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概论

从狭义的角度来看,实变函数论研究的是一元 (或多元)实值函数的微积分,与

数学分析不同的是, 我们可能会遇到 “病态的” 函数. 而从广义的角度来看, 实变

函数论中的内容基本上都可以推广到抽象的测度空间. 实变函数论的核心内容是

Lebesgue测度论与 Lebesgue积分论. Riemann积分被认为是古典积分,而 Lebesgue

积分被认为是现代积分. 它是现代分析 (现代偏微分方程, 泛函分析, 调和分析...)

的基础, 也是概率论和随机分析的基础.

实变函数论具有严谨的逻辑推理, 丰富的直观想象. 但习题多难度较大, 要求

一定深刻的思维分析.

§0.1 连续函数的极限

设 {fn} 是 [0, 1] 上的一列连续函数, 假设 lim
n→∞

fn(x) = f(x) 对 ∀ x ∈ [0, 1] 成

立. 假设这个收敛是一致的, 那么自然有 f 也在 [0, 1] 上连续.

然而,在没有一致收敛这一假设时,情况就完全不同了. 事实上,我们可以构造

函数列 {fn} 使得它们满足

• 0 6 fn(x) 6 1, ∀ x ∈ [0, 1];

• {fn} 关于 n 是单调递减的;

• 极限函数 f 不是 Riemann 可积的.

然而,在前两条假设下,可以验证
∫ 1

0
fn(x)dx收敛到某个极限值.自然地,我们

要问, 如何定义一种新的积分, 使得∫
[0,1]

f(x)dx = lim
n→∞

∫ 1

0

fn(x)dx

成立?

我们将会在 §3.3 和 §4.3 中看到相关结论.

§0.2 曲线长度

在数学分析中,我们研究过平面上的曲线,并计算过它们的长度.设 Γ是实平面

上的一条连续曲线, 它由参数方程 Γ = {(x(t), y(t)), a 6 t 6 b} 给出, 其中 x(t), y(t)

是 t 的连续函数. 我们一般将曲线 Γ 的长度定义为: 依 t 递增的次序连接至多有
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2 概论

限个 Γ 上的点的折线长度的上确界. 当这个上确界有限时, 我们称曲线 Γ 是正

则(rectifiable) 的. 当 x(t), y(t) 均连续可微时, 我们有如下计算公式,

L =

∫ b

a

√
(x′(t))2 + (y′(t))2dt. (0◃2.1)

然而对一般的曲线, 我们通常会问如下几个问题:

1. 对 x(t), y(t) 作何限制时, 我们能保证 Γ 的正则性?

2. 当以上条件满足时, 式 (0◃2.1) 是否成立?

第一个问题有完全的答案,即曲线可求长当且仅当 x(t), y(t)是有界变差(Bounded

Variation) 的. 此时, 第二个问题变成了: 当 x(t), y(t) 是有界变差函数的时候, 积分

(0◃2.1) 总是有意义的. 然而, 一般来说, 该等式并不成立, 不过我们可以选取新的

参数使之成立.

关于有界变差函数, 以及 (0◃2.1) 式的合理性 (即有界变差函数的可导性及导

函数的可积性) 参见 §5.5.2.

§0.3 微分与积分

微积分基本定理说明了微分与积分互为逆运算, 它有如下两种表示形式

F (b)− F (a) =
∫ b

a

F ′(x)dx, (0◃3.2)

d

dx

∫ x

0

f(x)dx = f(x). (0◃3.3)

然而, 对于第一个式子, 我们可以找到处处不可导的连续函数 F , 或者我们可

以找到 F ′(x) 处处存在但并非 Riemann 可积的函数. 这些问题促使我们寻找一类

更广泛的函数 F 使得 (0◃3.2) 式成立.

至于 (0◃3.3) 式, 问题在于如何对于更广泛的可积函数类建立该式? 为了回答

这一问题,我们需要某种 “覆盖”理论,以及绝对连续函数的概念,参见 §5.1及 §5.6.

§0.4 Riemann 积分的局限性

定义 0.4.1 (Riemann 积分). 设 f(x) 是定义在 [a, b] 上的有界函数, 做分划

∆ : a = x0 < x1 < x2 < · · · < xn = b,

并作和

S(f,∆) =
n∑

i=1

f(ξi)(xi − xi−1),
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其中 ξi ∈ [xi−1, xi], 如果 ∃ 常数 I, 使得对 ∀ ε > 0, ∃ δ > 0, 当

|∆| def.= max
16i6n

{xi − xi−1} < δ (0◃4.4)

时, 有

|S(f,∆)− I| < ε,

则称 f(x) 在 [a, b] 上 Riemann 可积, 并称 I 为 f(x) 在 [a, b] 上的 Riemann 积分.

记为

(R)

∫ b

a

f(x)dx.

在不致混淆的前提下, 上式左端 (R) 可以略去.

注 在拓扑的语言下, (0◃4.4) 式中定义的收敛被称为网的收敛.

Riemann积分的可积性问题是 Riemnann积分中的重要问题.虽然 Darboux定

理给出了函数 f(x) 在 [a, b] 上可积的充分必要条件, 但利用 Darboux 定理去讨论

什么样的函数 f(x) 是可积的仍然十分困难.

例 0.4.2 (Dirichlet 函数).

D(x) =

1, x ∈ Q ∩ [0, 1],

0, x ∈ [0, 1]\Q,
(0◃4.5)

不是 Riemann 可积函数.

另外, Riemann 可积函数类是不完备的. 不过如果我们加上一些条件, 则可以

得到下面的有界收敛定理.

例 0.4.3. 设 f(x) 是 [a, b] 上一列 Riemann 可积函数, 并且满足

(1) 存在 M > 0, 使得 |fn(x)| 6M, ∀ x ∈ [a, b];

(2) 存在 [a, b] 上的实值函数 f(x), 使得 ∀ x ∈ [a, b], 有

lim
n→∞

fn(x) = f(x).

问: f(x) 在 [a, b] 上是不是 Riemann 可积的?

注 如果 f(x) 是 Riemann 可积的, 那么

lim
n→∞

(R)

∫ b

a

fn(x)dx = (R)

∫ b

a

f(x)dx.

最后我们指出,在 Riemann积分中,积分极限换序以及累次积分的条件是复杂

的. 为了改善这些缺陷, 我们需要 “设计” 一种新的积分, 即 Lebesgue 积分.
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§0.5 Lebesgue 积分与 Lebesgue 测度

定义 0.5.1 (Lebesgue积分). 设 f(x) 是定义在 [a, b] 上的实值函数, 并且满足

m 6 f(x) < M,

做分划

∆ : m = y0 < y1 < y2 < · · · < yn =M

记

Ei = {x ∈ [a, b]| yi−1 6 f(x) < yi},

并作和

SL(f,∆) =

n∑
i=1

ξim(Ei),

其中 ξi ∈ [yi−1, yi) 是任意的. 如果 ∃ 常数 I, 使得对 ∀ ε > 0, ∃ δ > 0, 当

|∆| def.= max
16i6n

{yi − yi−1} < δ

时, 有

|SL(f,∆)− I| < ε,

则称 f(x) 在 [a, b] 上是 Lebesgue 可积的, 并称 I 为 f(x) 在 [a, b] 上的 Lebesgue 积

分. 记为

(L)

∫
[a,b]

f(x)dx.

在不致混淆的前提下, 上式左端 (L) 可以略去.

以下两个问题值得高度重视

• m(Ei) 是什么? 它是长度概念的推广, 称为 Lebesgue 测度.

• m(Ei)的定义是什么? 它有什么性质? 什么样的集合可以被赋予 Lebesgue测

度?

例 0.5.2 (Dirichlet 函数的 Lebesgue 积分). 由于 Dirichlet 函数 (0◃4.5) 只有

两个孤立的取值 0 和 1, 因此

S∗
L(D,∆) = m

(
Q ∩ [0, 1]

)
.

那么, [0, 1] 上全体有理数的 ‘长度’ 是多少?
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命题 0.5.3 (Lebesgue 积分与 Riemann 积分的关系). 如果 f(x) 在 [a, b] 上

Riemann 可积, 则 f(x) 在 [a, b] 上是 Lebesgue 可积的, 并且

(L)

∫
[a,b]

f(x)dx = (R)

∫ b

a

f(x)dx.

测度论建立在 Cantor集合论的基础之上,它起始于 G.Peano和 C.Jordan的工

作. Jordan 仿照 Riemann 积分的做法, 在 Jordan 可测集上建立了积分的概念, 但

Jordan 可测集有很大的缺陷, 即存在 Jordan 不可测的开集. 后来, Borel 进一步发

展了测度理论, 他在开集和闭集通过交, 并, 差等基本运算得到的集合类 (Borel 集

类, σ- 环) 上建立了 Borel 测度.

Lebesgue 则在更大的集合类中建立了测度理论. 他证明了 Lebesgue 可测集类

构成 σ- 环, 并揭示了 Borel 可测集与 Lebesgue 可测集之间的关系. 测度论的进一

步发展有赖于 Riesz, Carathéodory 等人的工作.



6 概论



第一章 集合与点集

G.Cantor(1845-1918) 是集合论的创始人. 他提出了基数, 聚点, 开集和闭集等

概念, 并证明了超越数远远多于代数数. G.Cantor 关于集合的描述性定义是: 把具

有某种特征或满足一定性质的所有对象或事物作为一个整体时,这个整体就称为集

合. 而这些对象或事物称为该集合的对象.

定义 1.0.4 (悖论). 一个论证能够导出与一般判断相反的结果, 而要推翻它又

很难给出正当依据时, 称为悖论.

定义 1.0.5 (谬论). 一个命题及其否定均可用逻辑上等效的推理加以证明, 而

对其推导无法指出错误时, 称为谬论.

G.Cantor 对集合的描述性定义将导致著名的罗素悖论 (1903).

例 1.0.6 (Russell Paradox). 令

E = {x|x ∈ x},

则有

E ∈ E ⇔ E /∈ E.

§1.1 集合的运算

集合的基本运算已为大家所熟知, 我们仅给出下面一个简单的例子.

例 1.1.1. 设 f : [a, b]→ R1, 则有

[a, b] =
∞∪

n=0

{
x
∣∣ |f(x)| 6 n

}
,

{
x
∣∣ |f(x)| > 0

}
=

∞∪
n=1

{
x
∣∣ |f(x)| > 1

n

}
.

除了众所周知的交, 并, 差三种运算, 我们对集合还可以定义对称差及极限运

算.

定义 1.1.2 (对称差). 设 A, B 是集合, 称

C = (A\B) ∪ (B\A)

为 A 和 B 的对称差, 记为 A△B.

7



8 第一章 集合与点集

为了诱导出集合极限运算的定义, 我们先来回忆一下数列上极限下极限的定

义. 设 {an} 为实数序列, 定义

bk = sup
i>k

ai,

则 {bk} 为单调递减数列, 从而有极限. 我们定义数列 {an} 的上极限为

lim sup
n→∞

an = inf
k
bk = inf

k
sup
i>k

ai.

类似地, 我们来定义集合的极限集.

定义 1.1.3 (极限集). 设 {Ak} 是一列集合, 称集合

∞∩
j=1

∞∪
k=j

Ak

为 {Ak} 的上限集, 记为 lim
k→∞

Ak, 或 lim sup
k→∞

Ak. 称集合

∞∪
j=1

∞∩
k=j

Ak

为 {Ak} 的下限集, 记为 lim
k→∞

Ak, 或 lim inf
k→∞

Ak. 如果

lim
k→∞

Ak = lim
k→∞

Ak,

则称 lim
k→∞

Ak 或 lim
k→∞

Ak 为 {Ak} 的极限集, 记为 lim
k→∞

Ak.

注 事实上, 集合的包含关系构成一种偏序结构. 我们知道, 对任何具有有偏序结构的集合都

可以定义上下确界, 进而可以类似地定义上下极限. 这里,
∞∪
k=j

Ak 是 {Ak}∞k=j 的上确界.

下面我们来看一个基本的例子.

例 1.1.4. 令

Ak =

[−1, 1] ∪ [1, 2], k 为偶数;

[−1, 1] ∪ [−2,−1], k 为奇数.

则

lim
k→∞

Ak = [−2, 2], lim
k→∞

Ak = [−1, 1].

思考: 1. 对任意集列 {Ak}, 其上限集和下限集是否一定存在?

2. 设 lim
n→∞

xn = x, lim
n→∞

rn = r, 研究 n 维球体构成的集族
{
B(xn, rn)

}
的上下

极限.



§1.1 集合的运算 9

定义 1.1.5 (单调性). 设 {Ak} 是一列集合, 如果对任何 k ∈ N, 有

Ak ⊆ Ak−1, (Ak ⊇ Ak−1),

则称 {Ak} 是单调递增 (递减) 的, 二者统称为单调的.

定理 1.1.6. 设 {Ak} 是一列单调集合, 则

lim
k→∞

Ak = lim
k→∞

Ak.

证明 以 {Ak} 单调递增为例. 首先, 对任意固定的 j ∈ N, 有

∞∩
k=j

Ak ⊆
∞∪
k=l

Ak, l = 1, 2, · · · .

上式蕴含着
∞∩
k=j

Ak ⊆
∞∩
l=l

∞∪
k=l

Ak,

由 j 的任意性, 有
∞∪
j=1

∞∩
k=j

Ak ⊆
∞∩
l=l

∞∪
k=l

Ak.

反过来, 对任何 x ∈
∞∩
l=1

∞∪
k=l

Ak, 有

x ∈
∞∪
k=l

Ak, l = 1, 2, · · · .

则一定存在某个 ki 使得 x ∈ Aki . 而由 {Ak} 单调递增, 当 k > ki 时, 有 x ∈ Ak,

那么

x ∈
∞∩

k=ki

Ak,

上式蕴含着

x ∈
∞∪
j=1

∞∩
k=j

Ak.

�
不妨回忆一下数学分析中的单调收敛定理.

命题 1.1.7. 设 {Ak} 是集合 E 中的任意一列子集, 则

(1) E\
(

lim
k→∞

Ak

)
= lim

k→∞
(E\Ak),

(2) E\
(

lim
k→∞

Ak

)
= lim

k→∞
(E\Ak).
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证明 以 (1) 为例, 由 d’Morgen 律, 有

E\
(

lim
k→∞

Ak

)
= E\

( ∞∩
j=1

∞∪
k=j

Ak

)
=

∞∪
j=1

(
E\(

∞∪
k=j

Ak)
)

=
∞∪
j=1

∞∩
k=j

(E\Ak)

= lim
k→∞

(E\Ak).

�

定理 1.1.8. 设 {Ak} 是一列集合, 则

(1) lim
k→∞

Ak = {x| ∀ j ∈ N, ∃ k > j, s.t. x ∈ Ak}, 即有子列 {Aki} 使得

x ∈ Aki .

(2) lim
k→∞

Ak = {x| ∃ j0 ∈ N, s.t. ∀ k > j0, x ∈ Ak}, 即从某个自然数 j0 开始,

有 x 包含于所有 Aki .

证明 由极限集的定义, 不难推出这种描述性定义. �

例 1.1.9 (不收敛点结构). 设 {fn(x)} 以及 f(x) 是定义在 R1 上的实函数, 记

D 为 {fn(x)} 的不收敛于 f(x) 的自变量的全体, 则

D =

∞∪
k=1

( ∞∩
N=1

∞∪
n=N

{
x
∣∣ |fn(x)− f(x)| > 1

k

})
.

