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Introduction Open Queueing Networks

Dependence in Open Queueing Networks

Superposition
Queue 1 Queue 2

Splitting

Queue 3

Departure

Figure: A three-station example.

Even generalized Jackson networks can be complicated

Arrival process: the superposition of independent renewal process
cannot be renewal unless all components are Poisson processes.

Departure process cannot be renewal with non-Poisson arrival
process or non-Exponential service-time distribution.

Dependence among customer flows can be introduced by splitting.

Customer feedback introduces dependence between arrival and
service processes.
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Introduction Open Queueing Networks

Dependence in Open Queueing Networks

In order to handle single nodes within a network, we inevitably faces
complicated dependence structure:

dependence in arrival process;

dependence in service times;

correlation between arrival process and service process.

How to approximate G/G/1 single-server queue under reasonably general
assumptions?
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Introduction Open Queueing Networks

Dependence in Open Queueing Networks

In those non-Markov models,

dependence⇒ significant impact on performance measures.
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Introduction Open Queueing Networks

Dependence in Open Queueing Networks

In those non-Markov models, closed-form characterization of the
performance measures are rarely available

⇒ resort to approximation methods.

The purpose is to develop such an approximation algorithm to expose the
impact of dependence on performance measures in non-Markov
single-server open queueing networks, using non-parametric modeling.
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Introduction Approximation Algorithms

Decomposition approximation

Motivated by the product-form solution of a Jackson Network.

Treat the stations as independent single-server queues.

Examples

The Queueing Network Analyzer (QNA) by Whitt (1983),

- approximates each station by a GI/GI/1 queue.

Markov Arrival Process (MAP)

- Li and Hwang (1997), statistical fitting of MMPP1.

- Horváth et al. (2010), MAP/MAP/1.

- Kim (2011a, 2011b), MMPP(2)/GI/1.

1Markov-modulated Poisson process.
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Introduction Approximation Algorithms

Diffusion Approximations

Heavy-traffic limits with Reflected Brownian Motion (RBM).

- Iglehart and Whitt (1970), Harrison (1973), (1978) and Reiman
(1984);

Numerically calculate the steady-state mean of the RBM.

Validity of approximation relies on exchange of limit arguments

- Gamarnik and Zeevi (2006), Budhiraja and Lee (2009) and
Braverman et al. (2017).

Examples

QNET by Harrison and Nguyen (1990);

Sequential bottleneck decomposition (SBD) by Dai, Nguyen and
Reiman (1994).
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Introduction Approximation Algorithms

More Approximations

Robust queueing approximations

The first (Parametric) Robust Queueing (RQ) by Bandi et al. (2015),
designed for waiting time.

All above can be classified as parametric methods.

Use a set of parameters to characterize the underlying stochastic
processes.

- First two moments: QNA, QNET, SBD...

- Generator matrices for models using MAP.

Approximations based on non-parametric traffic descriptions

Peakness function, Jagerman et al. (2004);

Power spectrum, Li and Hwang (1992, 1993).
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Introduction An Overview

Robust Queueing Network Analyzer

We developed a non-parametric approximation algorithm called Robust
Queueing Network Analyzer, RQNA for short.

Approximations for

- Qunatiles and mean of workload process2.

- Brumelle’s formula ⇒ mean waiting time approximation.

- Little’s Law ⇒ mean queue length approximation.

Computation complexity:

- Solve a set of linear equations and a one dimensional optimization
problem.

2virtual waiting time
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Introduction An Overview

Robust Queueing Network Analyzer

Main idea: Robust optimization + Queueing theory, hence the name
Robust Queueing (RQ).

- Replace probability laws by uncertainty sets, and analyze the worst
case scenario.

Key component: Index of Dispersion for Counts (IDC)

Ia(t) ≡ Var(A(t))/E [A(t)], t ≥ 0,

where A(t) is a stationary counting process.

- Non-parametric: variability of a process is captured by continuous
functions, i.e., IDCs.

Supporting theories:

- Heavy-traffic limit theorems for stationary flows and their IDCs.

Extension: Time-varying arrival-rate and service-rate functions.
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Introduction Indices of Dispersion for Counts

Why is IDC helpful?
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Introduction Indices of Dispersion for Counts

Characterization of Renewal Processes

Definition from Cox and Lewis (1966)

Ia(t) ≡ Var(A(t))/E [A(t)], t ≥ 0,

where A(t) is any stationary point process.

Theorem (Renewal process characterization theorem)

For a renewal process A(t) with rate λ, the inter-renewal time distribution
can be calculated from the IDC of its equilibrium version Ae(t).

For GI/GI/1 model, the performance measure must be some function
of the rates and IDCs of the arrival and service processes;
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Introduction Indices of Dispersion for Counts

Remark

For stationary and ergodic point processes, taking Laplace transform on
the variance function V (t), we have

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
,

so

V (t) = λ

∫ t

0
(1 + 2m(u)− 2λu)du.

m(t) = E 0[A(t)] under Palm distribution P0, i.e., conditioning on
having an arrival at time 0.

It is the renewal function in the case of renewal processes. Let
f̂ (s) =

∫∞
0 e−stdF (t), then

m̂(s) =
f̂ (s)

s(1− f̂ (s))
.
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Introduction Indices of Dispersion for Counts

Remark

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
, m̂(s) =

f̂ (s)

s(1− f̂ (s))
.

By rearranging terms, f̂ can be expressed by V̂ (s);

⇒ IDCs completely characterize a GI/GI/1 queue;

By using IDW (IDC), the RQ algorithm utilizes much more
information than just the first two moments, hence is potentially more
accurate and adaptive.
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Introduction Indices of Dispersion for Counts

Ordering of the Mean Steady-State Workload

Theorem (Ordering of the mean steady-state workload)

Consider two GI/M/1 queues, let Iai denote the IDC of the arrival process
Ai in the i-th model i = 1, 2. If

Ia1(t) ≥ Ia2(t), for t ≥ 0,

then
E [Z1,ρ] ≥ E [Z2,ρ], for ∀ρ ∈ (0, 1),

where E [Zi ,ρ] is the mean steady-state workload in the i-th model, with
traffic intensity ρ.
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Introduction Indices of Dispersion for Counts

Revisiting the Five Queues in Series Example
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Parametric methods (QNA, RQ by Bandi et al.) using first few moments
to describe variability may fail.
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Robust Queueing for Single-Server Queues

Robust Queueing for
Single-Server Queues
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Robust Queueing for Single-Server Queues The Continuous-Time Workload Process

Notation

{(Ui ,Vi )}: interarrival times and service times;

λ, µ: arrival rate and service rate;

A(t): arrival counting process associated with {Uk};
Y (t): total input of work

Y (t) ≡
A(t)∑
k=1

Vk ;

N(t): net-input process

N(t) ≡ Y (t)− t.
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Robust Queueing for Single-Server Queues The Continuous-Time Workload Process

Continuous-time workload process

0 1 2 3 4 5

Time

-2

-1.5

-1

-0.5

0

0.5

Net-input process N(t)

Lower regulator: inf
s  t

 N(s)

The steady-state workload

Z ≡ N(0)− inf
−∞≤t≤0

{N(t)}.

