 𝑘 + 1) is the principal pitfall.

We should collect more samples to further compare arm 𝑘 with arm 𝑘 + 1.

Candidates: Notice that only new samples to arms 𝑘 and 𝑘 + 1 contributed to a better

understanding of the comparison between these two arms.
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Examples of TS variants for pure exploration

Example (All 𝜀-good arms)
We wish to identify all arms that are 𝜀-good, i.e., 𝑖 such that 𝜃𝑖 > 𝜃𝐼∗ − 𝜀.

TS variant: Suppose the current empirical answer is ℐ(𝜽) = {1, 2}, then we repeadedly

sample 𝜽 until we find an arm 𝑗 ≠ 1, 2 such that 𝜃𝑗 > 𝜃𝑖 + 𝜀 for 𝑖 = 1 or 2.

The reason that ℐ(𝜽) leads to a different answer is because arm 𝑗 certifies that arm 𝑖
cannot be 𝜀-good.

We should collect more samples to further compare arm 𝑖 with arm 𝑗.

Candidates: Notice that only new samples to arms 𝑖 and 𝑗 contributed to a better

understanding of the comparison between these two arms.
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Examples of TS variants for pure exploration

Example (Subset selection)
We wish to identify a subset of cardinality 𝑘 that contains the best arm 𝐼∗.

TS variant: Note that the best guess of the subset is the set with the 𝑘 arms with the

highest sample means. Suppose the set is ℐ(𝜽) = {1, 2, …, 𝑘}, then we repeatedly sample

𝜽 from the posterior distribution until an arm 𝑗 emerges such that 𝜃𝑗 > max𝑖∈[𝑘] 𝜃𝑖.

The reason that the existence of 𝑗 leads to a different answer is because arm 𝑗 certifies that

none of the arms 𝑖 ∈ [𝑘] is the best.

We should collect more samples to further compare 𝑗 with 𝑖∗ = argmax𝑖∈[𝑘] 𝜃𝑖. This is

because 𝑖∗ is the arm most indistinguishable from 𝑗.

Candidates: Notice that only new samples to arms 𝑖∗ and 𝑗 contributed to a better

understanding of the comparison between these two arms.
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How to choose from the candidate set?

In all previous examples, we

first identify a principal pitfall 𝑥 by TS;

then the pitfall 𝑥 identifies a set of candidates whose additional sample will contribute to

the its mitigation.

Question: how to choose from the set of candidates to maximize information gain?
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How to choose from the candidate set?

It turns out that the active candidate set ℭ𝑥 for general pure exploration takes a simple form.

Active candidate set ℭ𝑥

ℭ𝑥 = {𝑖 ∈ [𝐾] : 𝜕𝐶𝑥(𝒑)
𝜕𝑝𝑖

> 0}.

Intuitively, only the arms that contribute to the information gain of 𝐶𝑥(𝒑; 𝜽) are active.
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The selection function

The selection function
ℎ𝑥

𝑖 (𝒑) is called the selection function under pitfall 𝑥:

ℎ𝑥
𝑖 (𝒑) =

𝑝𝑖
𝜕𝐶𝑥(𝒑)

𝜕𝑝𝑖

𝐶𝑥(𝒑)
, where Supp(𝒉𝑥) = ℭ𝑥.

Intuitively, ℎ𝑥
𝑖 (𝒑) is the proportion of information contributed by samples allocated to arm

𝑖 for testing 𝐻0,𝑥 : 𝜽 ∈ Alt𝑥(𝜽).

It can be verified that 𝒉𝑥(𝒑) = (ℎ𝑥
1(𝒑), …, ℎ𝑥

𝐾(𝒑)) is a probability vector.
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The second design principle: the stationarity condition

Recall that the stationarity condition is given by

𝑝𝑖 = ∑
𝑥∈𝒳

𝜇𝑥ℎ𝑥
𝑖 (𝒑), ∀𝑖 ∈ [𝐾].

The dual variables 𝜇𝑥: the proportion of times that 𝑥 is identified as the principal pitfall.

The selection function ℎ𝑥
𝑖 (𝒑): the probability of selecting arm 𝑖 under pitfall 𝑥.

The stationarity condition is essentially the law of total probability.

💡 The second algorithm design principle (information-directed selection, IDS)
For a given pitfall 𝑥, select the arm 𝑖 ∈ ℭ𝑥 with probability ℎ𝑥

𝑖 (𝒑).
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Discussion

How about greedy rule? This was suggeted by[1], i.e., 𝑖 ∈ argmax𝑥∈𝒳 ℎ𝑥
𝑖 (𝒑).

We have an example showing that greedy rule is not optimal.

In essence, allocation must consider the long-term average effect of different 𝑥 showing up

as the principal pitfall, and react according to this average (i.e., the dual variable 𝝁).

[1]P. Ménard, “Gradient Ascent for Active Exploration in Bandit Problems.” [Online]. Available: https://arxiv.org/abs/1905.08165
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The proposed algorithms
Proposed allocation rule (asymptotic)

[Estimate]: Calculate estimate 𝜽𝑡 of 𝜽.

(Default: sample mean.)

[Detect]: detect the principal pitfall

𝑥𝑡 = argmin
𝑥′∈𝒳(𝜽𝑡)

𝐶𝑥′(𝒑𝑡; 𝜽𝑡).