注 在之后关于 Egorov定理的证明中,我们将用到本例的结论,详见定理 3.3.4.

在本节的最后, 我们来定义集合的直积. 设 X,Y 为两个非空集合, 定义 X 和

Y 的直积为

X × Y =
{
(x, y)

∣∣ x ∈ X, y ∈ Y }
.

集合的无穷乘积的定义更加复杂一些, 它是以映射的形式定义的. 设 {Xα}α∈I 为无穷集族,

定义 ∏
α∈I

Xα =
{
x
∣∣∣ x : I →

∪
α∈I

Xα, s.t., x(α) ∈ Xα,∀ α ∈ I
}
.

事实上, 反过来我们也可以将映射看作是乘积空间中的元素, 即

{f | f : X → Y } ∼= Y X .
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作为一个简单的例子, 当 X 为有限集 {1, 2, · · · , n} 时,
{
X → Y

}
的元素与 Y × Y × · · · × Y

的元素一一对应.

习题 1.1

[如无特殊说明, 习题中的页码与题号指代周明强所著实变函数论第 2 版中的

对应页码与题号.]

1. 证明定理 1.1.8.

2. 给出函数列 {fn(x)} 收敛于 f(x) 的刻画.

3. P11 1,2,3

4. P63 1,2

§1.2 映射与基数

§1.2.1 映射

集合是数学的主要研究对象. 就某个具体的集合, 我们可以引入拓扑使之成为

拓扑空间, 也可以引入代数结构 (一般都是自然的) 使之成为群, 环或域, 也可以同

时引入拓扑结构和代数结构加以研究,这些都是对某个具体的集合相对孤立地进行

研究.如果我们对一族集合进行分类研究,即把具有相同性质的集合 (等价)放在一

起加以研究, 则显得更加有效而且可行. 而使得分类能够实现的重要途径就是建立

集合之间的关系. 建立这种关系的主要手段之一就是集合之间的映射.

定义 1.2.1 (映射). 设 X,Y 是两个集合, 若存在一种规则 f , 使得对 x ∈ X,

按照这种规则存在唯一的 y ∈ Y 与之对应, 则称这种关系为映射, 又称函数或变

换.

设 f : X → Y 是映射, A ⊂ X, B ⊂ Y . 称

f(A) = {f(x)| x ∈ A}

为 A 在 f 映射下的像. 称

f−1(B) = {x| f(x) ∈ B}

为 B 在映射 f 下的原像. 问: f−1(B) 是否唯一?
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定义 1.2.2. 设 f : X → Y 是映射, 如果对 ∀ x1, x2 ∈ X,x1 ̸= x2, 有

f(x1) ̸= f(x2),

则称 f 是单射或内射 (injective, into). 如果 f(x) = Y, 则称 f 是满射或到上的

(surjective, onto). 如果 f 既是单射又是满射, 则称 f 为一一到上映射 (one to

one).

设 f : X → Y 是一一到上映射, 让 g : Y → X 定义为

g(y) = x,

其中 y = f(x), 则称 g 为 f 的逆映射, 记为 f−1. 显然有, f−1(f(x)) = x 以及

f(f−1(y)) = y.

命题 1.2.3. 设 f : X → Y 是映射, {Ai}i∈I , {Bj}j∈J 分别为 X, Y 中的子集

族, 则

(1) f(
∪
i∈I

Ai) =
∪
i∈I

f(Ai);

(2) f(
∩
i∈I

Ai) ⊆
∩
i∈I

f(Ai);

(3) f−1(
∪
i∈I

Ai) =
∪
i∈I

f−1(Ai);

(4) f−1(
∩
i∈I

Ai) =
∩
i∈I

f−1(Ai);

(5) 若 B1, B2 ⊂ Y , B1 ∩B2 = ∅, 则

f−1(B1) ∩ f−1(B2) = ∅,

进一步

f−1(Bc
1) ∩ (f−1(B1))

c = ∅.

证明 (5) 利用 X = f−1(B1 ∪Bc
1) = f−1(B1) ∪ f−1(Bc

1) 即可. �
注 从本例中, 我们可以看出, 一一到上映射 f 不一定能保持集合运算, 然而其逆映射 f−1

保持几乎所有集合运算. 这也正是我们通过如下方式定义几类映射的原因之一,

1. 连续函数定义为使得开集原像为开集的映射, 其中 f−1 保持开集性质.

2. 可测函数定义为使得 Borel 集的原像为 Borel 集的映射, 其中 f−1 保持 Borel 集.

定义 1.2.4 (复合映射). 设 f : X → Y , g : Y → Z 是映射, 让 h : X → Z 定

义为

h(x) = g(f(x)), ∀ x ∈ X,

称为 f 与 g 的复合, 记为 g ◦ f.
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§1.2.2 特征函数与幂集

定义 1.2.5 (幂集). 设 X 是集合, 称

P(X) = {A| A ⊂ X}

为 X 的幂集

定义 1.2.6 (特征函数). 设 X 是集合, 对 X 中的任何子集 A, 称映射

χA(x) =

1, x ∈ A;

0, x /∈ A.

为 A 的特征函数.

设 X 是集合, 让

f : P(X)→ χ(X)

A 7→ χA.

其中 χ(X) 为 X 上特征函数的全体. 则 f 是一一映射.

我们将特征函数的部分性质罗列如下, 它们的证明是容易的.

命题 1.2.7. 设 A, B 是集合, 则

(1) 当 A ∩B = ∅ 时, χA∪B = χA + χB ;

(2) χA∪B = χA\B + χB\A + χA∩B = χA + χB − χA∩B ;

(3) χA∩B = χA × χB ;

(4) χA\B = χA − χA∩B = χA(1− χB);

(5) χA△B = |χA − χB | =

χA − χB , x ∈ A\B;

χB − χA, x ∈ B\A.

这些性质建立了函数运算与集合运算之间的关系.进一步,若我们在函数空间引入偏序结构,

考虑其上的格运算

χA ∨ χB = χA∪B , χA ∧ χB = χA∩B ,

那么我们可以在格的意义下建立两个空间的同构关系.

思考: 证明

lim sup
n→∞

χAn = χlim sup
n→∞

An , lim inf
n→∞

χAn = χlim inf
n→∞

An .

事实上, 由于 lim sup 与 lim inf 的定义只涉及偏序结构的定义, 而 χ 给出了两种偏序关系

的一种同构, 故思考题结论应当是成立的.
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命题 1.2.8 (单调映射的不动点问题). 设 X 是非空集合, f : P(X) → P(X)

满足下面的单调性

A ⊂ B ⇒ f(A) ⊂ f(B),

则存在 T ∈ P(X), s.t. f(T ) = T.

证明 让

S =
{
A| A ∈ P(x), A ⊂ f(A)

}
.

因为 ∅ ⊂ f(∅), 故 S ̸= ∅, 再让

T =
∪
A∈S

A,

则 T ∈ P(X). 下面证明 f(T ) = T . 首先, 对 ∀ A ∈ S, 有 A ⊂ T , 故 f(A) ⊂ f(T ).

而 A ⊂ f(A), 故 A ⊂ f(T ). 由 A 的任意性, 有 T ⊂ f(T ). 另一方面,

T ⊂ f(T )⇒ f(T ) ⊂ f2(T ),

这说明 f(T ) ∈ S, 又根据 T 的极大性, 有 f(T ) ⊂ T. �

例 1.2.9. 设 f : X → X 是一个映射. 定义 F : P(X)→ P(X) 如下

F (A) = f(A)

称 F 为 f 诱导的映射, 显然 F 是单调的, 且有平凡的不动点 ∅. 问: F 是否有非

平凡不动点?

§1.2.3 基数

集合论的重要问题之一是如何说明和比较两个集合中包含元素的多少,这实际

上属于一种分类问题. 对有限集而言, 如果集合 A 包含 n 个元素, 我们就称 A 的

基数为 n, 记为 A = n, 或 CardA = n. 那么对于无限集呢?

• 代数思想是同构分类;

• 拓扑思想是同伦, 同胚分类;

• 微分几何思想是微分同胚分类;

• 集合论思想是对等 (等势) 分类.

定义 1.2.10 (对等). 设 A, B 是集合, 如果存在从 A 到 B 的一一映射, 则称

A 与 B 对等, 记为 A ∼ B.
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若不考虑罗素悖论的影响, 对等关系是集合之间的一种等价关系.1 设 A, B 是

两个集合, 如果 A ∼ B, 则称 A 与 B 具有相同的基数 (Cardinal Number) 或势, 记

为

A = B

这样, 基数或势实际上是集合等价类上的概念, 凡是对等的集合具有相同的基数.

直观上, 如果 A 与 B 的子集对等, 则自然定义

A 6 B.

反过来, 如果 B 与 A 的子集对等, 则定义

A > B.

这样, 我们有如下问题:

A 6 B

A > B

⇒ A = B ?

定理 1.2.11 (Cantor-Bernstein). 若集合 X 与 Y 的子集对等, Y 又与 X 的

子集对等, 则 X 与 Y 对等.

注意到以下引理, 我们可以得到定理 1.2.11 的证明.

引理 1.2.12. 设 X1 ⊂ X2, Y1 ⊂ Y2 是两个集合, φ : X → Y 是一一到上映射,

并且

Xi
φ∼ Xi, i = 1, 2.

则有

(X2\X1)
φ∼ (Y2\Y1).

证明 略 �

引理 1.2.13. 设 {Ai}i∈I , {Bi}i∈I 是具有相同足标的两个集族, {Ai}i∈I 中各

元素互不相交, {Bi}i∈I 中各元素也互不相交, 并且

Ai ∼ Bi,

则有 ∪
i∈I

Ai ∼
∪
i∈I

Bi.

1等价关系可以看作两个集合的直积空间的对角线.
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证明 略 �

注 若两个集族足标不同, 但足标之间对等, 引理结论亦成立.

证明 (定理 1.2.11). 由题设, 存在 Y1 ⊂ Y 以及 f : X → Y1 是一一到上的, 同

样,存在 X1 ⊂ X 以及 f : Y → X1 是一一到上的. 记 Y1 = f(X), X1 = g(Y ), X2 =

g ◦ f(X). 从而

X
f−→ Y1

g−→ X2,

其中 X2 = g(Y1) ⊂ X1. 让 φ = g ◦ f , 则有

X
φ∼ X2 ⊂ X1.

令 X3 = φ(X1) ⊂ X2, 则

X1 ⊂ X ⇒ X1
φ∼ X3 ⊂ X2.

由引理 1.2.12, 我们有

(X0\X1)
φ∼ (X2\X3).

进一步, 让 Xn+2 = φ(Xn), Xn ⊂ Xn−1, X0 = X, 则有

(1) X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ · · ·

(2) X
φ∼ X2

φ∼ X4
φ∼ · · · φ∼ X2n

φ∼ · · ·

(3) X1
φ∼ X3

φ∼ X5
φ∼ · · · φ∼ X2n+1

φ∼ · · ·

(4) X 与 X1 可分解如下,

X =
( ∞∪

n=1

(Xn−1\Xn)
)
∪
( ∞∪

n=1

Xn

)
.

X1 =
( ∞∪

n=1

(
Xn\Xn+1

))
∪
( ∞∪

n=1

Xn

)
.

(5) 对任意的 n ∈ N, 有

(X2n\X2n+1)
φ∼ (X2n+2\X2n+3),

(X2n+1\X2n+2)
id∼ (X2n+1\X2n+2). (1◃2.1)

现在, 将 (4) 中展开式重排如下

X =
( ∞∪

n=1

Xn

)
∪ (X0\X1) ∪ (X1\X2) ∪ (X2\X3) ∪ (X3\X4) ∪ · · · ,
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X1 =
( ∞∪

n=1

Xn

)
∪ (X2\X3) ∪ (X1\X2) ∪ (X4\X5) ∪ (X3\X4) ∪ · · · ,

则由 (5) 以及引理 1.2.13 立得,

X ∼ X1 ∼ Y.

其中, (1◃2.1) 式中 id 表示恒同映射. �
定理 1.2.11 另有一种证法, 列举如下. 首先, 我们需要一个引理.

引理 1.2.14 (集合映射下的分解定理). 设 X, Y 是两个集合, 若有 f : X →

Y, g : Y → X, 则有下面的分解,

X = A ∪A1, A ∩A1 = ∅,

Y = B ∪B1, A ∩B1 = ∅,

满足

f(A) = B, g(B1) = A1.

证明 首先不妨设

f(X) $ Y, g(Y ) $ X.

称 X 中的子集 E 是分离的, 如果

E ∩ g(Y \f(E)) = ∅.

现在, 让 Γ 表示所有分离集合的全体, 由于 ∅ ∈ Γ, 故 Γ 非空. 下面我们说明, Γ 关

于任意并封闭. 事实上, 设 A 为 Γ 中任意多个元素之并, 则

E ∈ Γ, (Y \f(A)) ⊂ (Y \f(E))

⇒ ∀ E ∈ Γ, E ∩ g(Y \f(A)) = ∅

⇒ A ∩ g(Y \f(A)) = ∅

⇒ A 是分离的.

有了这个性质, 我们期望在 Γ 中找到一个 “最大” 的集合, 使其满足所需性质.

令2

A =
∪
E∈Γ

E.

那么,

2此处避免了涉及良序原理.



18 第一章 集合与点集

(1) 按定义, A 是所有分离集按包含关系最大的.

(2) 让 B = f(A), B1 = Y \B,A1 = g(B1), 要证

A ∩A1 = ∅, 并且 A1 = X\A.

首先, 有

A ∩ g(Y \f(A)) = ∅⇒ A ∩A1 = ∅.

其次, 我们用反证法证明 A1 = X\A. 假设 ∃ x0 ∈ X\A, 而 x0 /∈ A1. 令 A∗ =

A ∪ {x0}, 则

A∗ = A ∪ {x0}

⇒ f(A) ⊂ f(A∗)

⇒ Y \f(A∗) ⊂ Y \f(A)

⇒
(
g(Y \f(A∗)) ⊂ g(Y \f(A))

)
+

(
A ∩ g(Y \f(A)) = ∅

)
⇒ A ∩ g(Y \f(A∗)) = ∅.

再由 x0 /∈ A1可知, x0 /∈ g(Y \f(A∗)) ⊂ g(Y \f(A)). 由此可知 A∗ ∈ Γ,但是 A $ A∗,

这与 (2) 相矛盾. �
由这个引理, 我们可以证明定理 1.2.11, 留作习题.

我们再来看一个推论.

推论 1.2.15. 设 C ⊂ A ⊂ B, 且 B ∼ C, 则有 A ∼ B.

证明 考虑 f : B → C $ A, 以及 g : A→ A $ B 即可. �
定理 1.2.11 不仅解决了

A 6 B

A > B

⇒ A = B ?

还为我们判定两个集合是否对等带来了极大方便. 在下面一节中, 我们将重点考虑

如下类型集合的基数:

1. 有限集合;

2. 可列集合;

3. [0, 1];

4. P(X) = 2X > X.
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定义 1.2.16 (有限集). 设 A 是一个非空集合, 记 Mn = {1, 2, · · · , n}, 如果存

在某个 n 使得 A 与 Mn 对等, 则称 A 为有限集, 并称 A 的基数为 n. 若对任何自

然数 n, 有 A �Mn, 则称 A 为无限集.

定义 1.2.17 (可列集). 凡与自然数集 N 对等的集合称为可列集或可数集

(Countable Set). 可列集的基数记为 ℵ0.

下面两个例子是关于可列集的典型例子.