= sup
0≤s≤∞

{N(0)− N(−s)} ≡ sup
0≤s≤∞

{N0(s)}.

N0(s): the net-input over time [−s, 0].

With an abuse of notation, we omit the subscript in N0(s).
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Robust Queueing for Single-Server Queues The Continuous-Time Workload Process

Stochastic versus Robust Queues

Defined in sample path sense

Z = sup
0≤s≤∞

{N(s)}.

no requirement on the primitives.

Stochastic Queue

N(s) ≡
∑A(s)

k=1 Vk − s is a stochastic process.

Workload is a random variable.

Robust Queue

Ñ is a (deterministic) sample path from a uncertainty set U of
functions.

Workload defined as the (deterministic) worse-case scenario

Z ∗ ≡ sup
Ñ∈U

sup
0≤s≤∞

{Ñ(s)}.
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{Ñ(s)}.

Wei You (HKUST) Robust Queueing Dec. 18, 2019 21 / 69



Robust Queueing for Single-Server Queues The Continuous-Time Workload Process

Stochastic versus Robust Queues

Defined in sample path sense

Z = sup
0≤s≤∞

{N(s)}.

no requirement on the primitives.

Stochastic Queue

N(s) ≡
∑A(s)

k=1 Vk − s is a stochastic process.

Workload is a random variable.

Robust Queue
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Robust Queueing for Single-Server Queues Robust Queueing

Robust Queueing for continuous-time workload

Our uncertainty set is motivated from CLT

Ub ≡
{
Ñ : Ñ(s) ≤ E [N(s)] + b

√
Var(N(s)), s ≥ 0

}
,

where N(t) =
∑A(t)

i=1 Vi − t is the net input process associated with the
stochastic queue.

Parameter b allows us to approximate the quantiles.

Assume

Arrival process is a stationary point process.

Service times are i.i.d., independent of the arrival process.

E [N(t)]= ρt − t,

Var(Y (t))= ρt(Ia(t) + c2
s )/µ.
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Robust Queueing for Single-Server Queues Robust Queueing

Robust Queueing for continuous-time workload

RQ for workload
Z ∗(b) = sup

N∈Ub
sup

0≤s≤∞
{N(s)},

where

Ub =

{
Ñ : Ñ(s) ≤ −(1− ρ)s + b

√
ρs(Ia(s) + c2

s )/µ, s ≥ 0

}
.

Lemma (Dimension reduction)

The infinite-dimensional RQ problem can be reduced to

Z ∗(b) = sup
0≤s≤∞

sup
N∈Ub
{N(s)}

= sup
0≤s≤∞

{
−(1− ρ)s + b

√
ρs(Ia(s) + c2

s )/µ

}
.
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Robust Queueing for Single-Server Queues Robust Queueing for Quantile Approximation

Approximating the Quantiles

In summary, the RQ algorithm for single-server queues

Z ∗(b) = sup
0≤s≤∞

{
−(1− ρ)s + b

√
ρs(Ia(s) + c2

s )/µ

}
.

How to connect Z ∗(b) to the distribution of the steady-state
workload Z?

Approximate the pth quantile Z (p)

Z (p) ≡ Z (Π(b)) ≈ Z ∗(b),

- Π: one-to-one continuous function, map b into quantile level p.

Wei You (HKUST) Robust Queueing Dec. 18, 2019 24 / 69



Robust Queueing for Single-Server Queues Robust Queueing for Quantile Approximation

Approximating the Quantiles

In summary, the RQ algorithm for single-server queues

Z ∗(b) = sup
0≤s≤∞

{
−(1− ρ)s + b

√
ρs(Ia(s) + c2

s )/µ

}
.

How to connect Z ∗(b) to the distribution of the steady-state
workload Z?

Approximate the pth quantile Z (p)

Z (p) ≡ Z (Π(b)) ≈ Z ∗(b),

- Π: one-to-one continuous function, map b into quantile level p.

Wei You (HKUST) Robust Queueing Dec. 18, 2019 24 / 69



Robust Queueing for Single-Server Queues Robust Queueing for Quantile Approximation

Approximating the Quantiles

Which function Π should we use?

For M/M/1 view

P(Z ≤ z) = 1− ρe−ρz/m, for m = ρ/λ(1− ρ)

Hence the pth quantile is

Z (p) = −(m/ρ) ln((1− p)/ρ). (*)

On the other hand, for M/M/1 model, RQ gives

Z ∗(b) =
b2

2
m, for m = ρ/λ(1− ρ). (**)

Equating (*) to (**), we have the approximation

Π(b) ≈ 1− ρe−ρb2/2.

[Approximation for the mean] From (**), we see that b =
√

2
corresponds to the mean.Wei You (HKUST) Robust Queueing Dec. 18, 2019 25 / 69
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Robust Queueing for Single-Server Queues Robust Queueing for Quantile Approximation

Robust Queueing for the Mean Steady-State workload

The RQ algorithm for mean steady-state workload

Z ∗ = sup
0≤s≤∞

{
−(1− ρ)s +

√
2ρs(Ia(s) + c2

s )/µ

}
.

Takes the arrival IDC Ia(t) as a model input.

Theorem (RQ exact in heavy-traffic and light-traffic limits)

Under regularity assumptions, the RQ algorithm yields the exact mean
steady-state workload in both light-traffic and heavy-traffic limits for
G/GI/1 models.
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Robust Queueing for Single-Server Queues Robust Queueing for Quantile Approximation

Robust Queueing for G/G/1 Model

The RQ algorithm for mean steady-state workload

Z ∗ = sup
0≤s≤∞

{
−(1− ρ)s +

√
2ρs(Iw (s))/µ

}
,

where Iw is the index of dispersion for work (IDW)

Iw (t) ≡ Var(Y (t))

E [V1]E [Y (t)]
, t ≥ 0.

Takes the arrival IDW Iw (t) as a model input.

Theorem (RQ exact in heavy-traffic and light-traffic limits)

Under regularity assumptions, the RQ algorithm yields the exact mean
steady-state workload in both light-traffic and heavy-traffic limits for
G/G/1 models.
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Robust Queueing for Single-Server Queues Robust Queueing for Quantile Approximation

Dependent Service Sequence

If service times are i.i.d., independent of the arrival process

Iw (t) = Ia(t) + c2
s .