[Select]: Draw an arm 𝐼𝑡 from the

distribution 𝒉𝑥𝑡(𝒑𝑡).
Pull arm, observe reward, update

history, and advance time.

Proposed allocation rule (TS version)
[Estimate]: Calculate estimate 𝜽 of 𝜽.

(Default: posterior sample.)

[Detect]: Repeatedly sample 𝜽′ ∼ Π𝑡

until 𝜽′ ∈ Alt(𝜽). Detect pitfall

𝑥𝑡 ∈ {𝑥 ∈ 𝒳(𝜽) : 𝜽′ ∈ Alt𝑥(𝜽)},

breaking tie arbitrarily.

[Select]: Draw an arm 𝐼𝑡 from the

distribution 𝒉𝑥𝑡(𝒑𝑡).
Pull arm, observe reward, update

history, and advance time.
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Optimality

Theorem (Y. and Qin, 2024[1])
For Gaussian BAI, 𝜀-BAI, and thresholding bandits, our algorithm is universally efficient.

[1]C. Qin and W. You, “Dual-directed algorithm design for efficient pure exploration,” arXiv preprint arXiv:2310.19319, 2024.
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Summary and perspectives
The core ingredients of our algorithm are:

The maximin characterization of the optimal allocation problem

Γ∗
𝜽 = max

𝒑∈𝒮𝐾
min
𝑥∈𝒳

𝐶𝑥(𝒑; 𝜽).

This maximin structure induces the first design principle.

The information decomposition

𝐶𝑥(𝒑; 𝜽) = ∑
𝑖∈[𝐾]

𝑝𝑖
𝜕𝐶𝑥(𝒑)

𝜕𝑝𝑖
, for all 𝑥 ∈ 𝒳.

This is the foundation of our stationarity condition, which leads to the information-

directed selection, i.e., the second design principle.

This is known as homogeneity of degree 1 or constant returns to scale in economics.
Wei You (HKUST) Dual-Directed Algorithm Design for Efficient Pure Exploration 37 / 40



Summary and perspectives

Generalizations and applications: These two ingredients holds in great generality.

In this talk, we discussed different exploration queries.

Multi-task BAI, e.g., with risk constraint[1].

We can also extend to more general reward feedback structure (structured bandits):

Linear bandits and contextual bandits.

Markov chains, e.g., M/M/1 queue.

Dueling bandits with preferential feedback[2][3].

We can also extend to accomodate more general noise distributions:

Single-parameter exponential family distributions and Heavy-tailed distributions[4].

[1]M. Hu and J. Hu, “Multi-Task Best Arm Identification with Risk Constraint,” 2024.
[2]V. Dwaracherla, S. M. Asghari, B. Hao, and B. Van Roy, “Efficient exploration for LLMs,” arXiv preprint arXiv:2402.00396, 2024.
[3]J. Liu, D. Ge, and R. Zhu, “Reward learning from preference with ties,” arXiv preprint arXiv:2410.05328, 2024.
[4]S. Agrawal, S. Juneja, and P. Glynn, “Optimal \delta-Correct Best-Arm Selection for Heavy-Tailed Distributions”, in Algorithmic Learning Theory,  2020, pp. 61–110.
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Summary and perspectives
Methodology: Note that the original maximin optimization problem is non-smooth.

However, we can derive an equivalent smooth optimization problem by introducing the dual

variable 𝝁 and reformulating the problem as

Γ∗
𝜽 = max

𝒑∈𝒮𝐾
min
𝑥∈𝒳

𝐶𝑥(𝒑; 𝜽) = max
𝒑∈𝒮𝐾

min
𝜇∈𝒮|𝒳|

∑
𝑥∈𝒳

𝜇𝑥𝐶𝑥(𝒑; 𝜽).

This is a maximin concave-convex programming problem.

It has rich connection with evolutionary game theory.

Indeed, we can view our problem as a two-play zero-sum game.

When 𝐶𝑥(𝒑; 𝜽) is linear in 𝒑, it is called a bilinear game.

We can formulate a continuous time version of an algorithm, whose evolution is governed

by an ordinary differential equation or differential inclusion. The powerful tool of

Lyapunov can be used to analyze convergence.
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Summary and perspectives
Beyond pure exploration: Cost-aware exploration that bridges pure exploratoin and

reward maximization[1].

Consider assigning treatment to a large population of 𝑛 individuals.

Consider both within-experiment cost 𝐶𝑖(𝜽) and post-experiment cost Δ𝑖(𝜽):

Cost𝜽(𝑛, 𝜋) = ∑
𝜏−1

𝑡=0
𝐶𝐼𝑡

(𝜽) + (𝑛 − 𝜏)Δ𝐼𝜏
(𝜽).

BAI: if 𝐶𝑖 = 𝑐 and Δ𝑖 = 𝜃𝐼∗ − 𝜃𝑖.

Reward minimization: if 𝐶𝑖 = 𝜀 + (𝜃𝐼∗ − 𝜃𝑖) and let 𝜀 → 0.

As 𝑛 → ∞, we have Cost𝜽(𝑛, 𝜋) ∼ log(𝑛) ⋅ (Γ∗
𝜽 )−1, where Γ∗

𝜽  is again characterized by a

similar maximin optimization problem.

[1]C. Qin and D. Russo, “Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification.” [Online]. Available: https://arxiv.org/abs/2402.
10592
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Thank you!

Access our full paper here:
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