例 1.2.18. R1 中两两互不相交的开区间族至多可数.

证明 考虑开区间族与有理数集的某子集之间的一一对应即可. �
注 此性质将在证明 R1 中开集结构时用到.

例 1.2.19. 单调函数 f 的间断点集至多可数.

证明 略. �

定理 1.2.20. 每个无限集 A 都含有一个可列子集.

例 1.2.21 (函数不连续点的刻画). 设 f 为一个实值函数, f 在 x 的左方跳跃

度定义为

ω−(f, x) = sup
y<x

∣∣f(y − 0)− f(x)
∣∣,

同样, f 在 x 的右方跳跃度定义为

ω+(f, x) = sup
y>x

∣∣f(y + 0)− f(x)
∣∣,

则

f在 x 点不连续⇔ ω(f, x) = ω−(f, x) + ω+(f, x) > 0.

现在, 让

Ωk = {x ∈ R1| ω(f, x) > 1

k
},

则 f 在 R1 上不连续点的全体为

Ω(+) =
∞∪
k=1

Ωk.

定理 1.2.22. 设 A 是集合, 则

P(A) = 2A > A.



20 第一章 集合与点集

证明 首先, 取映射 φ : A→ P(A) 如下

x 7→ {x},

显然有 P(A) > A. 我们用反证法证明结论, 假设 P(A) = A, 则存在对等映射

ψ : A→ P(A). 让

B = {x ∈ A| x /∈ ψ(x)},

则 ∅ ∈ B, 故 B ̸= ∅. 由于 ψ 是到上的, 故存在 x0 ∈ A, 使得 ψ(x0) = ∅, 故而

x0 ∈ B. 再由于 ψ 是到上的, 存在 x ∈ A, 使得

ψ(x∗) = B.

这样一来, 有

x∗ ∈ B ⇔ x∗ /∈ B.

矛盾! 故 P(A) ̸= A, 我们有 P(A) > A �
下面我们来看看两个关于集合基数的例子.

例 1.2.23. R1 上实函数的全体 F 的基数是 2ℵ.

证明 事实上, 对任意 A ⊂ R1, 让

φ(A) = χA(x),

易知 φ 是 P(A) 与特征函数全体之间的对等映射, 故而 F > 2ℵ. 另一方面, 对每一

个 f ∈ F , 取映射 g 如下,

g(f) = Graph(f) =
{(
x, f(x)

)
| x ∈ R1

}
∈ P(R2)

由此可知 F 6 P(R2) = 2ℵ. 综上所述, 我们有 F = 2ℵ. �
注 若将映射看作是无穷乘积空间中的元素, 则 F ∼ RR. 那么, 我们有

CardF = 2ℵ.

例 1.2.24. R1 上连续函数的全体 C(R1) 的基数是 ℵ.

证明 事实上, 记 Q = {r1, r2, · · · , rn, · · · }, 对每个 f ∈ C(R1), 定义映射 ψ 如

下:

f 7→
(
f(r1), f(r2), · · · , f(rn), · · ·

)
∈
{
{xn}| xn ∈ R1

}
,
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有 f 的连续性易知, ψ是一一的 (单射). 另一方面, f ̸= g ⇒ ∃ X0 ∈ R1, s.t. f(X0) ̸=

(x0), 由 Q 的稠密性, ∃ rkn
→ x0, s.t. lim

n→∞
f(rkn

) ̸= lim
n→∞

g(rkn
)

⇒ ∃ kn0 , s.t. f(kn0) ̸= g(kn0).

故而 ψ 是到上的 (满射). 进而 ψ 是对等映射. 由此可知 C(R1) 6 ℵ.3 由于常值函
数的全体是 C(R1) 的子集, 显然有 C(R1) > ℵ. 综上所述, 我们有 C(R1) = ℵ. �

习题 1.2

1. 设 f(x)是 [a, b]上的连续函数,则对任意 ε > 0, ∃ [a, b]上的有限个互不相交的

小区间 {[ai, bi)}ni=1 以及 ξi ∈ R, i = 1, 2, · · · , n, 使得

∣∣∣f(x)− n∑
i=1

ξiχ[ai,bi)(x)
∣∣∣ < ε, ∀ x ∈ [a, b].

2. 证明有限集基数的定义是有意义的.

3. 若 A 是无限集, 则 A 一定与它的一个真子集对等. 4

4. 给出区间 (0, 1) 和 [0, 1] 之间的一个对等映射, 并证明它们之间不存在连续的

对等映射.

5. 求 R1 上所有连续函数的全体构成的集合 C(R1) 的基数.

6. 求 R1 上单调函数类的基数5.

7. 求所有定义在 [0, 1] 上的取值于 N 的映射的全体构成的集合的基数.

8. P18 1,2,3

9. P24 5,6,7,9,10

10. P28 13,14,15,16,17

11. P64 5,7,9,10

12. P69 27

3证明中用到了有理数列的全体的基数是 ℵ, 读者可自行证明.
4这也可作为无限集的定义.
52011 年期中
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§1.3 Rn 中的点集

§1.3.1 Rn 中的度量

n 维欧氏空间 Rn 被自然地赋予了一个欧式距离, 即对任意

x = (x1, x2, · · · , xn) ∈ Rn, y = (y1, y2, · · · , yn) ∈ Rn,

定义 x 与 y 之间的欧式距离为

d(x, y) = ∥x− y∥Rn =
( n∑

i=1

|xi − yi|2
) 1

2

.

容易证明, d(x, y) 满足:

(1) [正定性] d(x, y) > 0, 等号成立当且仅当 x = y;

(2) [对称性] d(x, y) = d(y, x);

(3) [三角不等式] d(x, y) 6 d(x, z) + d(z, y).

定义 1.3.1. 设 {xk}∞k=1 ⊂ Rn, x ∈ Rn. 当 k → ∞ 时, 称 {xk}∞k=1 的极限是

x, 如果

lim
k→∞

d(xk, x) = 0.

定理 1.3.2. 设 {xk}∞k=1 ⊂ Rn, x ∈ Rn, 则有

xk → x⇔ xki → xi, i = 1, 2, · · · .

证明 略. �

定义 1.3.3. 设 A ⊂ Rn 为集合, 如果存在 M > 0, 使得对任意 x ∈ A, 有

∥x∥ def.
= d(x, 0) 6M,

则称集合 A 是有界的.

定理 1.3.4 (Bolzano - Weierstrass). 设 {xk} ⊂ Rn 有界, 则存在 {xk} 的子列

{xkn}, 使得该子列在 Rn 中收敛.

定理 1.3.2 和定理 1.3.4 是数学分析中的结果, 其证明过程不再赘述.
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§1.3.2 领域, 内点, 开集, 闭集

设 x0 ∈ Rn, 称

Bδ(x0) = {x ∈ Rn| d(x, x0) < δ}

为 x0 的 δ− 邻域, 也记为 Nδ(x0) 或 B(x0, δ).

定义 1.3.5 (开集). 设 A ⊂ Rn, x0 ∈ A 称为是 A 的内点, 如果存在 δ > 0, 使

得

Nδ(x0) ⊂ A.

A 的内点的全体称为是 A 的内部, 记为
◦
A . 称 A 为 Rn 中的开集是指 A =

◦
A .

注 开集的定义依赖于所选取的全空间.

定理 1.3.6. Rn 中的开集满足如下性质:

(1) ∅ 和 Rn 是开集;

(2) 设 {Gi}i∈I 为一族开集, 则
∪
i∈I

Gi 也是开集;

(3) 有限多个开集的交仍是开集.

证明 以 (3)为例. 设 Gi, i = 1, 2, · · · 为 Rn中的开集. 任取 x0 ∈
n∩

i=1

Gi,对每个

1 6 i 6 n,由于 x0 ∈ Gi,故存在 δi > 0, s.t. Bδi(x0) ⊂ Gi.让 δ = min{δ1, δ2, · · · , δn},

则有

Bδ(x0) ⊂ Gi, i = 1, 2, · · · ,

上式蕴含着

Bδ(x0) ⊂
( n∩

i=1

Gi

)
,

故 x0 是
n∩

i=1

Gi 的内点. �

定义 1.3.7 (道路连通). 设 A ⊂ Rn, x, y ∈ A, 称 x, y 在 A 中为道路连接的,

如果存在连续映射 φ : [0, 1]→ A, 使得

φ(0) = x, φ(1) = y.

称 A 为道路连通的, 如果任意 x, y ∈ A 都是道路连接的. 称 B ⊂ A 为 A 的一个

连通分支, 如果

(1) B 是道路连通的;

(2) B 是极大的, 即对任意 B1 ⊂ A 是道路连通的, 有 B1 ⊂ B.
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定理 1.3.8 (Rn 中开集的结构定理). 设 G 为 Rn 中的开集, 则 G 可以表示成

至多可列个道路连通分支的并, 其中每一个道路连通分支为开集. 即

G =
∪
i∈I

Gi,

其中 I 是至多可列的. G 的每个连通分支称为是 G 的一个构成区间.

证明 参见 [3] 定理 4.2. �
注 对任意的 x, y ∈ G, 称 x 与 y 是等价的如果 x 与 y 是道路连接的, 易验

证这是一个等价关系. 对每个 x ∈ G, 让

Gx = {g ∈ G| y ∼ x},

则 Gx 是 G 的一个道路连通分支, 且仍为开集.

§1.3.3 极限点, 闭包

定义 1.3.9 (极限点). 设 A ⊂ Rn, x0 ∈ Rn, 称 x0 为 A 的极限点 (聚点), 如

果对 x0 的任何 δ− 邻域 Nδ(x0), 有(
Nδ(x0)\{x0}

)
∩A ̸= ∅.

A 的极限点的全体称为 A 的导集, 记为 A′.

x0 称为 A 的孤立点, 如果存在某个 δ > 0, 使得(
Nδ(x0)\{x0}

)
∩A = ∅.

x0 称为 A 的边界点, 对 x0 的任何 δ− 邻域 Nδ(x0), 有(
Nδ(x0)\{x0}

)
∩A ̸= ∅,

并且 (
Nδ(x0)\{x0}

)
∩Ac ̸= ∅.

A 的边界点的全体称为 A 的边界, 记为 BdA 或者 ∂A.

定义 1.3.10 (闭集). 称 A ⊂ Rn 为闭集, 如果 A′ ⊂ A, 并称 A = A′ ∪A 为 A

的闭包.

注 闭集的定义依赖于所选取的全空间.

我们有如下事实, 它的证明是容易的.
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定理 1.3.11. A ⊂ Rn 为 Rn 中闭集当且仅当 Ac 为 Rn 中开集.

证明 略. �
由闭集及导集的定义, 我们不难证明下面的结论.

例 1.3.12. 设 E1, E2 ⊂ Rn, 则

(E1 ∪ E2)
′ = E′

1 ∪ E′
2.

进一步, 我们有

E1 ∪ E2 = E1 ∪ E2.

推论 1.3.13. 设 A ⊂ Rn, 则 A 为 Rn 中的闭集.

证明 应用反证法不难证明. �
下面定理中的内容与定理 1.3.6 是完全对应的.

定理 1.3.14. Rn 中的闭集满足如下性质:

(1) ∅ 和 Rn 是闭集;

(2) 设 {Gi}i∈I 为一族闭集, 则
∩
i∈I

Gi 也是闭集;

(3) 有限多个闭集的并仍是闭集.

证明 考虑 A 的余集, 应用 d’Morgen 律以及定理 1.3.6 即可. �
下面我们将证明著名的 Heine-Borel 定理, 也即有限开覆盖原理, 为此我们需

要一条引理. 首先, 我们定义加细覆盖.

定义 1.3.15 (加细覆盖). 设 A ⊂ Rn, {Gi}i∈I 为 A的任意开覆盖,称 {Uj}j∈J

为 A的关于 {Gi}i∈I 的加细覆盖,如果 {Uj}j∈J 是 A的开覆盖,并且对任意 j ∈ J ,

存在 ij ∈ I, 使得

Uj ⊂ Gij .

稠密性是我们经常会遇到的概念之一, 定义如下.

定义 1.3.16 (稠密). 设 A 为非空集合, 称集合 E 在 A 中稠密, 如果 A ⊂ E.

进一步, 当 E ⊂ A 时, 则称 E 为 A 的稠子集.

有了稠密的概念我们可以定义集合的可分性.

定义 1.3.17 (可分). 我们称集合 A 是可分的, 如果存在 A 的可数的稠子集.

第二可数性也是一个重要的概念.



26 第一章 集合与点集

定义 1.3.18 (第二可数). 我们称拓扑空间 (Ω, τ) 是第二可数的, 如果 τ 具有可数的拓扑

基.

注 1. 下面的引理的证明即用到了 Rn 是第二可数的6.

2. 对于 Rn 而言, 可分性, 第二可数性与下面的 Lindelöff 性质是等价的. 但是, 一般情况

下上述等价性不一定成立.

引理 1.3.19 (Lindelöff 性质). 设 A ⊂ Rn, {Gi}i∈I 为 A 的任意开覆盖, 则

{Gi}i∈I 有 A 的可数子覆盖.

证明 对每一个 x ∈ A,由于 A ⊂
∪
i∈I

Gi,存在 ix ∈ I,使得 x ∈ Gix .由于 Gix 是

开集, 故存在 δx > 0, 使得

Nδx(x) ⊂ Gix .

由于 Qn 在 Rn 中稠密, 故 ∃ yx ∈ Qn, 使得 d(yx, x) <
δx
4 . 取 εx ∈ Q, 使得 δx

4 6
εx 6 δx

2 , 则 x ∈ Nδx(yx) ⊂ Gix . 让 X =
{
Nδx(yx)| x ∈ A

}
, 则 X 至多可列, 且 X 为

{Gi} 的加细覆盖, 那么, 我们有

A ⊂
∞∪
i=1

Nδxj
(xj) ⊂

∞∪
i=1

Gij

为 A 的可数覆盖. �
值得注意的是, 这条引理本身同样十分有用.

定理 1.3.20 (Heine-Borel). A ⊂ Rn 为有界闭集当且仅当 A 的任意开覆盖具

有有限子覆盖.

证明 必要性. {Gi}i∈I 为 A 的开覆盖. 由引理 1.3.19, 不妨设 {Gi}i∈I 为 A 的

至多可数开覆盖. 假设 A 有无限子覆盖, 则对每一个 k, 有

xk+1 ∈ A\
( ∞∪

i=1

Gi

)
.

由定理 1.3.4, 我们有 xk → x0 ∈ A, 则存在 k0 使得 x0 ∈ Gk0 , 由于 Gk0 是开集, 又

存在 δ > 0,使得 Nδ(x0) ⊂ Gk0
.由 lim

k→∞
xk = x0,存在充分大的 K,使得对 ∀ k > K

时, 有 d(xk − x) < δ, 也即

xk ∈ Nδ(x0) ⊂ Gk0 .

这与 xk 的选取矛盾!

6证明中无需显式地用到第二可数性, 对点集拓扑不熟悉的读者可以忽略第二可数性.
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充分性. 首先, 易证 A 有界. 其次, 我们反证 A 为闭集. 假设 A 是一个开集,

则 ∃ x0 ∈ A′ 且 x0 /∈ A. 让

Gn =
{
y ∈ Rn| d(y, x0) >

1

n

}
,

则

A =

∞∪
n=1

Gn,

但没有有限子覆盖. 矛盾! �
注 1. 若集合 A ⊂ Rn 的任意开覆盖具有有限子覆盖, 则称 A 为 Rn 中的紧致

集, 简称紧集.7

2. 本定理的必要性对无穷维空间不成立, 进一步, 必要性成立与否可以用作维数是否有限

的判据. 然而, 充分性总是成立的.