If there is dependence among service times

Iw (t) ≡ Var(Y (t))

E [V ]E [Y (t)]

= Ia(t) +
1

λt
E
[
N(t)I sN(t)

]
,

where

I sk =
kVar(S s

k)

(E [S s
k ])2

=
µ2

k
Var(S s

k)

is the index of dispersion for intervals (IDI) for the service sequence and
Var(S s

k) =
∑k

i=1 Vi .
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Robust Queueing for Single-Server Queues Numerical Examples

The Heavy-traffic Bottleneck Phenomenon

H2(8), various r

λ = 1
1

M, ρ1 = 0.6

8

M, ρ1 = 0.6

9

M, ρ1 = 0.9

Table: Mean steady-state waiting time at each station.

r 0.5 N/A N/A N/A 0.9 0.1

Queue Sim RQ QNA QNET SBD Sim RQ Sim RQ

1 3.28 3.95 4.05 4.05 4.05 1.16 1.13 5.69 5.83
2 2.32 2.61 2.92 1.81 1.82 1.16 1.12 2.46 2.40
3 1.91 2.04 2.19 1.47 1.49 1.15 1.11 1.98 1.83
4 1.71 1.72 1.73 1.16 1.19 1.14 1.10 1.76 1.56
5 1.59 1.53 1.43 1.07 1.10 1.14 1.10 1.63 1.41
6 1.47 1.41 1.24 1.03 1.06 1.13 1.09 1.54 1.31
7 1.42 1.33 1.12 1.00 1.03 1.13 1.08 1.48 1.24
8 1.41 1.27 1.04 0.98 1.01 1.12 1.08 1.42 1.20
9 30.1 36.9 8.9 6.0 36.4 19.6 36.5 29.6 36.3

Total 45.3 52.8 24.6 18.6 49.8 28.8 45.3 47.5 53.1

Avg. abs. RE 9.7% 23% 33% 26% 13% 12%
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The Departure Operation

More on Departure Approximation
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The Departure Operation

Approximation for Departure IDC

The HT theorem for variance supports the following approximation

Id(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(ρt), (Dep)

where
wρ(t) = w∗((1− ρ)2λt/(ρc2

x )),

10
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Service
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Simulation:  = 0.98

Approximation:  = 0.5

Approximation:  = 0.7

Approximation:  = 0.9

Approximation:  = 0.98
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The Departure Operation

Literature Review - Departure Processes

Exact characterizations

Burke (1956): M/M/1 departure is Poisson;

Takács (1962): the Laplace transform (LT) of the mean of the
departure process under Palm distribution;

Daley (1976): the LT of the variance function of the stationary
departure from M/G/1 and GI/M/1 models;

Green’s dissertation (1999) and Zhang (2005): BMAP/MAP/1
departure is a MAP with infinite order

MAP with infinite order is intractable in practice, one need to resort to
truncation.

Heavy-traffic limits

Iglehart and Whitt (1970), HT limits for departure process in systems
that starts empty;

Gamarnik and Zeevi (2006) and Budhiraja and Lee (2009), HT limit
for stationary queueing length process.
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The Departure Operation

Our approach

Start with the Laplace transform for M/G/1 and GI/M/1 models in
Daley (1976);

proves HT limits for M/G/1 and GI/M/1 special cases;

convert general G/G/1 to M/G/1 or GI/M/1 special cases using
space-time scaling;

produces an approximation for departure IDCs in the form of convex
combination, as in original QNA paper and its refinements.
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The Departure Operation

Laplace Transform of the Variance Function

Let D(t) be the stationary departure process with finite variance, let
Vd(t) = Var(D(t)), then

V̂d(s) =
λ

s2
+

2λ

s
m̂d(s)− 2λ2

s3
,

Vd(t) = λ

∫ t

0
(1 + 2md(u)− 2λu)du.

where md(t) = E 0[D(t)] is the mean process under Palm distribution P0,
i.e., conditioning on having an arrival at time 0.
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The Departure Operation

Laplace Transform of the Variance Function

Takàcs (1962): For M/GI/1

m̂d(s) ≡
∫ ∞

0
e−stmd(t)dt =

ĝ(s)

s(1− ĝ(s))

(
1− sΠ(ν̂(s))

s + λ(1− ν̂(s))

)
,

ĝ(s) = E
[
e−sV

]
is the LT of the service pdf g(t);

ν̂(s) is the root with the smallest absolute value in z of the equation

z = ĝ(s + λ(1− z))

Π(z) is the probability generating function of the distribution of the
stationary queue length Q

Π(z) ≡ E
[
zQ
]

=
(1− λ/µ)(1− z)ĝ(λ(1− z))

ĝ(λ(1− z))− z
.
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The Departure Operation

Laplace Transform of the Variance Function

Daley (1976): For GI/M/1

V̂d(s) =
λ

s2
+

2λ

s3

(
µδ − λ+

µ2(1− δ)(1− ξ̂(s))(µδ(1− f̂ (s))− sf̂ (s))

(s + µ(1− ξ̂(s)))(s − µ(1− δ))(1− f̂ (s))

)
,

λ is the arrival rate,

µ is the service rate (with λ < µ);

f̂ (s) = E
[
e−sU

]
is the LT of the interarrival-time pdf f (t);

ξ̂(s) is the root with the smallest absolute value in z of the equation

z = f̂ (s + µ(1− z))

δ = ξ̂(0) is the unique root in (0, 1) of the equation

δ = f̂ (µ(1− δ)).
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The Departure Operation

Laplace Transform of the Variance Function

Formula for both M/GI/1 and GI/M/1 are complicated;

We resort to proving a heavy traffic limit theorem.

A family of models indexed by ρ

M/GI/1: (λ, µ) = (ρ, 1);
GI/M/1: (λ, µ) = (1, ρ−1);
simplify by fixing the GI distribution;
both can be easily generalized for non-unit rates.
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The Departure Operation

The Heavy-Traffic Scaling

To obtain a proper heavy-traffic limit, we define

D∗ρ(t) ≡ (1− ρ)[Dρ((1− ρ)−2t)− (1− ρ)−2t],

classical HT-scaling from Iglehart and Whitt (1970)

scale time by (1− ρ)−2, scale space by 1− ρ;

corresponding variance function:

V ∗d ,ρ(t) ≡ (1− ρ)2Vd ,ρ

(
(1− ρ)−2t

)
and LT

V̂ ∗d ,ρ(s) ≡ (1− ρ)4V̂d ,ρ

(
(1− ρ)2s

)
prove the limit for the LT and then use continuity results for the LT.
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The Departure Operation

The Heavy-Traffic Limit

Theorem (HT limit for the M/GI/1 and GI/M/1 departure variance)

Under regularity conditions, V ∗d ,ρ converges to

V ∗d (t) ≡ w∗
(
t/c2

x

)
c2
aλt +

(
1− w∗

(
t/c2

x

))
c2
s λt

where c2
x = c2

a + c2
s ,

w∗(t) =
1

2t

((
t2 + 2t − 1

) (
2Φ(
√
t)− 1

)
+ 2
√
tφ(
√
t) (1 + t)− t2

)
and φ,Φ are the standard normal pdf and cdf, respectively.
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The Departure Operation

Extension to GI/GI/1 model

The HT limit theorem for departure variance extend naturally to the
GI/GI/1 model, yielding exactly the same result.
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The Departure Operation

Extension to GI/GI/1 model

Proof sketch. From the HT limit

D∗(t) = caBa(t) + Q∗(0)− Q∗(t)

plus u.i. condition,

V ∗d (t) = Var(caBa(t)) + Var(Q∗(0)) + Var(Q∗(t))

+ cov(Q∗(0),Q∗(t)) + cov(caBa(t),Q∗(t)),

Var(caBa(t)) = c2
a t;

Var(Q∗(t)) = Var(Q∗(0)) = c4
x /4;

cov(Q∗(0),Q∗(t)) = c4
x
4 c∗(t/c2

x ), where c∗ is the correlation function
discussed in Abate and Whitt (1987,1988).

w∗ is closely related to c∗

w∗(t) = 1− 1− c∗(t)

2t
.
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The Departure Operation

HT limit theorem for GI/GI/1 departure variance

Proof sketch contd. The remaining term

cov(caBa(t),Q∗(t)).

is treated by scaling techniques. Recall that

Q∗(t) = ψ(Q∗(0) + caBa − csBs − e)

Scale the original system so that we have a modified system with the
same drift −1 but c̃2

a = 1.