关于紧致性, 我们给出一个例题.

例 1.3.21. 设 E ⊂ Rn 为紧集, x ∈ Ec, 则 x 与 E 可用开集分离, i.e., 存在互不相交的

开集 U, V 使得 x ∈ U,E ⊂ V.

证明 简述如下: 首先, 注意到 Rn 中两个不同的点可以用开集分离, 从中构造 E 的开覆盖.

其次, 由紧集定义, 存在有限子覆盖. 最后, 注意到开集关于有限交运算封闭即可. �

§1.3.4 闭集上连续函数的延拓定理

本节中, 我们将介绍连续函数的一些性质, 并给出重要的连续延拓定理.

定义 1.3.22 (连续函数). 设 E ⊂ Rn, f : E → R, x0 ∈ E. 如果对 ∀ ε >

0,∃ δ > 0, 使得当 x ∈ E ∩B(x0, δ) 时, 有

∣∣f(x)− f(x0)∣∣ < ε,

则称 f 在 x0 处连续. 如果 f 在 E 上每一点连续, 则称 f 在 E 上连续. E 上连续

函数的全体记为 C(E,R) 或 C(E).

连续性有如下的等价定义.

定理 1.3.23. 函数 f 在 x 点连续当且仅当对 ∀ y = f(x) 的领域 Vy, 存在 x

的领域 Ux, 使得 f(Ux) ⊂ Vy.

有界闭集上的连续函数有如下的性质.

7一般的, 拓扑空间 (Ω, τ) 上的集合 A 称为是该拓扑空间上的紧集, 如果 A ⊂ Ω 的任意开覆

盖具有有限子覆盖.
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命题 1.3.24. 设 F ⊂ Rn 为有界闭集, f ∈ C(F,R), 则

(1) f 在 F 上有界;

(2) f 在 F 上的上下确界能够达到;

(3) f 在 F 上是一致连续的;

(4) 如果 F 是道路连通的, 则 f 满足介值性质.

证明 略. �
本节的目的, 是希望寻找一种方法, 使得闭集 F 上的连续函数能够延拓成为

Rn 上的连续函数. 首先, 我们定义连续延拓的概念.

定义 1.3.25 (连续延拓). 设 f ∈ C(E,R), 称函数 g ∈ C(Rn,R) 为 f 在 Rn 上

的连续延拓, 如果

g|E ≡ f.

一般的连续延拓问题是一个非常困难的问题.为了构造性地给出闭集上的函数

f 的连续延拓, 我们需要引入点到集合的距离.

定义 1.3.26. 设 x ∈ Rn, E ⊂ Rn, 且 E 非空集, 称

dist(x,E) = inf
y∈E

d(x, y)

为 x 到 E 的距离. 若 E1, E2 ⊂ Rn, 且 E1, E2 ̸= ∅, 则称

dist(E1, E2) = inf
x∈E1

dist(x,E2)

为集合 E1, E2 之间的距离.

事实上, 下面的定理告诉我们距离函数是连续的.

定理 1.3.27. 设 E 为 Rn 中的非空点集, 则

f(x) = dist(x,E)

为 Rn 上的一致连续函数.

证明 对 ∀ z ∈ E, 有

d(x, z) 6 d(x, y) + d(y, z),

对不等式两边分别关于 z 取下确界, 有

inf
z∈E

d(x, z) 6 d(x, y) + inf
z∈E

d(y, z),
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也即

dist(x,E) 6 d(x, y) + dist(y,E).

同理, 有

dist(y,E) 6 d(y, x) + dist(x,E).

由于 d(x, y) = d(y, x), 我们有∣∣dist(x,E)− dist(y,E)
∣∣ 6 d(x, y) = |x− y|.

证毕. �

推论 1.3.28. 设 F 是 Rn 中的非空闭集, x0 ∈ Rn, 则 ∃ y0 ∈ F, 使得

dist(x0, F ) = d(x0, y0).

证明 由命题 1.3.24 之 (2) 即可. �
下面我们叙述并证明闭集上的连续函数延拓定理.

定理 1.3.29 (Tietze延拓定理). 设 F ⊂ Rn 是一个闭集, f ∈ C(F )且 |f(x)| <

M, ∀ x ∈ F, 则存在 g ∈ C(Rn), 使得

(1) g|F ≡ f ;

(2) |g(x)| 6M, ∀ x ∈ Rn.

证明 让

A = {x ∈ F | M
3

6 f(x) 6M},

B = {x ∈ F | −M 6 f(x) 6 M

3
},

C = {x ∈ F | − M

3
< f(x) <

M

3
},

则 A,B 是闭集, 且 A ∩ B = ∅.8 这样, 我们可以构造 Rn 上的连续函数, 使得它在

A 上为 1, 在 B 上为 −1. 事实上可取

φ(x) =
−dist(x,A) + dist(x,B)

dist(x,A) + dist(x,B)
.

对任意 x ∈ Rn 有 |φ(x)| 6 1. 让

g1(x) =
M

3
φ(x),

8若 A,B 均为空集, 则可取新的 M ′ = M/3, 那么仍有 |f(x)| < M . 可以一直这样做, 若 M ′ 可

以无限趋近于零, 则 f ≡ 0, 定理显然成立. 否则, M 缩小有限次后, 必有 A,B 之一非空. 若有一

个集合为空, 不妨设为 B, 则任取与 A 不交的闭集 B′ 代替 B 即可.
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则 |g1(x)| 6M/3, ∀ x ∈ Rn. 那么我们有

|f(x)− g1(x)| 6
2

3
M, ∀ x ∈ F = A ∪B ∪ C.

让 f1(x) = f(x) − g1(x), 再对 f1(x) 运用上面的方法, 存在 Rn 上由距离函数构造

的连续函数 g2(x) 使得

|g2(x)| 6
1

3

(2
3
M

)
,

|f1(x)− g2(x)| =
∣∣∣f(x)− 2∑

i=1

gi(x)
∣∣∣ 6 (2

3

)2
M, ∀ x ∈ F.

如此继续, 存在

Gn(x) =

n∑
i=1

gi(x),

使得

|gn(x)| 6
1

3

(2
3

)n−1
M, ∀ x ∈ Rn,

|f(x)−Gn(x)| 6
(2
3

)n
M, ∀ x ∈ F.

下证 {Gn(x)} 在 Rn 上一致收敛.

|Gn+p(x)−Gn(x)| =
∣∣∣ n+p∑
i=n+1

gi(x)
∣∣∣ 6 n+p∑

i=n+1

|gi(x)|

6
∞∑

i=n+1

1

3

(2
3

)i−1
M

6 1

3

(2
3

)n
M

∞∑
k=0

(2
3

)k
.

这说明 {Gn(x)} 在 Rn 上一致收敛, 故 G(x) = lim
n→∞

Gn(x) =
∑∞

n=1 gn(x) 在 Rn 上

连续,

|G(x)| =
∣∣∣ ∞∑
n=1

gn(x)
∣∣∣ 6M.

且当 x ∈ F 时, f(x) ≡ G(x). �
注 在上述连续函数延拓定理中, 我们实际上用到了拓扑学中 Urysohn 引理在 n 维欧氏空

间中的特例. Urysohn 引理是拓扑学中较为深刻的定理之一, 它的证明并不容易. 然而, 在 Rn

中 (或更一般的, 在度量空间中), 由于距离函数的巧妙应用, 它的证明变得十分容易.

定理 1.3.30 (Urysohn 引理). 正规空间中的两个闭集可以由连续函数分离.

定理 1.3.31 (Rn中的 Urysohn引理). 设 E,F ⊂ Rn 为不相交的闭集,则存在 f ∈ C(Rn),

使得 0 6 f 6 1, 且 E ⊂ f−1
(
{1}

)
, F ⊂ f−1

(
{0}

)
.
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证明 直接构造 f 如下

f(x) =
d(x, F )

d(x,E) + d(x, F )
.

�

Rn 中的 Urysohn 引理还有另一种常用形式, 我们叙述如下.

定理 1.3.32 (Urysohn’). 设 K 为紧集, V 为开集, 且 K ⊂ V ⊂ Rn, 则存在具有紧支

集9的连续函数 f , 使得 0 6 f 6 1,Supp(f) ⊂ V , 且 f |K = 1. 换言之, χK 6 f 6 χV .

思考: (单位分解). 设 K ⊂ Rn 为紧集, {Vi}ki=1 为 K 的开覆盖, 则存在有紧支集的连续函

数族 {hi}ki=1, 使得 0 6 hi 6 1, Supp(hi) ⊂ Vi, 且

k∑
i=1

hi(x) = 1, x ∈ K.

最后, 我们对半连续函数稍作介绍.

定义 1.3.33 (半连续). 我们称函数 f 是上半连续的, 如果对 ∀ ε > 0, ∃ δ > 0s.t., ∀ y ∈

B(x, δ), 有

f(y) < f(x) + ε.

称函数 f 是下半连续的, 如果对 ∀ ε > 0, ∃ δ > 0s.t., ∀ y ∈ B(x, δ), 有

f(x)− ε < f(y).

注 f 是上半连续的, 当且仅当对任意的 λ ∈ R1, 集合 {x| f(x) < λ} 是开集. f 是下半连

续的, 当且仅当对任意的 λ ∈ R1, 集合 {x| f(x) > λ} 是开集.

命题 1.3.34. 半连续函数有如下的性质.

(1) 设 {fλ}λ∈Λ 是一列下半连续函数, 令

(
sup
λ∈Λ

fλ
)
(u) = sup

λ∈Λ

{
fλ(u)

}
,

则 sup
λ∈Λ

fλ 是下半连续的;

(2) 有限个下半连续函数之和仍是下半连续的;

(3) 下半连续函数在紧致集合上达到最小值;

(4) 设 F,G 分别为 R1 中的开集和闭集, 则 χF 是上半连续的, χG 是下半连续的;

(5) 设 f1 为某一上半连续函数, f2 某一下半连续函数, 且 f1 6 f2, 则存在连续函数 f 使

得 f1 6 f 6 f2.

9函数 f 的支集 E 定义为,

E = {x| f(x) ̸= 0},

记为 Supp(f). 由定义, 函数的支集一定是闭集, 若它还是有界的, 则称其为 f 的紧支集.
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证明 我们只证明 (3). 设 K 为紧致集合, f 为下半连续函数, 则由定义, 取定 ε > 0, 我们

有对 ∀ x ∈ K, ∃ δx > 0s.t.,∀ y ∈ B(x, δx), 有

f(y) < f(x) + ε.

因此
{
B(x, δx)

}
x∈K

构成了紧致集合 K 的一个开覆盖. 由定理 1.3.20, 存在有限子覆盖

{
B(xi, δxi)

}
, i = 1, 2, · · · , n.

由此, 易知 f 有下界, 进而有下确界. 设

λ = inf
x∈K

f(x),

由下确界的定义, 存在 {xn} 使得 f(xn) → λ. 由于 K ⊂ R1 是有界闭集, 由有界收敛定理, 存

在 {xki} 使得 xki → x0, 那么,

λ = inf
i→∞

f(xki) = lim inf
i→∞

f(xki) > f(x) > λ.

也即 f(x) = λ. �

习题 1.3

1. 设 X = {G ⊂ Rn| G为开集}, 试求 X.

2. P36 1,2,3,4,5,7

3. P40 2,5

4. P62 1,2,3,410,5,6

5. P67 40,41

6. P69 28

§1.3.5 Cantor 集

下面我们来递归地定义 Cantor 三分集.

第一步, 取 I0 = (0, 1), 挖去正中的 1
3 闭区间, 即 I1,1 = [ 13 ,

2
3 ], 得到剩余集合

I1 = I0\I1,1, 它有两个道路连通分支 I1,1 = (a1,1, b1,1) 和 I1,2 = (a1,2, b1,2), 并记

I1 = I1,1.

10此题疑似错题, 应将 F 改为 G 中有界闭集.



§1.3 Rn 中的点集 33

第二步, 对每个 I1,j , j ∈ {1, 2}, 挖去正中的 1
3 闭区间, 即

I2,j =
[
a1,j +

1

3
(b1,j − a1,j), a1,j +

2

3
(b1,j − a1,j)

]
,

并记 I2 =
2∪

j=1

I2,j , 得到剩余集合 I2 = I1\I2, 它有四个道路连通分支 I2,j =

(a2,j , b2,j), j ∈ {1, 2, 3, 4}.

如此继续, 假设第 n 步已经做好, 得到了剩余集合 In, 以及它的 2n 个道路

连通分支 In,j = (an,j , bn,j), j ∈ {1, 2, · · · , n}. 现在做第 n + 1 步如下, 对每个

In,j , j ∈ {1, 2, · · · , 2n}, 挖去正中的 1
3 闭区间, 即

In+1,j =
[
an,j +

1

3
(bn,j − an,j), an,j +

2

3
(bn,j − an,j)

]
,

并记 In+1 =
2n∪
j=1

In+1,j , 得到剩余集合 In+1 = In\In+1, 它有 2n+1 个道路连通分支

In+1,j = (an+1,j , bn+1,j), j ∈ {1, 2, · · · , 2n+1}.

至此, 我们递归地定义了 Ik 以及 Ik, 现在定义 Cantor 三分集为

C =
( ∞∩

k=1

Ik

)
∪ {0, 1} = [0, 1]\

( ∞∪
k=1

Ik
)
.

Cantor 三分集 C 有如下几条性质.

命题 1.3.35. 设 C 为 Cantor 三分集, 则有

(1) C 为闭集;

(2)

∞∑
k=1

|Ik| =
∞∑
k=1

2k+1

3k
= 1;

(3) C = ℵ.

(4)
◦
C= ∅;

(5) C ⊂ C′
(
⇒ C = C′

)
.

Cantor 三分集的一般形式是 Cantor 集, 即所谓的疏朗完全集. 下面我们来逐

步解释什么是疏朗完全集. 首先, 我们定义完全集的概念.

定义 1.3.36 (完全集). 我们称集合 E 为完全集, 如果

E = E′.

为了帮助读者理解, 下面我们给出一维完全集的一种刻画.
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命题 1.3.37. E ⊂ R1 是完全集当且仅当 E 的余集是开集, 且

Ec =

N∪
n=1

(an, bn),

其中 M 可以为 ∞, 且当 n ̸= m 时, (am, bm) 与 (an, bn) 无公共端点.

证明 一方面, 由于 E 是完全集, i.e. E = E′, 它蕴含着 E = E ∪E′ = E, i.e. E

是闭集, 也即 Ec 为开集, 那么由定理 1.3.8, Ec 可表成至多可列个互相不交的连通

开集的并, 而在 R1 中连通的开集即为开区间. 进一步, 由完全集的定义, E 中无孤

立点, 也即 Ec 的构成区间之间无相同端点.

另一方面, 有

Ec为开集⇒ E为闭集⇒ E′ ⊂ E,

E无孤立点⇒ E ⊂ E′,

故结论成立. �

接下来, 我们定义疏朗集的概念.

定义 1.3.38 (疏朗集). 设 A, B ⊂ Rn. 如果 A ⊇ B, 则称 A 在 B 中稠密. 如

果
◦
A= ∅, 也即对任意 x0 ∈ Rn 以及任意 ε > 0, 存在 x ∈ Bε(x0) 以及 δ > 0, s.t.

Bδ(x) ⊆ Bε(x0) 满足,

Bδ(x) ∩A = ∅,

则称 A 是疏朗集, 又称无处稠密集或稀疏集.