{Q∗(0), caBa(t), csBs(t),−t}
d
= c2

a

{
Q∗(0)

c2
a

,Ba(t/c2
a ),

cs
ca
Bs(t/c2

a ),− t

c2
a

}
≡ c2

a

{
Q∗(0)

c2
a

,Ba(u),
cs
ca
Bs(u),−u

}
,

where u = t/c2
a .

Apply results for special case M/GI/1 where c2
a = 1.
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The Departure Operation

Approximation for Departure IDC

Markovian arrival process (MAP) as arrival or service
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The Departure Operation Numerical Examples

A Three-Station Network with Feedback

λ0,1 = 0.225

Poisson
Queue 1 Queue 2

p2,3 = 0.5

Queue 3

p2,1 = 0.5

p3,2 = 0.5

Figure: A three-station example.

Table: Traffic intensity.

Case ρ1 ρ2 ρ3

1 0.675 0.900 0.450
2 0.900 0.675 0.900
3 0.900 0.675 0.450
4 0.900 0.675 0.675

Table: Squared coefficient of variation
of service-time distributions.

Case c2
s,1 c2

s,2 c2
s,3

A 0.00 0.00 0.00
B 2.25 0.00 0.25
C 0.25 0.25 2.25
D 0.00 2.25 2.25
E 8.00 8.00 0.25
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The Departure Operation Numerical Examples

Table: A comparison of four approximation methods to simulation for the total
sojourn time in the three-station example.

Case Simu QNA QNET SBD RQNA

A 1 40.39 20.5 (-49%) diverging 43.0 (6.4%) 44.8 (11.0%)
2 59.58 36.0 (-40%) 56.7 (-4.9%) 58.2 (-2.4%) 69.3 (16.4%)
3 40.72 24.0 (-41%) 38.7 (-5.0%) 40.2 (-1.3%) 43.3 (6.3%)
4 42.12 26.2 (-38%) 41.8 (-0.7%) 42.7 (1.3%) 41.2 (-2.2%)

B 1 52.40 42.0 (-20%) 52.6 (0.4%) 50.2 (-4.2%) 53.1 (1.4%)
2 91.52 94.1 (2.8%) 83.7 (-8.5%) 95.3 (4.1%) 94.5 (3.2%)
3 61.68 72.2 (17%) 61.9 (0.4%) 60.9 (-1.3%) 60.5 (-1.9%)
4 63.34 75.8 (20%) 64.1 (1.3%) 64.7 (2.1%) 62.4 (-1.4%)

C 1 44.24 31.3 (-29%) 37.0 (-16%) 47.1 (6.4%) 42.1 (-4.8%)
2 92.42 87.4 (-5.4%) 91.2 (-1.4%) 91.6 (-0.8%) 96.0 (3.8%)
3 44.26 33.2 (-25%) 44.0 (-0.7%) 45.0 (1.7%) 44.0 (-0.6%)
4 50.20 41.4 (-18%) 51.1 (1.7%) 52.2 (4.0%) 45.9 (-8.6%)

E 1 134.4 265 (97%) 155 (15%) 116 (-14%) 120 (-11%)
2 213.1 308 (45%) 228 (7.1%) 206 (-3.3%) 173 (-19%)
3 138.7 244 (76%) 161 (16%) 135 (-2.5%) 136 (-2.0%)
4 155.1 252 (63%) 168 (8.2%) 147 (-5.0%) 148 (-4.8%)
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The Departure Operation Numerical Examples

Case E3:
(ρ1, ρ2.ρ3) = (0.9, 0.675, 0.45)

(c2
s1
, c2

s2
.c2
s3

) = (8, 8, 0.25)

Table: A comparison of six approximation methods to simulation for the sojourn
time at each station of the three-station example.

Case E3, r = 0.5
Queue Simu QNET SBD RQNA

1 31.22 35.9 (15%) 26.0 (-17%) 26.0 (-17%)
2 8.32 10.2 (23%) 11.1 (33%) 11.8 (42%)
3 2.00 1.89 (5.5%) 1.94 (3%) 0.93 (-54%)

Sum 138.7 161.3 (16%) 135.3 (-2.5%) 136.1 (-1.9%)

Case E3, r = 0.99
Queue Simu QNET SBD RQNA

1 27.67 35.9 (30%) 26.0 (-6.0%) 26.0 (-6.0%)
2 2.67 10.2 (282%) 11.1 (316%) 6.03 (125%)
3 0.56 1.89 (236%) 1.94 (245%) 0.50 (-11%)

Sum 103.8 161.3 (55%) 135.3 (30%) 112.1 (8%)
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The Departure Operation Numerical Examples

Limitations of IDC
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Time-Varying Queueing Model

The Gt/Gt/1 model

A(t) = N(Λ(t)): the arrival process
N(t): rate-1 base arrival process, a general stationary and ergodic
point process.
Λ(t): cumulative arrival-rate function

Λ(t) ≡
∫ t

0

λ(s) ds, t ≥ 0.

{Vk}: stationary sequence of service times with mean 1.
Service is offered at a variable rate of µ(t).

M(t): cumulative service-rate function

M(t) ≡
∫ t

0

µ(s) ds, t ≥ 0.

X (t): the net input of work, defined by

X (t) ≡
A(t)∑
k=1

Vk −M(t);
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Time-Varying Queueing Model

Reverse-time formulation of the workload process

0 1 2 3 4 5

Time

-2

-1.5

-1

-0.5

0

0.5

Net-input process N(t)

Lower regulator: inf
s  t

 N(s)

To obtain the workload (virtual waiting time) at time t, starting empty at
time t0, one apply the one-sided reflection mapping to X (t)

Wt(t0) = X (t)− inf
t0≤u≤t

{X (u)} = sup
t0≤u≤t

{X (t)− X (u))}

= sup
0≤s≤t−t0

{Xt(s)}

where Xt(s) is the reverse-time net input starting backwards at time t for
a time period of length s.
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Time-Varying Queueing Model

Reverse-time formulation of the workload process

Xt(s) is the reverse-time net input starting backwards at time t for a time
period of length s, i.e.,

Xt(s) ≡ X (t)− X (t − s)
d
=

N(Λt(s))∑
k=1

Vk −Mt(s)

with
Λt(s) ≡ Λ(t)− Λ(t − s), s ≥ 0,

Mt(s) ≡ M(t)−M(t − s), s ≥ 0.
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Time-Varying Queueing Model

The steady-state workload

To obtain the steady-state, we start the empty queue in a remote past, i.e.,
let t0 → −∞. Hence, the steady-state workload at time t is formulated as

Wt ≡Wt(−∞) = sup
s≥0
{Xt(s)}

For TVRQ, we aim to provide approximations for the mean and
quantile of the steady-state workload E[Wt ].
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Time-Varying Robust Queueing

The Robust Queueing model

Wt
d
= sup

s≥0


N(Λt(s))∑

k=1

Vk −Mt(s)

 ≡ sup
s≥0
{Xt(s)}.