进一步, 我们可以定义可数个疏朗集的并集为第一纲集, 不是第一纲集的集合

称为第二纲集, 它们的定义依赖于全空间的选取.

例 1.3.39. x 轴在 R1 中为第二纲集, 在 R2 中为第一纲集.

现在, 我们来刻画一维疏朗完全集的特征.

设 E ∈ Rn 是疏朗完全集, 并且 E 有界, 令

m = inf{x| x ∈ E}, M = sup{x| x ∈ E}.

由于 E 是闭集, 故有 m ∈ E 以及 M ∈ E. 那么, 由命题 1.3.37 可知,

Ec = (−∞,m) ∪ (M,∞)
∞∪

n=1

(an, bn],
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并且当 n ̸= m 时, (am, bm) 与 (an, bn) 无公共端点. 不妨设 bn < am, 由于 E 是疏

朗的, 故在 bn, am 中有 Ec 中的点. 因此, 存在开区间 (c, d) ⊂ Ec, 则它是 Ec 的构

成区间, 且位于 (am, bm) 与 (an, bn) 之间.

这个事实表明,在 Ec 的任意两个构成区间之间,存在另外一个构成区间,并且

这三个构成区间之间无公共端点.

下面的命题不仅揭示了一维疏朗完全集的余集的结构,还给出了著名的 Cantor

函数.

命题 1.3.40. 设 E 如上所述, 则 ∃ φ : [m,M ]→ [m,M ] 满足如下性质:

(1) φ 是单调的连续满射;

(2) φ|(an,bn) ≡ const.

并且我们可以重排 Ec 的构成区间使得它类似于 Cantor 集的余集的构成区间

的顺序.

证明 Step 1. 重排 Ec 的构成区间使得它类似于 Cantor 集的余集的构成区间

的顺序. 首先, 由命题 1.3.37 可知,

Ec = (−∞,m) ∪ (M,∞)
∞∪

n=1

(an, bn],

令 (c1,1, d1,1) = (a1, b1). 在 (−∞,m) 与 (a1, b1) 之间取一个小区间使得其在原排序

中序数最小, 记为 (c2,1, d2,1), 即让

n2,1 = inf{n| an > m, bn < a1},

且令 (c2,1, d2,1) = (an2,1 , bn2,1). 再在 (a1, b1) 与 (M,+∞) 之间取一个小区间使得其

在原排序中序数最小, 记为 (c2,2, d2,2), 即让

n2,2 = inf{n| an > b1, bn < M},

且令 (c2,2, d2,2) = (an2,2 , bn2,2). 如果如此继续已经进行了 k 步, 即已经取到了如下

形式的构成区间

O1 = (c1,1, d1,1),

O2 = (c2,1, d2,1) ∪ (c2,2, d2,2),

· · ·

Ok =

2k−1∪
j=1

(ck,j , dk,j),
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现在将
∪k

i=1Oi 中的构成区间按大小顺序重排, 在每两个相邻区间内取 Ec 的一个

构成区间, 使得其在原排序中序数最小. 如此我们又得到 2k 个小区间, 记为

(ck+1,j , dk+1,j), j = 1, 2, · · · , 2k,

并让

Ok+1 =
2k∪
j=1

(ck+1,j , dk+1,j), k = 0, 1, 2, · · · .

下面说明 Ec = (−∞,m) ∪ (M,+∞)
∪∞

i=1Oi. 显然, 我们有
∪k

i=1Oi ⊂ Ec. 反过来,

我们只需要说明每一个 (an, bn) 在上述取法中都被取到. 事实上, (a1, b1) 已经被取

到, 如果 (a1, b1), · · · , (an, bn) 己经在第 k 步被全部取到, 而 (an+1, bn+1) 未被取到,

则 (an+1, bn+1) 落在
∪k

i=1Oi 的某两个构成区间之间, 则按照上面的取法, 第 k + 1

步一定将 (an+1, bn+1) 取出.

Step 2. 构造满足要求的映射 φ : [m,M ]→ [m,M ]. 首先, 记 O0 = {m,M}, 在

O0 上, 让

φ0(x) =

 m x = m

M x =M
,

则 φ0 在相邻的两个构成区间之间的跳跃度为
M−m
20 . 在 O0 ∪O1 上, 令

φ1(x) =

 m+M
2 , x ∈ (c1,1, d1,1)

φ0(x) x ∈ O0

,

则 φ1 在相邻的两个构成区间之间的跳跃度为
M−m
21 . 在 O0 ∪O1 ∪O2 上, 令

φ2(x) =


m+φ1|(c1,1,d1,1)

2 x ∈ (c2,1, d2,1)
M+m+M

2

2 x ∈ (c2,2, d2,2)

φ1(x) x ∈ O1

,

则 φ2 在相邻的两个构成区间之间的跳跃度为
M−m
22 . 如果按照这种方式已经进行

到第 k 步, 即 φk 在
∪k

i=1Oi 上已经给出定义, 则将 φk 延拓到 Ok+1 上作成 φk+1

使得其在 (ck+1,j , dk+1,j)上的取值为左右相邻两个区间上函数值的平均值,则 φk+1

在相邻的两个构成区间之间的跳跃度为 M−m
2k

.

如此继续, 我们得到了定义在 {m,M} ∪
(∪∞

i=1Oi

)
上的单调递增函数 ψ(x),

使得其在每个 (ck,j , dk,j) 上取常数, 并且在
∪k

i=1Oi 的相邻两个构成区间之间的跳

跃度为 M−m
2k
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现在, 让 φ|On = ψ|On ,

φ(x) = sup
{
ψ(y)| y 6 x, y ∈ {m,M} ∪

( ∞∪
i=1

Oi

)}
,

则 φ 是单调递增的.

Step 3. 证明 φ 是连续的. 事实上, 对任意 ε > 0 以及任意给定的 x ∈ [m,M ],

取 k 足够大使得 M−m
2k

< ε. 如果 x ∈
∪k

i=1Oi, 则 φ 在 x 自然连续. 如果

x ∈ [m,M ]\
∪k

i=1Oi, 则 x 属于
∪k

i=1Oi 的两个构成区间之间, 不妨记左边的为

(ci,j , di,j), 右边的为 (c′i,j , d
′
i,j), 取 δ = max{x− ci,j , d′i,j − x}, 则当 y ∈ (x− δ, x+ δ)

时, 有

∣∣φ(y)− φ(x)∣∣ 6 ψ
(c′i,j + d′i,j

2

)
− ψ

(ci,j + di,j
2

)
<
M −m

2
< ε.

故 φ 是连续的. �

注 这个命题说明若不考虑构成区间的顺序上的区别, 一维疏朗完全集的余集

与 Cantor 集的余集结构完全一致.

§1.4 Borel 集与纲性定理

下面我们来导出 Borel集的概念,它在实变函数和概率统计理论中具有重要地

位. 首先, 我们来严格定义概论中提及的 σ- 环.

定义 1.4.1 (σ− 环). 设 X 是一个非空集合, Γ ⊂ P(X). 称 Γ 为 X 上的一个

σ- 环, 如果

(1) 对 ∀ A,B ∈ Γ, 有 A\B ∈ Γ;

(2) 对于 {Ak}∞k=1 ∈ Γ, 有
∞∪
k=1

Ak ∈ Γ.

注 1. 有定义我们立即有,

A ∩B = (A ∪B)\
(
(A\B) ∪ (B\A)

)
∈ Γ.

又由 A1\
( ∞∩

k=1

Ak

)
=

∞∪
k=1

(A1\Ak) ∈ Γ, 我们有

∞∩
k=1

Ak = A1\
(
A1\

( ∞∩
k=1

Ak

))
∈ Γ.

2. 任何一族 σ- 环 {Γk}∞k=1 的交仍为 σ- 环.
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定义 1.4.2 (生成 σ- 环). 设 X 为一个非空集合, Σ ⊂ P(X), 令

U = {Γ′ ∈ P(X)| Σ ⊂ Γ′, 且 Γ′ 为 σ- 环}.

称

Γ(Σ) =
∩

Γ′∈U

Γ′

为由 Σ 生成的 σ- 环.

注 事实上, Γ(Σ) 是包含 Σ 的最小的 σ- 环.

下面我们介绍一种重要的生成 σ- 环, 即 Borel 环.

定义 1.4.3 (Borel 环). 让 B(Rn) 为由 Rn 中开集和闭集的全体生成的 σ- 环,

称之为 Rn 上的 Borel 环.

注 1. 显然有 B(Rn) ⊂ P(Rn), 故 B(Rn) 6 2ℵ.那么是否有 B(Rn) = ℵ? 直观上

这是正确的, 但证明并不容易, 需要用到超限归纳法的知识, 这里不加叙述.

2. 由定义易知 (a, b] =
∩∞

n=1(a, b+1/n)以及 Q =
∪∞

n=1 rn 都是 B(Rn)的元素.

当然, 我们也可以对 B(Rn) 进行更细的分类, 最简单的就是 Gδ 型集和 Fσ 型

集.

定义 1.4.4 (Gδ, Fσ 型集). A ⊂ Rn 称为 Gδ 型集, 如果存在 Rn 中的一列开

集 {Gk}∞k=1, 使得

A =
∞∩
k=1

Gk;

A ⊂ Rn 称为 Fσ 型集, 如果存在 Rn 中的一列闭集 {Fk}∞k=1, 使得

A =

∞∪
k=1

Fk.

注 Gδ 型集一定不可数, 但是存在 “长度” 很小的 Gδ 型集.

我们来看一些具体的例子.

例 1.4.5. Rn 中的闭集 F 为 Gδ 型集. 事实上, 让

Gn =
{
x ∈ Rn| dist(x, F ) < 1

n

}
,

则

F =
∞∩

n=1

Gn.



§1.4 Borel 集与纲性定理 39

例 1.4.6. R\Q 不是 Fσ 型集, Q 不是 Gδ 型集.

为了证明例 1.4.6 中的结论, 我们需要著名的 Baire 纲定理, 叙述如下.

例 1.4.7 (Baire 纲定理). Rn 不能被表成可列个疏朗集之并11.

证明 假设 Rn =
∪∞

n=1An, 其中 An, n = 1, 2, · · · 为疏朗集. 任取 x0 ∈ Rn,

让 B1 = B(x0, 1). 由于 A1 是疏朗集, 故 A1 在 B(x0, 1) 中不稠密, 由此存在

x1 ∈ B(x0, 1)\A1 以及 δ1(< 1/2), 使得

B(x1, δ1) ∩A1 = ∅, B(x1, δ1) ⊂ B1.

让 B2 = B(x1, δ1). 由于 A2 是疏朗集, 故 A2 在 B(x1, δ1) 中不稠密, 由此存在

x2 ∈ B(x1, δ1)\A2 以及 δ2(< 1/3), 使得

B(x2, δ2) ∩A2 = ∅, B(x2, δ2) ⊂ B2.

如此继续, 我们得到一列 {xn}∞n=1 ⊂ Rn 以及 δn(< 1/k) 使得

B(xk+1, δk+1) ∩
k∪

i=1

Ai = ∅,

B(xk+1, δk+1) ⊂ B(xk, δk) ⊂ · · · ⊂ B(x0, 1).

由于诸 B(xk, δk)为闭集, 且 δk → 0,故 {xn}为 Cauchy列. 令 x∗ ∈ Rn 为 {xn}的

极限, 则有

x∗ ∈
∞∩
k=1

B(xk, δk). (1◃4.2)

由假设, Rn =
∪∞

n=1An, 故存在 k0 使得

x∗ ∈ Ak0 ,

由 (1◃4.2) 式, 有

x∗ ∈ B(xk0+1, δk0+1),

这与 B(xk0+1, δk0+1) ∩Ak0 = ∅ 相矛盾! �

11也就是说 Rn 是第二纲集. 在更一般的情况下, Baire 纲定理被描述为: 一个非空的完备度量

空间不能被表成可列个疏朗集之并.
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让我们再来看例 1.4.6, 假设 R\Q =
∪∞

n=1 Fn, 且诸 Fn 为闭集, 则

Q ∩ Fn = ∅⇒ Fn为疏朗集

⇒ R =
( ∞∪

n=1

Fn

)
∪
( ∪

r∈Q
r
)

⇒ R能表成一列疏朗闭集之并.

这与定理 1.4.7 相矛盾!

习题 1.4

1. P59 4,5,6,7
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§2.1 环上的测度

§2.1.1 环 Rn
0

定义 2.1.1. 设 Rn 是 Rn 中的一些子集构成的子集族. 如果它满足: 当 A,B ∈

Rn 时, 有 A∪B,A\B ∈ Rn, 则称 Rn 是 Rn 上的一个环. 特别的, 当 Rn ∈ Rn 时,

称 Rn 为 Rn 上的一个代数.

注 注意它与第 §1.4 节中定义的 σ- 环的区别.

下面我们来看一个具体的例子,值得注意的是例中的环及其高维推广在我们后

面的讨论中很重要.

例 2.1.2. 让 R1
0 表示 R1 中有限个有界的左开右闭区间的并的全体, 即

R1
0 =

{ m∪
k=1

(ak, bk]| ak, bk ∈ R1, k = 1, 2, 3, · · · ,m
}
,

则 R1
0 是 R1 上的一个环.

证明 设

A =
m∪

k=1

(ak, bk], B =
l∪

j=1

(ck, dk] ∈ R1
0,

则有

A ∪B =
m∪

k=1

l∪
j=1

(
(ak, bk] ∪ (ck, dk]

)
∈ R1

0,

A\B =
m∪

k=1

(
(ak, bk]\

l∪
j=1

(ck, dk]
)

=
m∪

k=1

l∩
j=1

(
(ak, bk]\(ck, dk]

)
.

只需验证 (ak, bk]\(ck, dk] ∈ R1
0 以及环对有限交的封闭性即可. �

下面我们给出环 R1
0 中元素的规范分解.

引理 2.1.3 (规范分解). 设 A ∈ R1
0, 则 A 可表成有限个互不相交的左开右闭

区间的并.

41
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证明 让

A =
m∪

k=1

(ak, bk],

对 m 进行归纳. 当 m = 1 时, 结论显然成立. 现在假设当 m = l 时成立. 则当

m = l + 1 时,

A =

l∪
k=1

(ak, bk] ∪ (al+1, bl+1],

事实上,不妨先将这有限个区间的左端点按实数大小进行排序,并设 al+1 > ak, k =

1, 2, · · · , l. 下面分两种情况讨论.

(1) 如果 al+1 > max
16k6l

bk, 则由归纳假设可将 Â =
l∪

k=1

(ak, bk] 表成有限个互不

相交的左开右闭区间的并,记为 Â =
l̂∪

k=1

(âk, b̂k],易知, A =
l̂∪

k=1

(âk, b̂k]∪ (al+1, bl+1]

即为所求分解式.

(2)如果 ∃ k0, 1 6 k0 6 l,使得 bk0 > al+1 > ak0 , 并令 b′k0
= max{bk0 , bl+1}, 则

(ak0 , bk0 ] ∪ (al+1, bl+1] = (ak0 , b
′
k0
],

由归纳假设易得结论. �
下面, 我们把例 2.1.2 中的环推广到高维空间, 首先我们需要一个引理用于保

证环的笛卡尔积还是环.

引理 2.1.4. 设 Rn,Rm 分别是 Rn,Rm 中的一些子集构成的环, 让

Rn ×Rm =
{ r∪

k=1

Ak ×Bk| Ak ∈ Rn, Bk ∈ Rm, k = 1, 2, · · · , r
}
,

则 Rn ×Rm 是 Rn+m 上的环.