The idea of Robust Queueing is the replace the probability law of Xt(s) by
uncertainty sets and analyze the worst case scenario.

X̃t ∈ Ut for a suitable uncertainty set Ut of net input functions.

The steady-state RQ workload is defined by

W ∗
t (X̃t) ≡ sup

s≥0
{X̃t(s)}

We use the worse-case scenario to characterized the Robust Queue:

W ∗
t = sup

X̃t∈Ut
W ∗

t (X̃t).
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Time-Varying Robust Queueing

TVRQ formulation using IDW

Define the Index of Dispersion for Work (IDW) for the underlying (time
homogeneous) process

Iw (t) ≡
Var

(∑N(t)
k=1 Vk

)
E
[∑N(t)

k=1 Vk

] = t−1Var

N(t)∑
k=1

Vk

 .

Scaled version of the variance curve, independent of the time unit we
choose.

Captures the stochastic variability in single-server queues.

Usually bounded in practical cases.
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Time-Varying Robust Queueing

TVRQ formulation using IDW

Motivated from CLT, we define

Ut ≡
{
X̃t : X̃t(s) ≤ E [Xt(s)] + b

√
Var (Xt(s))

}
.

Under our stochastic settings, we have

E [Xt(s)] = Λt(s)−Mt(s),

Var(Xt(s)) = Var

N(Λt(s))∑
k=1

Vk

 ≡ Λt(s)Iw (Λt(s)) ,

The uncertainty set for TVRQ can be written as

Ut =
{
X : X (s) ≤ Λt(s)−Mt(s) + b

√
Λt(s)Iw (Λt(s))

}
.
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Time-Varying Robust Queueing

The TVRQ algorithm

One can prove the following interchange of supremum

W ∗
t = sup

X∈Ut
sup
s≥0
{X (s)} = sup

s≥0
sup
X∈Ut

{X (s)}

The TVRQ algorithm for the time-varying steady-state workoad at
time t in the general Gt/Gt/1 model

W ∗
t (b) = sup

s≥0

{
Λt(s)−Mt(s) + b

√
Λt(s)Iw (Λt(s))

}
.

Easily solvable one-dimensional optimization problem.

We now consider only the periodic case.

Periodic Robust Queueing (PRQ).
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Time-Varying Robust Queueing

Approximating the Quantile - Stationary Case

W ∗
t (b) = sup

s≥0

{
Λt(s)−Mt(s) + b

√
Λt(s)Iw (Λt(s))

}
.

Connecting W ∗
t (b) to the distribution of the steady-state workload W ?

We propose to approximate the pth quantile Z (p)

Z (p) ≡ Z (Π(b)) ≈ Z ∗(b),

- Find appropriate Π: one-to-one continuous function, map b into
quantile level p.
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Time-Varying Robust Queueing

Approximating the Quantiles - Stationary Case

Starting with the stationary model.

For M/M/1 queue

P(Z ≤ z) = 1− ρe−ρz/m, for m = ρ/λ(1− ρ)

Hence the pth quantile is

Z (p) = −(m/ρ) ln((1− p)/ρ). (*)

On the other hand, for M/M/1 model, TVRQ gives

Z ∗(b) =
b2

2
m, for m = ρ/λ(1− ρ). (**)

Equating (*) to (**), we have the approximation

Π(b) ≈ 1− ρe−ρb2/2.

[Approximation for the mean] From (**), we see that b =
√

2
corresponds to the mean.
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Quantile approximation

Approximating the Quantiles - Underloaded Case

Now we consider the underloaded (UL) time-varying queues, i.e.

sup
t
ρt < 1.

We draw insight from the pointwise stationary approximation (PSA)

Green and Kolesar (1991), Massey and Whitt (1998) and Whitt
(1991b).

The PSA is appropriate if the cycle length is sufficiently long that the
arrival rate does not change too quickly (relative to the service times).

For the UL case, we use the same

Π(b) ≈ 1− ρe−ρb2/2.
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Quantile approximation

GIt/GI/1 model with λ(t) ≡ ρ+ β sin (2πγt), t ≥ 0.
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Quantile approximation

Approximating the Quantiles - Overloaded Case

Now we consider the overloaded (OL) case,

the long run traffic intensity is below 1;

but the instantaneous arrival rate can exceed the service rate.

Heavy-traffic theory indicates that Wy in the OL period of the cycle
should be approximately Gaussian.
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Quantile approximation

λ(t) ≡ 0.9 + 0.8 sin (2π × 0.001× t)
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Quantile approximation

As a simple overall approximation, we choose Π(b) ≈ Φ(b; 0.5, 1.0), the
Gaussian cdf with mean 0.5 and variance 1.
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Figure: A comparison of quantiles p ranging from 0.9 to 0.1 estimated by
simulation to the PRQ(b) based on Π for the Mt/M/1 model and the sinusoidal
arrival rate function λ(t) ≡ ρ+ β sin (2πγt) with (ρ, β, γ) = (0.9, 0.5, 0.001)
(left) and (0.7, 0.5, 0.01) (right).
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Heavy-Traffic Limits

Periodic queues - non-conventional heavy-traffic limits

Cumulative rate functions in the ρ-th model:

Λγ,ρ(t) ≡ ρt + (1− ρ)−1Λd ,γ((1− ρ)2t), t ≥ 0,

Mγ,ρ(t) ≡ t + (1− ρ)−1Md ,γ((1− ρ)2t), t ≥ 0,

Λd ,γ(t) ≡
∫ t

0
h(γt) ds,

∫ 1

0
h(t) dt = 0,

Md ,γ(t) ≡
∫ t

0
r(γt) ds,

∫ 1

0
r(t) dt = 0.

Theorem (Heavy-traffic limits for the Gt/GIt/1 from Whitt (2014))

Under regularity conditions,

Ŵγ,ρ ⇒ Ψ (Λd ,γ − e −Md ,γ + cxB)
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Heavy-Traffic Limits

Periodic queues - non-conventional heavy-traffic limits

Diffusion approximation

W̃γ,ρ,y ≈ sup
s≥0

{
Λγ,ρ,y (s)−Mγ,ρ,y (s) + cx B̃(s)

}
Parametric PRQ

W̃ ∗
γ,ρ,y ≡ sup

s≥0

{
Λγ,ρ,y (s)−Mγ,ρ,y (s) + bcx

√
s
}
.

Non-parametric PRQ

W ∗
γ,ρ,y ≡ sup

s≥0

{
Λγ,ρ,y (s)−Mγ,ρ,y (s) + b

√
Λγ,ρ,y (s)Iw (Λγ,ρ,y (s))

}
.
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Heavy-Traffic Limits

Diffusion approximation versus PRQs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position y within a cycle

0

10

20

30

40

50

60

70

80

N
o

rm
a

liz
e

d
 m

e
a

n
 w

o
rk

lo
a

d
, 

2
(1

-
)E

[W
y
]/

Base arrival process = superposition of 10 i.i.d. LN(16) renewal

service = H
2
(4), ( , , ) = (0.6, 10-2 , 0.8)

Simulation

Diffusion

Parametric PRQ

Functional PRQ

Wei You (HKUST) Robust Queueing Dec. 18, 2019 65 / 69



Heavy-Traffic Limits

The heavy-traffic limit for PRQ - overloaded

Theorem (long-cycle heavy-traffic limit for PRQ in an overloaded queue)

For Gt/Gt/1 periodic model, the PRQ problem with the heavy-traffic
scaling and ρ↑ > 1 has the limit

(1− ρ) lim
γ↓0

γ ·W ∗
γ,ρ,y = sup

t≥0

{
−t +

∫ y

y−t
(h(s)− r(s))ds

}
.

We need a space scaling of γ to obtain a proper limit.

The limit depend on the traffic intensity only through a scaling of 1− ρ.

The limit does not depend on the stochastic structure of the associated
queueing model.
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Heavy-Traffic Limits

The heavy-traffic limit for PRQ - underloaded

For underloaded queues, we have the Point-wise Stationary Approximation.

Theorem (long-cycle heavy-traffic limit for PRQ in an underloaded queue)

For Gt/Gt/1 periodic model with ρ↑ < 1, PRQ is asymptotically correct as
(γ, ρ)→ (0, 1). Furthermore, we have the double limit for PRQ

W ∗
y =

b2

2
· ρ(y)c2

x

2(1− ρ(y))
+ o(1− ρ), as (γ, ρ)→ (0, 1),

where Iw (∞) = c2
x and ρ(y) is the instantaneous traffic intensity.

No scaling for the cycle-length parameter γ is needed.
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Heavy-Traffic Limits

The heavy-traffic limit for PRQ - critically-loaded

Recall that

For underloaded case, we need a space scaling of γ0 = 1;

For overloaded case, we need a space scaling of γ1;

For critically-loaded case:

For the stochastic model, [?]: the additional space scaling is
γp/(2p+1).

p is obtained from the Taylor’s expansion of the arrival rate function
at the critical point.
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Heavy-Traffic Limits

The heavy-traffic limit for PRQ - critically-loaded

Theorem (long-cycle heavy-traffic limit for PRQ in an critically loaded
queue)

Assume that
h(t)− r(t) = 1− ctp + o(tp), (1)

for some integer p ≥ 0. Then the long-cycle heavy-traffic limit of the PRQ
solution at the critical point y = 0 is in the order of O(γ−p/(2p+1)).

PRQ successfully captures the correct space scaling of a
critically-loaded queue in the long-cycle heavy-traffic limit.
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Future Directions

Future Directions - Applications

Applications

Analytic formulation and low computation complexity of RQNA ⇒
feed into a top level optimization problem.

- Given the service rates (resources), how to allocation?

- Given the facilities, what is the best topological design of a service
network?

- How to balance the amount of resources used and the quality of
the service?

- Stress testing a service system? Quick robustness check.
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Future Directions

Future Directions - Methodology

Robust Queueing

Multi-class customer;

Customer balking and abandonment;

Multi-server queueing networks;

Non-Markovian routing;

Incorporating higher order statistics.

Indices of dispersion

Contain rich information of stationary point processes;

Alternative queueing approximation algorithm using indices of
dispersion?

How indices of dispersion can be applied to analyze inventory theory,
supply chain management and risk management;

Miscellaneous

Machine learning approach to identify mappings from IDC to
performance measures.
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Backup Slides

Other Performance Measures

Z ∗ρ = sup
0≤s≤∞

{
−(1− ρ)s +

√
2ρsIw (s)/µ

}
.

This RQ formulation give approximation of the mean steady-state
workload. For other performance measures, we have

Mean steady-state waiting time:

E [W ] ≈ max{0,Z ∗/ρ− (c2
s + 1)/2µ}.

- obtained by Brumelle’s formula:

E [Z ] = ρE [W ] + ρ
E [V 2]

2µ
= ρE [W ] + ρ

(c2
s + 1)

2µ
.

Mean steady-state queue length, by Little’s law,

E [Q] = λE [W ] = ρE [W ].
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Heavy-Traffic Limit for the Departure Processes

Let D∗ρ(t) ≡ (1− ρ)[Dρ((1− ρ)−2t)− (1− ρ)−2λt].

Theorem (HT limit for the stationary departure process)

For GI/GI/1 queue under regularity conditions, the HT-scaled stationary
departure process D∗ρ(t) converges to

D∗(t) = caBa(λt) + Q∗(0)− Q∗(t).

Ba and Bs are independent standard Brownian motions;

Q∗(t) = ψ(Q∗(0) + caBa ◦ λe − csBs ◦ λe − λe) is the HT limit for
stationary queue length process: a stationary reflective Brownian
motion (RBM) Re with drift −λ, variance λc2

x ≡ λc2
a + λc2

s ;

Q∗(0) ∼ exp(2/c2
x ) is the exponential marginal distribution;

Ba, Bs and Q∗(0) are mutually independent.
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Heavy-Traffic Limit for the Variance Functions

Define the HT-scaled variance function of the stationary departure process

V ∗d ,ρ(t) ≡ Var(D∗ρ(t)).

Theorem (HT limit for the GI/GI/1 departure variance)

Under uniform integrability conditions, V ∗d ,ρ(t) converges to

V ∗d (t) ≡ w∗
(
λt/c2

x

)
c2
aλt +

(
1− w∗

(
λt/c2

x

))
c2
s λt, as ρ ↑ 1

where c2
x = c2

a + c2
s ,

w∗(t) =
1

2t

((
t2 + 2t − 1

) (
2Φ(
√
t)− 1

)
+ 2
√
tφ(
√
t) (1 + t)− t2

)
and φ,Φ are the standard normal pdf and cdf, respectively.
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The Covariance Between BM and Stationary RBM

Corollary

Suppose B = (B1,B2) is a 2-d Brownian motion with zero drift and

covariance matrix Σ =

(
σ2

1 σ1,2

σ2,1 σ2
2

)
. Let

Q = ψ(B1 + Q(0)− λe)

be the stationary RBM associated with the drifted BM B1 − λe and Q(0)
has the stationary distribution of Q, which is independent of B1. Then

cov(B2,Q) =
(
1− w∗(λ2t/σ2

1)
)
σ1,2t.
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HT Limit for Splitting

Let θli = (θli ,1, θ
l
i ,2, . . . , θ

l
i ,K ) and define the vector of splitting decisions up

to the n-th decision at station i

Θi (n) ≡ (Θi ,1(n), . . . ,Θi ,K (n)) =
n∑

l=1

θli .