证明 设 A =
r∪

k=1

(Ak × Bk), B =
s∪

j=1

(Ck × Dk) ∈ Rn × Rm, 其中 Ak, Cj ∈

Rn, Bk, Dj ∈ Rm. 则有

A ∪B =

r∪
k=1

s∪
j=1

(
Ak ×Bk ∪ Cj ×Dj

)
∈ Rn ×Rm.

故 Rn ×Rm 对并运算封闭.

A ∩B =
r∪

k=1

s∪
j=1

(
Ak ×Bk ∩ Cj ×Dj

)
=

r∪
k=1

s∪
j=1

(
Ak ∩ Cj ×Bk ∩Dj

)
∈ Rn ×Rm.
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故 Rn ×Rm 对交运算封闭.

A\B =

r∪
k=1

((
Ak ×Bk

)
\
( s∪
j=1

(Cj ×Dj)
))

=
r∪

k=1

s∩
j=1

((
Ak ×Bk)\(Cj ×Dj

))
=

r∪
k=1

s∩
j=1

((
(Ak\Cj)×Bk

)
∪
(
Ak × (Bk\Dj)

))
∈ Rn ×Rm.

故 Rn ×Rm 对差运算封闭. 由环的定义, Rn ×Rm 是 Rn+m 上的环. �

下面我们给出例 2.1.2 中环的高维推广.

定义 2.1.5 (环 Rn
0 ). 让 Rn

0 表示 Rn 中有限个有界的左开右闭方体的并的全

体, 即

Rn
0 =

{ l∪
k=1

Ik| Ik 是 Rn 中有界的左开右闭方体
}
,

其中

Ik =
{
(x1, x2, · · · , xn) ∈ Rn| ai < xi 6 bi, i = 1, 2, · · · , n

}
.

我们将会看到 Rn
0 也是 Rn 上的一个环.

定理 2.1.6. 定义 Rn
0 如上, 则它是 Rn 上的一个环, 并且 Rn

0 = R1
0 × R1

0 ×

· · · × R1
0.

证明 由引理 2.1.4, 我们知道

R1
0 ×R1

0 × · · · × R1
0

是 Rn 上的一个环, 并且包含 Rn 中有界的左开右闭方体 I, 故有 Rn
0 ⊂ R1

0 ×R1
0 ×

· · · × R1
0, 因此只要证 Rn

0 ⊃ R1
0 ×R1

0 × · · · × R1
0.

为此, 我们只要证 R1
0 ×R1

0 × · · · ×R1
0 中的每一个元素都能表成有限个左开右

闭方体的并, 我们对维数 n 做数学归纳. 当 n = 1 时, 结论显然成立. 现假设当维

数为 n− 1 时成立, 则当维数为 n 时, 让

A ∈ R1
0 ×R1

0 × · · · × R1
0 ∈ Rn,

则

A = B × C,
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其中 B ∈ R1
0 ×R1

0 × · · · × R1
0 ∈ Rn−1, C ∈ R1

0. 那么由归纳假设, 有

B =
r∪

k=1

In−1
k , C =

s∪
j=1

(cj , dj ].

那么

B × C =

r∪
k=1

s∪
j=1

(
In−1
k × (cj , dj ]

)
,

而 In−1
k × (cj , dj ] 为 Rn 中方体. 综上所述有 Rn

0 ⊃ R1
0 ×R1

0 × · · · × R1
0. �

下面的引理是引理 2.1.3 的高维形式.

引理 2.1.7 (规范分解). 设 A ∈ Rn
0 , 则 A 可表成有限个互不相交的左开右闭

方体的并.

证明 我们对 n 进行归纳. 由引理 2.1.3 可知, 当 n = 1 时结论成立. 现假设

n = k 时结论成立, 则当 n = k + 1 时, 设

A =
m∪
r=1

Ik+1
r ∈ Rn

0 ,

其中

Ik+1
r = Ikr × (ar, br],

Ikr 是 Rk 中的左开右闭方体. 现在将 a1, b1, a2, b2, · · · am, bm 按大小顺序重排如下

a0 < a1 < a2 < · · · < al, 2 6 l 6 2m

则对于每个 Ik+1
r , 存在一列 {Ik+1

r,i }, 其中 Ik+1
r,i 可以为空集, 使得

Ik+1
r =

l∪
i=1

(
Ik+1
r,i × (ai−1, ai]

)
.

再由归纳假设即可. �

§2.1.2 环 Rn
0 上的测度

下面我们着手在上一节定义的环 Rn
0 上构建一种测度.

定义 2.1.8. 设 Rn
0 为 Rn 上的由有界左开右闭方体的全体构成的环, Rn

0 上

的实函数 µ 称为 Rn
0 上的测度如果它满足:

(1) µ(∅) = 0;

(2) (非负性) 对任意 A ∈ Rn
0 , 有 µ(A) > 0;
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(3) (可列可加性) 对任意一列 {Ai}∞i=1 ⊂ Rn
0 , 如果当 i ̸= j 时, Ai ∩ Aj = ∅,

并且
∞∪
i=1

Ai ∈ Rn
0 , (2◃1.1)

则一定有

µ
( ∞∪

i=1

Ai

)
=

∞∑
i=1

µ(Ai).

注 在式 (2◃1.1) 中我们要求可列并落在 Rn
0 中, 是因为 Rn

0 只对有限并封闭.

定义 2.1.9. 设 A ∈ Rn
0 , 如果 A 的规范分解为

A =

k∪
i=1

Ii,

让

m0(A) =
k∑

i=1

|Ii|,

其中

Ii =
{
(xi1, x

i
2, · · · , xin)| aij < xij 6 bij , j = 1, 2, · · · , n

}
,

|Ii| =
n∏

j=1

(bij − aij) =
∫
Ii

χIi(x)dx.

显然有 m0(A) > 0 以及 m0(∅) = 0.

由于同一个 A ∈ Rn
0 可以有不止一种规范分解, 为了说明上述定义是合理的,

我们必须证明集函数 m0 的取值不依赖于其自变量的规范分解的取法.

引理 2.1.10. m0(A) 的定义不依赖于 A 的规范分解.

证明 第一步,设 I 是单个左开右闭方体,则 m0(I) = |I|,它不依赖于 I 的规范

分解.

事实上, 设

I =
k∪

i=1

Ii

是 I 的一个规范分解, 则

|I| =
∫
I

χI(x)dx =

∫
k∪

i=1

Ii

χI(x)dx =

∫
k∪

i=1

Ii

χ k∪
i=1

Ii
(x)dx

=
k∑

i=1

∫
Ii

χIi(x)dx

=
k∑

i=1

|Ii|.
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第二步, 设 A ∈ Rn
0 有如下两个规范分解

A =
k∪

i=1

Ii =
l∪

j=1

Jj .

易知 A 可以表成

A =
k∪

i=1

l∪
j=1

(
Ii ∩ Jj

)
,

而 Jj , Ii 可以表成

Jj =

k∪
i=1

(
Ii ∩ Jj

)
, Ii =

l∪
j=1

(
Ii ∩ Jj

)
.

根据第一步结论以及 m0(A) 的定义, 有

m0(A) =

k∑
i=1

|Ii| =
k∑

i=1

( l∑
j=1

|Ii ∩ Jj |
)
=

l∑
j=1

( k∑
i=1

|Ii ∩ Jj |
)
=

k∑
j=1

|Jj |.

因此 m0(A) 的定义不依赖于 A 的规范分解. �

引理 2.1.11. Rn
0 上的集函数 m0 满足如下性质:

(1) (有限可加性) 设 A1, A2, · · · , Ak ∈ Rn
0 , 且当 i ̸= j 时, Ai ∩Aj = ∅, 则

m0

( k∪
i=1

Ai

)
=

k∑
i=1

m0(Ai);

(2) (单调性) 设 A,A1, A2, · · · , Ak ∈ Rn
0 , A1, A2, · · · , Ak 互不相交, 且

k∪
i=1

Ai ⊂

A, 则
k∑

i=1

m0(Ai) 6 m0(A);

(3) (有限覆盖的次可加性) 设 A,A1, A2, · · · , Ak ∈ Rn
0 , 并且 A ⊂

k∪
i=1

Ai, 则

m0(A) 6
k∑

i=1

m0(Ai).

证明 (1) A1, A2, · · · , Ak 是 Rn
0 中互不相交的元素,

Ai =

mi∪
j=1

Iij , i = 1, 2, · · · , k

为 Ai 的规范分解, 则
k∪

i=1

Ai =

k∪
i=1

mi∪
j=1

Iij
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为
k∪

i=1

Ai 的一个规范分解. 因此,

m0

( k∪
i=1

Ai

)
=

k∑
i=1

mi∑
j=1

|Iij | =
k∑

i=1

m0(Ai).

(2) 让 Ak+1 = A\
k∪

i=1

Ai, 则 A1, A2, · · · , Ak+1 互不相交, 且

m0(A) =
k+1∑
i=1

m0(Ai) >
k∑

i=1

m0(Ai).

(3) 首先, 由 (1) 和 (2) 得, 当 A,B ∈ Rn
0 , A ⊂ B, 有

m0(A) 6 m0(B),

即 m0 满足单调性. 对于 A,A1, A2, · · · , Ak ∈ Rn
0 , 让

B1 = A1, B2 = A2\A1, · · · , Bk = Ak\
( k−1∪

i=1

Ai

)
.

则 B1, B2, · · · , Bk 互不相交, 且
k∪

i=1

Ai =
k∪

i=1

Bi. 由于

A ⊂
k∪

i=1

Ai.

故

m0(A) 6 m0

( k∪
i=1

Ai

)
= m0

( k∪
i=1

Bi

)
=

k∑
i=1

m0(Bi) 6
k∑

i=1

m0(Ai).

�

定理 2.1.12. m0 是 Rn
0 上的一个测度.

证明 由引理 2.1.11, 我们只需证明 m0 满足可列可加性. 设 {Ak} 是 Rn
0 中一

列互不相交的元素, 并且

A =
∞∪
k=1

Ak ∈ Rn
0 .

由 m 的单调性可知
k∑

i=1

m0(Ai) 6 m0(A), ∀ k > 1.

令上式中的 k 趋于无穷, 则有

∞∑
i=1

m0(Ai) 6 m0(A).
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关于另一边不等式,让 A =
l∪

i=1

Ii 为 A的一个规范分解, Ai =
mi∪
j=1

Iij 为 A的一个规

范分解. 记

Ii =
{
(x1, x2, · · · , xn)| ai < xi 6 bi, i = 1, 2, · · · , n

}
,

对 ∀ ε > 0, 让

Iδii =
{
(y1, y2, · · · , yn)| ai + δi 6 yi 6 bi, i = 1, 2, · · · , n

}
,

使得

|Ii| > |Iδii | > |Ii| −
ε

2l
,

记

Aδ =
l∪

i=1

Iδii ,

则 Aδ 为有界闭集. 另一方面, 记

Iij =
{
(xij,1, x

i
j,2, · · · , xij,n)| aij,k < xij,k 6 bij,k, i = 1, 2, · · · , n

}
,

对 ∀ ε > 0, 让

I
i,δij
j =

{
(yij,1, y

i
j,2, · · · , yij,n)| aij,k < xij,k < bij,k + δij , i = 1, 2, · · · , n

}
,

使得,

|Ii,δ
i
j

j | − ε

mi2i+1
6 |Iij | 6 |I

i,δij
j |,

那么 {
I
i,δij
j | i = 1, 2, · · · , l, j = 1, 2, · · · ,mi

}
构成 Aδ 的一个开覆盖. 由有限覆盖定理, 存在 k0 使得

Aδ ⊂
k0∪
i=1

mi∪
j=1

I
i,δij
j ,

我们有,

m0(A)− ε 6
l∑

i=1

|Iδij | 6
k0∑
i=1

mi∑
j=1

|Ii,δ
i
j

j |

6
k0∑
i=1

mi∑
j=1

(
|Iij |+

ε

mi2i+1

)
6

k0∑
i=1

(
m0(Ai) +

ε

2i+1

)
6

∞∑
i=1

m0(Ai) + ε.
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由 ε 的任意性,

m0(A) 6
∞∑
i=1

m0(Ai).

�

推论 2.1.13. 设 A,Ai ∈ Rn
0 , 且

A ⊂
∞∪
i=1

Ai.

则有

m0(A) 6
∞∑
i=1

m0(Ai).

证明 由于

A =

∞∪
i=1

(Ai ∩A),

记 Bi = Ai ∩A, 并令 Ci = Bi\
( i−1∪

j=1

Bj

)
∈ Rn

0 . 则 Ci ∩ Cj = ∅, i ̸= j, 并且

A =
∞∪
i=1

Ci,

由此可知

m0(A) =

∞∑
i=1

m0(Ci) 6
∞∑
i=1

m0(Ai).

证毕. �

习题 2.1

1. 构造一个环 Rn
0 上的 m 测度 µ, 使得

(1) 对任何 r ∈ Q, 有 µ∗(r) = 0;

(2) 对任何闭集 F ⊂ R\Q, 有 µ∗(F ) = 0.

2. 设 g 为 R 上单增右连续函数, 对任何 Rn 上的方体

I =
{
(x1, x2, · · · , xn)| ai 6 xi 6 bi, i = 1, 2, · · · , n

}
,

让 µ(I) = Πn
i=1(g(bi)− g(ai)). 证明: µ 为 Rn

0 上的测度.
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3. 设 µ, ν 分别为 Rn
0 ,Rm

0 上的测度.对 ∀ A ∈ Rn
0 , B ∈ Rm

0 ,且 µ(A), ν(B) < +∞,

让

(µ ∗ ν)(A×B) = µ(A)ν(B),

问: µ ∗ ν 是不是 Rn+m
0 上的测度?

4. 设 S,R 分别是 X,Y 上的 σ- 环, 让

T =
{ ∞∪

i=1

Ai ×Bi| Ai ∈ S, Bi ∈ R
}
.

问: T 是不是 X × Y 上的 σ- 环?

§2.2 外测度

定义 2.2.1. 设 A ⊂ Rn 称

m∗
0(A) = inf

{ ∞∑
i=1

m0(Ai)| Ai ∈ Rn
0 , A ⊂

∞∪
i=1

Ai

}
为 A 由 m0 诱导的外测度.

注 抽象地, 对于 (X,R, µ), 其中 X 为测度空间, R 为 X 上的一个 σ- 环, µ 为

R 上的一个测度, 我们可以定义

µ∗ = inf
{ ∞∑

i=1

µ(Ai)| Ai ∈ R, A ⊂
∞∪
i=1

Ai

}
,

称为 A 由 µ 诱导的外测度.1

定理 2.2.2. 外测度 m∗
0 具有如下性质:

(1) m∗
0(∅) = 0;

(2) A ⊂ B ⊂ Rn, 则 m∗
0(A) 6 m∗

0(B);

(3) A ∈ Rn
0 , m

∗
0(A) = m0(A);

(4) m∗
0

( ∞∪
i=1

Ai

)
6

∞∑
i=1

m∗
0(Ai).

证明 (1) 和 (2) 的证明略去.

(3) 令 A1 = A,Ai = ∅, i = 2, 3, · · · 则

A ⊂
∞∪
i=1

Ai.

1详见定义 2.2.6.
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由 A ∈ Rn
0 , 我们有

m∗
0(A) 6

∞∑
i=1

m∗
0(Ai) = m∗

0(A) = m0(A).