Consider a series of system with ρ = ρi ↑ 1 and ρj < 1 for j 6= i ;

Consider the usual diffusion scaling.

D∗i,ρ(t) = (1− ρ)
[
Di ((1− ρ)−2t)− λi (1− ρ)−2t

]
,

Θ∗i,ρ(t) = (1− ρ)

b(1−ρ)−2tc∑
l=1

θl − pi (1− ρ)−2t

 ,
A∗i,j,ρ(t) = (1− ρ)

[
Ai,j((1− ρ)−2t)− λipi,j(1− ρ)−2t

]
,

Q∗i,ρ = (1− ρ)Qi ((1− ρ)−2t),

. . .
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The Correction Term α

A∗i ,j ,ρ ⇒ A∗i ,j ≡ pi ,jD
∗
i + Θ∗i ,j ◦ λie, as ρi ↑ 1,

where

D∗i = Ã∗i + Q̃∗i (0)− Q̃∗i ,

Ã∗i = eTi (I − PT )−1
(
A∗0 + (Θ∗)T1

)
,

Q̃∗i = ψ
(
Q̃∗i (0) + Ã∗i − S∗i − λie

)
and ψ is the one-dimensional reflection map.
Model primitives

A∗0: BM, external arrival flow;

S∗i : BM, service flow at station i ;

Θ∗: BM, splitting decision process.
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HT Limit for Splitting

Recall that
αi ,j(t) ≡ Ia,i ,j(t)− (pi ,j Id ,i (t) + (1− pi ,j)).

Define
α∗i ,j ,ρ(t) = αi ,j((1− ρ)−2t).

Define the limiting correction term as

α∗i ,j(t) ≡ 2cov(pi ,jD
∗
i (t),Θ∗i ,j(λi t))/pi ,jλi t.

Corollary

Under regularity conditions, we have

α∗i ,j ,ρ(t)⇒ α∗i ,j(t), as ρ ↑ 1.

Wei You (HKUST) Robust Queueing Dec. 18, 2019 81 / 69



Backup Slides

Example: Time-Varying Queue and Percentiles of the
Workload
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Example: Time-Varying Queue and Percentiles of the
Workload
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Feedback Elimination

Aext(t)
Queue 1

D(t)

Feedback prob. p

Normally, the immediate feedback returns the customer back to the
end of the line at the same station.

In the immediate feedback elimination procedure, the approximation
step is to put the customer back at the head of the line.

- The overall service time is then a geometric sum of the original
service times.

This does not alter the queue length process or the workload process,
because the approximation step is work-conserving.
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Feedback Elimination

Queue 1

ρ1 = 0.675

Queue 2

ρ2 = 0.9
0.5

Queue 3

0.5

ρ3 = 0.45
0.5

Figure: A three-station example.

For the general case,

Near immediate feedback is defined as a feedback customer that does
not go through a station with higher traffic intensity than the current
station.

For each station with feedback, we eliminate all near immediate
feedback flows, the nadjust the service times just as in the
single-station case.
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3 Stations with Feedback

Table: A close look at Case D: (c2
s1
, c2

s2
.c2

s3
) = (0, 2.25, 2.25).

Case-Q Simu QNA QNET SBD RQNA
D1-1 2.476 2.24 (-9.4%) 2.48 (0.3%) 2.47 (-0.1%) 2.68 (7.8%)
D1-2 10.85 14.9 (37%) 11.6 (6.5%) 11.4 (5.2%) 11.1 (2.7%)
D1-3 2.544 2.53 (-0.8%) 2.54 (-0.0%) 2.59 (1.6%) 2.53 (-0.7%)
D1-sum 55.81 71.4 (28%) 58.8 (5.3%) 58.2 (4.3%) 57.6 (3.3%)

D2-1 11.35 8.01 (-29%) 10.8 (-4.5%) 11.1 (-1.9%) 11.3 (0.1%)
D2-2 2.643 2.96 (12%) 2.75 (4.0%) 2.82 (6.7%) 3.06 (16%)
D2-3 26.87 32.9 (22%) 26.8 (-0.4%) 24.9 (-7.5%) 31.1 (16%)
D2-sum 98.36 102 (3.4%) 97.2 (-1.2%) 94.4 (-4.0%) 105 (7.1%)

D3-1 11.39 7.95 (-30%) 11.0 (-3.5%) 11.3 (-0.5%) 11.3 (-0.5%)
D3-2 2.290 2.90 (27%) 2.53 (10%) 2.26 (-1.4%) 2.10 (-8.2%)
D3-3 2.220 2.40 (7.9%) 2.38 (7.0%) 2.59 (16%) 2.43 (9.6%)
D3-sum 47.72 40.2 (-16%) 47.8 (0.2%) 48.2 (1.0%) 47.5 (0.51%)

D4-1 11.30 7.97 (-29%) 10.9 (-3.2%) 11.3 (0.3%) 11.3 (0.3%)
D4-2 2.414 2.93 (21%) 2.64 (9.5%) 2.60 (7.7%) 2.10 (-13%)
D4-3 5.886 6.83 (16%) 6.31 (7.3%) 6.17 (4.8%) 5.95 (1.1%)
D4-sum 55.24 49.3 (-11%) 56.0 (1.4%) 56.7 (2.7%) 54.3 (-1.7%)

average RE 20.24% 4.72% 4.52% 5.51%
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10 Queues in Series

Table: A comparison of four approximation methods to simulation for 9
exponential (M) queues in series fed by a deterministic arrival process with
c2
a = 0.

Queue Sim QNA QNET SBD RQ RQNA
1 0.290 (2.41%) 0.45 (55%) 0.45 (55%) 0.45 (55%) 0.30 (2.3%) 0.30 (2.3%)
2 0.491 (1.43%) 0.61 (24%) 0.66 (35%) 0.66 (35%) 0.55 (13%) 0.58 (19%)
3 0.607 (1.32%) 0.72 (19%) 0.74 (22%) 0.74 (22%) 0.70 (15%) 0.72 (19%)
4 0.666 (1.20%) 0.78 (17%) 0.79 (18%) 0.79 (19%) 0.77 (16%) 0.79 (19%)
5 0.706 (1.42%) 0.83 (18%) 0.82 (16%) 0.82 (16%) 0.80 (14%) 0.83 (18%)
6 0.731 (1.78%) 0.85 (16%) 0.84 (14%) 0.84 (15%) 0.83 (13%) 0.86 (18%)
7 0.748 (1.34%) 0.87 (16%) 0.85 (14%) 0.85 (14%) 0.84 (12%) 0.88 (17%)
8 0.775 (1.68%) 0.88 (14%) 0.86 (11%) 0.86 (11%) 0.85 (9.2%) 0.89 (15%)
9 5.031 (4.31%) 7.99 (59%) 6.97 (39%) 4.05 (-20%) 4.95 (-2.0%) 4.97 (-1.3%)
Total 10.05 14.0 (39%) 13.0 (29%) 10.1 (0.09%) 10.6 (5.3%) 10.8 (7.6%)
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10 Queues in Series

Table: A comparison of four approximation methods to simulation for 9
exponential (M) queues in series fed by a highly-variable H2 renewal arrival
process with c2

a = 8.