反之, 对任意的 Ai ∈ Rn
0 , i = 1, 2, · · ·

A ⊂
∞∪
i=1

Ai,

则有

m0(A) 6
∞∑
i=1

m∗
0(Ai) 6 m∗

0(A).

(4) 不妨假定
∞∑
i=1

m∗
0(Ai) < +∞.

由 m∗
0(Ai) 的定义, 对任意的 ε > 0, 存在 Aj

i ∈ Rn
0 , j = 1, 2, · · · , 使得

Ai ⊂
∞∪
j=1

Aj
i ,

且
∞∑
j=1

m0(A
j
i ) 6 m∗

0(Ai) +
ε

2i
.

故

A =
∞∪
i=1

Ai ⊂
∞∪
i=1

∞∪
j=1

Aj
i ,

m∗
0(A) 6

∞∑
i=1

∞∑
j=1

Aj
i 6

∞∑
i=1

(
m∗

0(Ai) +
ε

2i

)
=

∞∑
i=1

m∗
0(Ai) + ε.

由 ε 的任意性即可. �

例 2.2.3. 我们有:

(1) 设 x0 ∈ Rn, 则 m∗
0({x0}) = 0;

(2) m∗
0(Qn) = 0;

(3) 设 C 为 Cantor 三分集, 则 m∗
0(C) 6 m∗

0

( 2n∪
i=1

Ii

)
6

(
2
3

)n

→ 0, n→∞;

(4) 设 I 为有界方体, 则 m∗
0(

◦
I) = m∗

0(I).

环 Rn
0 上的测度 m0 具有可列可加性, 然而外测度 m∗

0 不具有这种性质.
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例 2.2.4 (外测度不具有可加性). 首先, 我们证明若 m∗
0 有有限可加性, 则它

具有可列可加性. 事实上, 若 {En}Nn=1 互不相交, 且

m∗
0

( N∪
n=1

En

)
=

N∑
i=1

m∗
0(En),

则对任意的 {En}∞n=1, 有

m∗
0

( ∞∪
n=1

En

)
> m∗

0

( N∪
n=1

En

)
=

N∑
i=1

m∗
0(En)→

∞∑
i=1

m∗
0(En), n→∞.

又因为 m∗
0

( ∞∪
n=1

En

)
6

∞∑
i=1

m∗
0(En), 我们有

m∗
0

( ∞∪
n=1

En

)
=

∞∑
i=1

m∗
0(En).

其次, 我们给出例子说明 m∗
0 不一定具有可列可加性. 对 ∀ x ∈ (0, 1), 记

Lx = {ξ ∈ (0, 1)| ξ − x ∈ Q},

故 (0, 1) 可以被表成一列互不相交的 Lx 之并. 记 S 为每个 Lx 中任取一个代表元

构成的集合, 这一点可以由选择公理保证. 再记 Sk = S + rk, rk ∈ (−1, 1) ∩ Q, 那

么可以验证 Sk 互不相交, 且 (0, 1) ⊂
∞∪
k=1

Sk ⊂ (−1, 2). 则

1 = m∗
0

(
(0, 1)

)
6 m∗

0

( ∞∪
k=1

Sk

)
=

∞∑
k=1

m∗
0(Sk) 6 m∗

0

(
(−1, 2)

)
= 3.

由
∞∑
k=1

m∗
0(Sk) 的收敛性以及 m∗

0(Sk) = m∗
0(S), 有

m∗
0(S) = 0⇒

∞∑
k=1

m∗
0(Sk) = 0,

⇒ 1 6 0 6 3,

矛盾!

定理 2.2.5. 对 ∀ A ⊂ Rn, 让

m∗
0,δ(A) = inf

{ ∞∑
n=1

m0(Ai)| Ai ∈ Rn
0 , diam(Ai) < δ, A ⊂

∞∪
i=1

Ai

}
,

则

m∗
0,δ(A) = m∗

0(A).
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证明 显然, m∗
0(A) 6 m∗

0,δ(A).

反之, 不妨设 m∗
0(A) 是有限的, 则对 ∀ ε > 0, ∃ Ai ∈ Rn

0 , 使得 A ⊂
∞∪
i=1

Ai, 且

∞∑
i=1

m0(Ai) < m∗
0(A) + ε.

又

Ai =

mi∪
j=1

Iij =

mi∪
j=1

lki∪
k=1

Ii,kj ,

其中 diam(Ii,kj ) 6 δ. 故

m0(Ai) =

mi∑
j=1

lki∑
k=1

|Ii,kj |,

则

m∗
0,δ(A) 6

∞∑
i=1

mi∑
j=1

lki∑
k=1

|Ii,kj | < m∗
0(A) + ε,

再由 ε 的任意性即可. �

定义 2.2.6 (抽象外测度). 设 X 为集合 R ⊂ P(X) 为一个环, µ 为 R 上的测

度, 记

Σ(R) =
{
A ⊂ X| ∃ Ai ∈ R, s.t. A ⊂

∞∪
i=1

Ai

}
,

对 ∀ A ∈ Σ(R), 让

µ∗(A) = inf
{ ∞∑

i=1

µ(Ai)| A ⊂
∞∪
i=1

Ai;Ai ∈ R, i = 1, 2, · · ·
}
,

称 µ∗(A) 为由 µ 诱导的外测度.

注 我们称三元组 (X,R, µ) 为一个测度空间, 特别地, 当 µ(X) = 1 时, 称其为

一个概率空间.

定理 2.2.7. 设 (X,R, µ) 为测度空间, µ∗ 为 µ 诱导的外测度, 则

(1) 当 A ⊂ B 时, 有 µ∗(A) 6 µ∗(B);

(2) 当 A ∈ R 时, 有 µ∗(A) = µ(A);

(3) (次可加性) 如果 Ai ∈ Σ(R), i = 1, 2, · · · , 则

µ∗
( ∞∪

i=1

Ai

)
6

∞∑
i=1

µ∗(Ai).
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证明 (2) 显然 µ∗(A) 6 µ(A), 故我们只要证 µ∗(A) > µ(A). 不妨设 µ∗(A) <

+∞, 由外测度定义, 对 ∀ ε > 0, ∃ Ai ∈ R, i = 1, 2, · · · 使得 A ⊂
∞∪
i=1

Ai, 且

∞∑
i=1

µ(Ai) 6 µ∗(A) + ε.

不妨设 Ai ∩Aj = ∅, i ̸= j,2 则

A = A ∩
( ∞∪

i=1

Ai

)
=

∞∪
i=1

(A ∩Ai) ∈ R.

我们有

µ(A) =

∞∑
i=1

µ(A ∩Ai) 6
∞∑
i=1

µ(Ai) 6 µ∗(A) + ε,

再由 ε 的任意性即可. �
注 细心的读者可能已经发现, 本定理的证明方法已经出现多次, 值得关注.

§2.3 Lebesgue 测度

本节中我们将给出 Lebesgue 测度的定义, 首先我们定义 Lebesgue 可测集.

定义 2.3.1 (Lebesgue 可测集). 设 Rn
0 ,m0,m

∗
0 如上节定义. 称 A ⊂ Rn 为

Lebesgue 可测集, 如果对 ∀ E ⊂ Rn, 有

m∗
0(E) = m∗

0(E ∩A) +m∗
0(E ∩Ac). (2◃3.2)

注 1. n 维 Lebesgue 可测集的全体记为 Ln, 对 ∀ A ∈ Ln, 记 m(A) = m∗
0(A),

称为 A 的 Lebesgue 测度.

2. (2◃3.2) 式被称为 Carathéodory 条件.

3. 如果 E ∈ Ln, 则

m(E) = m(E ∩ (A ∪Ac))

= m((E ∩A) ∪ (E ∩Ac))

= m(E ∩A) +m(E ∩Ac).

即, Carathéodory条件对 Lebesgue可测集恒成立. 事实上,这也是最初引入 Carathéodory

条件的动因.

下面我们说明环 Rn
0 中的任意元素都是 Lebesgue 可测集.

2否则可以取 B1 = A1, B2 = A2\A1, · · ·
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定理 2.3.2. 设 Rn
0 ,m0,m

∗
0 如上节定义, 则当 A ∈ Rn

0 时, A ∈ Ln.

证明 一方面, 由于 E = (E ∩A) ∪ (E ∩Ac) , 根据次可加性, 我们有

m∗
0(E) 6 m∗

0(E ∩A) +m∗
0(E ∩Ac).

另一方面, 不妨设 m∗
0(E) < +∞, 由 m∗

0(E) 的定义, 对 ∀ ε > 0, ∃ Ai ∈ Rn
0 , i =

1, 2, · · · 使得 E ⊂
∞∪
i=1

Ai 且

∞∑
i=1

m∗
0(Ai) 6 m∗

0(E) + ε.

我们有

E ∩A ⊂
∞∪
i=1

(Ai ∩A) ∈ Rn
0 , E ∩Ac ⊂

∞∪
i=1

(Ai ∩Ac) ∈ Rn
0 .

由 m∗
0(E ∩A),m∗

0(E ∩Ac) 的定义可知

m∗
0(E ∩A) +m∗

0(E ∩Ac) 6
∞∑
i=1

m0(Ai ∩A) +
∞∑
i=1

m0(Ai ∩Ac)

=

∞∑
i=1

m0(Ai)

6 m∗
0(E) + ε.

综上所述, 我们有 m∗
0(E) = m∗

0(E ∩A) +m∗
0(E ∩Ac), 也即 A 为可测集. �

注 今后在证明 E 为 Lebesgue 可测集时, 由次可加性, 我们只需证 m∗
0(E) >

m∗
0(E ∩A) +m∗

0(E ∩Ac).

下面的定理的第三条说明 Lebesgue 可测集的全体构成了一个环.

定理 2.3.3. 我们有如下结果:

(1) 如果 m∗
0(A) = 0, 则 A ∈ Ln;

(2) Cantor 三分集 C 为 Lebesgue 可测集;

(3) 如果 A ∈ Ln, 则 Ac ∈ Ln;

(4) 如果 A,B ∈ Ln, 则 A ∪B,A ∩B ∈ Ln, 并且当 A ∩B = ∅ 时, 有

m(A ∪B) = m(A) +m(B).

证明 我们只证 (4) . 对 ∀ E ⊂ Rn, 我们有

m∗
0(E) = m∗

0(E ∩A) +m∗
0(E ∩Ac)

= m∗
0(E ∩A ∩B) +m∗

0(E ∩A ∩Bc) +m∗
0(E ∩Ac).
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由于 (A ∩Bc) ∪Ac = (A ∩B)c, 我们有

(
E ∩ (A ∩Bc)

)
∪ (E ∩Ac) = E ∩ (A ∩B)c

> m∗
0

(
E ∩ (A ∩B)

)
+m∗

0

(
E ∩ (A ∩B)c

)
.

而另一边不等号是显然的, 故 A∩B ∈ Ln. 再由 A∪B = (Ac ∩Bc)c 以及 (3), 我们

有 A ∪B ∈ Ln. 当 A ∩B = ∅ 时, 我们有有限可加性

m∗
0(A ∪B) = m∗

0

(
(A ∪B) ∩A

)
+m∗

0

(
(A ∪B) ∩Ac

)
= m∗

0(A) +m∗
0(B).

由此可知 Ln 是一个环. �

我们进一步说明, Ln 是一个 σ- 环.

定理 2.3.4. 设 Ln,m∗
0,m 如前面所定义, 如果 Ai ∈ Ln, i = 1, 2, · · · , 则

∞∪
i=1

Ai ∈ Ln.

进一步, 如果 Ai ∩Aj = ∅, 则

m
( ∞∪

i=1

Ai

)
=

∞∑
i=1

m(Ai).

证明 不妨设 Ai ∩Aj = ∅. 事实上, 设

B1 = A1, B2 = A2\A1, · · · , Bk = Ak\
( k−1∪

i=1

Ai

)
, · · ·

则由定理 2.3.3,我们有 Bk ∈ Ln,且
k∪

i=1

Bi =
k∪

i=1

Ai, k = 1, 2, · · · ,+∞,且 Bi∩Bj =

∅. 由于
∞∪
i=1

Bi =
∞∪
i=1

Ai, 故我们只需证
∞∪
i=1

Bi ∈ Ln.

对 ∀ E ⊂ Rn 以及 ∀ k ∈ N, 有

m∗
0(E) = m∗

0

(
E ∩

( k∪
i=1

Bi

))
+m∗

0

(
E ∩

( k∪
i=1

Bi

)c)
=

k∑
i=1

m∗
0(E ∩Bi) +m∗

0

(
E ∩

( k∪
i=1

Bi

)c)
>

k∑
i=1

m∗
0(E ∩Bi) +m∗

0

(
E ∩

( ∞∪
i=1

Bi

)c)
.



§2.3 Lebesgue 测度 57

让 k →∞, 有

m∗
0(E) >

∞∑
i=1

m∗
0(E ∩Bi) +m∗

0

(
E ∩

( ∞∪
i=1

Bi

)c)
> m∗

0

(
E ∩

( ∞∪
i=1

Bi

))
+m∗

0

(
E ∩

( ∞∪
i=1

Bi

)c)
.

故
∞∪
i=1

Bi ∈ Ln. 进一步, 取 E =
∞∪
i=1

Bi, 我们有 m∗
0

( ∞∪
i=1

Bi

)
=

∞∑
i=1

m∗
0(Bi), 而不等式

的另一边是显然的. �
下面两个定理我们经常会用到.

定理 2.3.5 (递增可测集列的测度运算). 设 {Ei}∞i=1 为可测集列, 满足

E1 ⊂ E2 ⊂ · · · ⊂ En.

则

m
(

lim
k→∞

Ek

)
= lim

k→∞
m(Ek).

证明 不妨设对 ∀ k > 0有 m(Ek) <∞,否则定理自然成立. 同定理 2.3.4一样,

我们考虑

B1 = E1, B2 = E2\E1, · · · , Bk = Ek\Ek−1, · · · ,

则由定理 2.3.3, 我们有 Bk ∈ Ln, 且
∞∪
k=1

Bk = limk→∞Ek, 且 Bi ∩Bj = ∅. 故

m
(

lim
k→∞

Ei

)
= m

( ∞∪
k=1

Bk

)
=

∞∑
k=1

(
m(Ek)−m(Ek−1)

)
= lim

k→∞

k∑
i=1

(
m(Ei)−m(Ei−1)

)
= lim

k→∞
m(Ek).

其中, 设 E0 = ∅. 这种将集列分割成不交集列的方法我们已见过多次. �
由上一定理, 再加上一些适当的条件, 我们可以导出关于递减可测集列的相关

结论.

定理 2.3.6 (递减可测集列的测度运算). 设 {Ei}∞i=1 为可测集列, 满足 E1 ⊃

E2 ⊃ · · · ⊃ En, 且

m(E1) <∞.

则

m
(

lim
k→∞

Ek

)
= lim

k→∞
m(Ek).
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证明 显然 lim
k→∞

Ek 是可测集且 m
(

lim
k→∞

Ek

)
有定义. 考虑

E1\Ek ⊂ E1\Ek+1, k = 1, 2, · · · ,

则 {E1\Ek}∞k=1 是递增可测集列, 应用定理 2.3.5, 我们有

m
(
E1\ lim

k→∞
Ek

)
= m

(
lim
k→∞

(E1\Ek)
)
= lim

k→∞
m(E1\Ek),

当 m(E1) <∞ 时, 上式可写成

m(E1)−m
(

lim
k→∞

Ek

)
= m(E1)− lim

k→∞
m(Ek).