Queue Sim QNA QNET SBD RQ RQNA
1 3.284 (3.50%) 4.05 (23%) 4.05 (23%) 4.05 (23%) 3.95 (20%) 3.95 (20%)
2 2.321 (4.18%) 2.92 (26%) 1.81 (22%) 1.82 (-22%) 2.61 (12%) 1.58 (-32%)
3 1.914 (3.40%) 2.19 (14%) 1.47 (-23%) 1.49 (-22%) 2.04 (6.7%) 0.98 (-49%)
4 1.719 (4.07%) 1.73 (0.64%) 1.16 (-33%) 1.19 (-31%) 1.72 (0.31%) 0.92 (-47%)
5 1.598 (3.69%) 1.43 (-11%) 1.07 (-33%) 1.10 (-31%) 1.53 (-4.1%) 0.90 (-44%)
6 1.478 (4.13%) 1.24 (-16%) 1.03 (-31%) 1.06 (-28%) 1.41 (-4.6%) 0.90 (-39%)
7 1.423 (3.23%) 1.12 (-21%) 1.00 (-30%) 1.03 (-28%) 1.33 (-6.8%) 0.90 (-37%)
8 1.413 (4.67%) 1.04 (-26%) 0.98 (-30%) 1.01 (-29%) 1.27 (-10%) 0.90 (-36%)
9 30.12 (16.8%) 8.90 (-71%) 6.04 (-80%) 36.5 (21%) 36.9 (23%) 29.1 (-3.5%)
Total 45.27 24.6 (-46%) 18.6 (-59%) 49.8 (10%) 52.8 (17%) 40.1 (-11%)

Wei You (HKUST) Robust Queueing Dec. 18, 2019 88 / 69



Backup Slides

10 Queues in Series

Traffic intensity at the 10-th queue varies in (0, 1).
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Figure: Contrasting the RQNA approximation of the IDW at the 10-th queue and
simulation estimated IDW (left) in the ten queues in series example. Simulation
estimation of the steady-state mean workload, the RQ approximation and the
RQNA approximation shown in the right plot.
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The Heavy-traffic Bottleneck Phenomenon

D or H2(8)

λ = 1
1

M, ρ1 = 0.6

8

M, ρ1 = 0.6

9

M, ρ1 = 0.9

Figure: The heavy-traffic bottleneck example in Suresh and Whitt (1990).

H2, c
2
a = 8 D, c2

a = 0
Queue 8 Simulation 1.440± 0.001 0.772± 0.000

M/M/1 0.90 (-38%) 0.90 (17%)
QNA 1.04 (-28%) 0.88 (14%)
SBD 1.01 (-30%) 0.86 (11%)

Queue 9 Simulation 29.148± 0.049 5.268± 0.003
M/M/1 8.1 (-72%) 8.1 (52%)
QNA 8.9 (-69%) 8.0 (52%)
SBD 36.4 (25%) 4.05 (-23%)

Table: Mean steady-state waiting times at Queue 8 and 9, compared with M/M/1
values, QNA and SBD approximations.
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The Heavy-traffic Bottleneck Phenomenon

H2(8)

λ = 1
1

M, ρ1 = 0.6

8

M, ρ1 = 0.6

9

M, ρ1 = 0.9

Arrival Process H2, c
2
a = 8 H2, c

2
a = 8

r = 0.5 r = 0.99
Queue 8 Simulation 1.44 0.92

M/M/1 0.90 (-38%) 0.90 (-2.1%)
QNA 1.04 (-28%) 1.04 (13%)
SBD 1.01 (-29%) 1.01 (10%)
IR 1.20 (-17%) 1.20 (7.1%)
RQ 1.27 (-12%) 0.92 (-0.5%)

Queue 9 Simulation 29.15 8.94
M/M/1 8.1 (-72%) 8.1 (-9.4%)
QNA 8.9 (-69%) 8.9 (-0.4%)
SBD 36.5 (25%) 36.5 (308%)
IR 21.1 (-28%) 21.1 (136%)
RQ 37.0 (27%) 16.5 (84%)
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An Artificial Example
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3 Stations with Feedback

λ0,1 = 0.225

Poisson
Queue 1

H2, c
2
s1

= 8

Queue 2

H2, c
2
s2

= 8 p2,3 = 0.5

Queue 3

p2,1 = 0.5 E2, c
2
s3

= 0.25

p3,2 = 0.5

Table: The steady-state mean waiting time.

r = 0.5, (third parameter of H2 dist., weight on one mean)
Queue ρ Simu QNET SBD

1 0.9 31.22 35.9 (15%) 26.0 (-17%)
2 0.675 8.32 10.2 (23%) 11.1 (33%)
3 0.45 2.00 1.89 (5.5%) 1.94 (3%)

Total 138.7 161.3 (16%) 135.3 (-2.5%)

r = 0.99, (third parameter of H2 dist., weight on one mean)
Queue ρ Simu QNET SBD

1 0.9 27.67 35.9 (30%) 26.0 (-6.0%)
2 0.675 2.67 10.2 (282%) 11.1 (316%)
3 0.45 0.56 1.89 (236%) 1.94 (245%)

Total 103.8 161.3 (55%) 135.3 (30%)

Wei You (HKUST) Robust Queueing Dec. 18, 2019 93 / 69



Backup Slides

Indices of Dispersion for Counts (IDC)

r = 0.5, (third parameter of H2 dist, weight on one mean)
Queue ρ Simu QNET SBD

1 0.9 31.22 35.9 (15%) 26.0 (-17%)
2 0.675 8.32 10.2 (23%) 11.1 (33%)
3 0.45 2.00 1.89 (5.5%) 1.94 (3%)

Total 138.7 161.3 (16%) 135.3 (-2.5%)

r = 0.99, (third parameter of H2 dist, weight on one mean)
Queue ρ Simu QNET SBD

1 0.9 27.67 35.9 (30%) 26.0 (-6.0%)
2 0.675 2.67 10.2 (282%) 11.1 (316%)
3 0.45 0.56 1.89 (236%) 1.94 (245%)

Total 103.8 161.3 (55%) 135.3 (30%)
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10 Stations with Feedback

1 2 3

6 4 5

7 8 9 10

Figure: A ten-station with customer feedback example.

The traffic intensity vector is
(0.6, 0.4, 0.6, 0.9, 0.9, 0.6, 0.4, 0.6, 0.6, 0.4).

The scv’s at these stations are (0.5, 2, 2, 0.25, 0.25, 2, 1, 2, 0.5, 0.5)
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