消去 m(E1), 我们有 m
(

lim
k→∞

Ek

)
= lim

k→∞
m(Ek). �

习题 2.3

1. P92 1,2,3,4,5,6,7

§2.4 Lebesgue 可测集与 Borel 集的关系

(实变函数理论) 所要求的最广泛的知识并非像有时所设想的那么多, 三个原理大致

可表述如下: 每个可测集接近于区间的有限并集; 每个可测函数接近于连续函数; 每

个收敛的函数接近于一致收敛的函数序列. 大部分理论的结果是这些思想的相当直

观的应用. 在遇到需要处理实变函数理论的问题时, 学生最需要的掌握的就是这三个

原理. 若其中一个原理显然可以解决一个十分真实的问题, 那么自然要问这个 ‘接近’

是否足够, 而实际上对于这一问题一般是可以解决的.

—— Littlewood

本节所述即为 Littlewood 所说的第一个原理.

定理 2.4.1. Rn 中的闭集 F 是 Lebesgue 可测集, i.e., F ∈ Ln.

证明 我们分两步证明.

Step 1. 若 F 是有界闭集, 则 F ∈ Ln. 事实上, 对任意开方体
◦
I, 由于它是

Lebesgue 可测集 I 挖掉 ∂I, 而 ∂I 为零测集, 由环的性质
◦
I 可测. 对每一个 x ∈ F ,

让

Ik = {y = (y1, y2, · · · , yn)| |yi − xi| <
1

k
},
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则 {Ik(x)| x ∈ F}, 是 F 的一个开覆盖, 从而有有限子覆盖 Ik(x
1), · · · , Ik(xlk), 让

Ak =

lk∪
j=1

Ik(x
j),

由于 Ln 是 σ- 环, 故 Ak ∈ Ln. 下面我们证明 F =
∞∩
k=1

Ak.

显然, 对每一个 k, 有 F ⊂ Ak. 因此 F ⊂
∞∩
k=1

Ak.

反过来, 对每一个 y ∈
∞∩
k=1

Ak, 按定义, 对每一个 k, 存在 xk ∈ F, 使得对

i = 1, 2, · · · , n, 有

|yi − xki | <
1

k
,

故而

∥y − xk∥ <
√
n

k
.

令上式中的 k 趋于无穷可得 xk → y, 又因为 F 是闭集, 故 y ∈ F. 再由 Ln 是 σ-

环, 有 F ∈ Ln.

Step 2. 若 F 是 Rn 中的一般闭集, 则 f ∈ Ln. 事实上, 让

Fk = F ∩B(0, k),

则由 Step 1. 可知 Fk ∈ Ln. 而 F =
∞∪
k=1

Fk. 再利用 σ- 环的性质, F ∈ Ln. �

由开集和 Borel 集的定义我们立即得到:

推论 2.4.2. Rn 中的开集以及 Borel 集是 Lebesgue 可测集.

定理 2.4.3. 设 A ∈ Ln, 则对 ∀ ε > 0, 存在 Rn 中的开集 G 以及闭集 F , 使

得 F ⊂ A ⊂ G, 且

m(G\A) < ε, m(A\F ) < ε.

证明 我们分三步证明.

Step 1. 设 A 是有界集, 则存在 Rn 中的开集 G, 使得 A ⊂ G 且 m(G\A) < ε.

事实上, 根据 m(A) = m∗(A) 的定义, 对任给的 ε > 0, 存在 Ak ∈ Rn
0 , k = 1, 2, · · · ,

使得 A ⊂
∞∪
k=1

Ak, 并且

m(A) +
ε

2
>

∞∑
k=1

m(Ak),

让 Ak =
lk∪

k=1

Ik,j 是 Ak 的规范分解. 对每一个 Ik,j ,让 Iεk,j 是开方体满足 Ik,j ⊂ Iεk,j ,

并且

m(Iεk,j)−m(Ik,j) <
ε

2klk
.
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则
∞∑
k=1

lk∑
j=1

|Iεk,j | 6
∞∑
k=1

m(Ak) +
ε

2
< m(A) + ε.

让 G =
∞∪
k=1

lk∪
j=1

Iεk,j , 则 G 为开集, 并且

m(G\A) = m(G\A) = m(G)−m(A) < ε

Step 2. 对一般可测集 A,存在 Rn 中的开集 G,使得 G ⊂ A,并且 m(G\A) < ε.

事实上, 让

Ak = {x ∈ A| k < ∥x∥ 6 k + 1},

则由第一步, 存在开集 Gk 使得 Gk ⊂ Ak, 且

m(Gk\Ak) <
ε

2k
, k = 1, 2, · · · ,

让 G =
∞∪
k=1

Gk, 则 G 是开集, 且 A ⊂ G, 有

m(G\A) = m
( ∞∪

k=1

Gk\A
)
6 m

( ∞∪
k=1

(Gk\A)
)

6
∞∑
k=1

m(Gk\A) < ε.

Step 3. 证明存在闭集 F , 使得 F ⊂ A 并且 m(A\F ) < ε. 根据第二步, 存在开

集 G 使得 Ac ⊂ G, 并且

m(G\Ac) < ε.

让 F = Gc, 则 F 为闭集, F ⊂ A, 且有

A\F = · · · = G\Ac,

故 m(A\F ) = m(G\Ac) < ε. �
以下定理是定理 2.4.3 的直接推论.

定理 2.4.4. 设 A ∈ Ln, 则

(1) ∃ Gδ 型集 G∗, 使得 A ⊂ G∗ 并且 m(G∗\A) = 0;

(2) ∃ Fσ 型集 F ∗, 使得 F ∗ ⊂ A 并且 m(A\F ∗) = 0.

注 由于 Gδ 型集和 Fσ 型集都是 Borel集,因此 Lebesgue可测集与 Borel集类

相比较, 从外部和内部都只差一个零测集.
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定理 2.4.5. 设 A 是 Rn 中的 Borel 集, B ⊂ Rn 并且 m∗(B) = 0, 则 A ∪

B,A\B ∈ Ln, 进一步, 我们有

m(A ∪B) = m(A), m(A\B) = m(A).

证明 由于 B ∈ Ln, 故 A ∪B,A\B ∈ Ln, 并且

m(A) 6 m(A ∪B) 6 m(A) +m(B) = m(A),

m(A\B) = m(A\B) +m(B) > m(A) > m(A\B).

证毕. �

定理 2.4.6 (平移不变性). 设 A ∈ Ln, 则 A+ {x0} ∈ Ln, 并且

m
(
A+ {x0}

)
= m(A).

证明 由于 A ⊂ Ln 故存在 Gδ 型集 G∗, 使得 G∗ ⊃ A, 且

m(G∗\A) = 0.

而 A+ {x0} ⊂ G∗ + {x0}, 这说明

m∗
((
G∗ + {x0}

)
\
(
A+ {x0}

))
= m∗(G∗\A) = 0,

故
(
G∗+{x0}

)
\
(
A+{x0}

)
∈ Ln,而 G∗+{x0} ∈ B ⊂ Ln,因此我们有 A+{x0} ∈ Ln.

�
注 设 µ是定义在 Bn 上的测度,且对紧集 F 有 µ(K) < +∞,若 µ满足平移不

变性, 则存在常数 λ, 使得对 ∀ B ∈ Bn, 均有

µ(B) = λm(B).

我们并不打算给出证明, 有兴趣的同学可以参考 [1] P.90.

习题 2.4

1. P98 1,2,3

2. P102 1,2,3
(
此题将结论改为 m(E) > δ.

)
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§2.5 Lebesgue 测度的完备性问题

§2.5.1 Lebesgue 不可测集的存在性

例 2.5.1 (不可测集). 设 I = [0, 1]n 是 Rn 中的单位方体, Qn 是 Rn 中有理点

的全体, 我们的目的是在 Rn 中构造一列集合 {Ak}, 使得

(1) Ak ∩Aj = ∅, k ̸= j;

(2) {Ak} 一致有界;

(3) I ⊂
∞∪
k=1

Ak;

(4) m∗(Ak) = m∗(Aj);

(5) Ak ∈ Ln ⇔ Aj ∈ Ln.

这几条性质说明 A1 不是 Lebesgue 可测集.

下面我们来构造 {Ak}. 对 ∀ x ∈ (0, 1), 记

Ax = {ξ ∈ (0, 1)| ξ − x ∈ Q},

故 (0, 1) 可以被表成一列互不相交的 Ax 之并. 记 A 为每个 Lx 中任取一个代表

元构成的集合, 这一点可以由选择公理保证. 再记 Ak = A + rk, rk ∈ (−1, 1) ∩ Q.

可以验证 {Ak} 满足要求.

注 1. 对 Rn 上的任何测度, 只要其满足平移不变性与方体测度为正, 上述 A1

均不可测.

2. 由此例知道 m∗ 不满足可列可加性与有限可加性.

§2.5.2 测度的延拓

对于 ∀ A ⊂ Rn 让

m∗∗(A) = inf
{ ∞∑

i=1

m(Ai)| A ⊂
∞∪
i=1

Ai, Ai ∈ Ln, i = 1, 2, · · ·
}
,

若对 ∀ E ⊂ Rn, 有

m∗∗(E) = m∗∗(E ∩A) +m∗∗(E ∩Ac),

则称 A 为 Lebesgue 二次可测.

显然 Lebesgue 可测集也是 Lebesgue 二次可测的. 从表面上看, 这种方法似乎

可以用于扩充 Lebesgue 可测集, 然而下面的结论说明事实并非如此.
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定理 2.5.2. 对 ∀ A ⊂ Rn, 有

m∗∗(A) = m∗(A).

证明 由于 Rn
0 ∈ Ln, 我们有

m∗∗(A) 6 m∗(A).

反过来, 要证

m∗∗(A) > m∗(A).

不妨设 m∗∗(A) < +∞, 按照 m∗∗(A) 的定义, 存在 Ak ∈ Ln, k = 1, 2, · · · , 使得

A ⊂
∞∪
k=1

Ak, 并且

∞∑
k=1

m(Ak) 6 m∗∗(A) + ε.

再由 m∗(Ak) 的定义, 存在 Bk
j ∈ Rn

0 , j = 1, 2, · · · , 使得 Ak ⊂
∞∪
j=1

Bk
j , 并且

∞∑
j=1

m(Bk
j ) 6 m∗(Ak) +

ε

2k
.

因此

A ⊂
∞∪
k=1

Ak ⊂
∞∪
k=1

∞∪
j=1

Bk
j ,

故

m∗(A) 6
∞∑
k=1

∞∑
j=1

m0(B
k
j ) 6

∞∑
k=1

(
m∗(Ak) +

ε

2k
)

6 m∗∗(A) + 2ε.

由 ε 的任意性, 我们有 m∗(A) 6 m∗∗(A). �

定理 2.5.3 (测度延拓的唯一性). 设 R 为 Rn 的子集类构成的 σ− 环, 且

Rn
0 ⊂ R, µ 为 R 上的测度, 满足

µ|Rn
0
= m|Rn

0
,

也即对 ∀ A ∈ Rn
0 , µ(A) = m(A), 则

µ|Bn = m|Bn ,

其中 Bn 为包含 Rn
0 的最小的环.
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证明 我们分四步证明.

Step 1. 对任意开集 G ⊂ Rn, 有 µ(G) = m(G).

事实上,对 ∀ x ∈
◦
G,由于

◦
G是开集,存在以有理点 yx 为中心,以有理数 rx > 0

为边长的左开右闭方体 I(yx, rx), 满足

I(yx, rx) ⊂ G.

因此

G =
∪
x∈G

I(yx, rx).

由于 I(yx, rx) 至多可列, 故存在 x1, x2, · · · , 使得

G =
∞∪
k=1

I(yxk
, rxk

).

进而可以被表成不交左开右闭方体之并,不妨记为 {Bk}.由 µ,m的可列可加性,我

们有

µ(G) =
∞∑
k=1

µ(Bk) =
∞∑
k=1

m(Bk) = m(G).

Step 2. 对每一个有界闭集 F ⊂ Rn, 有 µ(F ) = m(F ).

事实上, 由 F 有界, 存在开集 G, 使得 F ⊂ G. 因此,

G = (G\F ) ∪ F.

故

µ(G) = m(G) = m(G\F ) +m(F ) = µ(G\F ) +m(F ),

那么

µ(F ) = µ(G)− µ(G\F ) = m(F ).

Step 3. 对任意闭集 F ⊂ Rn, 有 µ(F ) = m(F ).

事实上, 让

Fk = F ∩B(0, k),

则由第二步, µ(Fk) = m(Fk).由于 Fk 时单调增,有 µ(Fk)→ µ(F ), m(Fk)→ m(F ),

故 µ(F ) = m(F ).

Step 4. 对任意 E ⊂ Bn, 有 µ(E) = m(E).

事实上, 对任意 ε > 0, 存在开集 Gε 以及闭集 Fε, 使得

Fε ⊂ E ⊂ Gε,
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且

m(E\Fε) < ε, m(Gε\E) < ε.

故

m(Gε)−m(Fε) < 2ε.

而

m(Fε) 6 m(E) 6 m(Gε),

µ(Fε) 6 µ(E) 6 µ(Gε),

且 m(Fε) = µ(Fε), m(Gε) = µ(Gε), 令 ε→ 0, 则有 µ(E) = m(E). �
注 对于在 R1 上由单调右连续函数诱导的测度来说, 所有集合都是可测的, 但

这与本定理并不矛盾.

在本章的最后, 我们举例说明存在非 Borel 集的 Lebesgue 可测集.

例 2.5.4 (非 Borel 集的 Lebesgue 可测集). 设 C 为 Cantor 三分集, {(ak, bk)}

为其补集的构成区间, φ : [0, 1] → [0, 1] 是按照命题 1.3.40 中方法定义的 Cantor

函数. 则

φ|(ak,bk) ≡ ck.

让

f(x) =
1

2

(
x+ φ(x)

)
, x ∈ [0, 1].

则 f(0) = 0, f(1) = 1 且 f 严格单调递增, 则 f 是一一到上的. 故对 ∀ k > 0

m
(
f
(
(ak, bk)

))
=

1

2
(bk − ak).

则有

m
(
f
( ∞∪
k=1

(ak, bk)
))

=
1

2
.

由于

m
(
f(C) ∪ f

( ∞∪
k=1

(ak, bk)
))

= 1,

上面两式蕴含着

m(f(C)) = 1

2
.

故通过例 2.5.1 中的方法, 我们可以找到 Lebesgue 不可测集 A ⊂ f(C). 现在令

B = f−1(A) ⊂ C.
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则 0 6 m∗(B) 6 m(C) = 0, 故 B ∈ L1. 但 B 不是 Borel 集, 否则 f(B) = A 为

Borel 集3, 这与 A 不可测相矛盾!

习题 2.5

1. 设函数 f(x) 严格单调递增, 则 f−1 : Bn → Bn 和 f : Bn → Bn 均为一一到上

映射.

3见本章习题.
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§3.1 Lebesgue 可测函数的定义及其性质

首先, 为了今后叙述方便, 我们约定 0 · ∞ = 0.

定义 3.1.1 (几乎处处成立). 设 E ⊂ Rn 为 Lebesgue 可测集, P (x) 为 E 上关

于 x 的一个命题. 如果至多除去一个零测子集 E0 ⊂ E 外, P (x) 均成立, 则称命题

P (x) 在 E 上几乎处处成立, 记为

P (x) 成立 a.e. x ∈ E.

例 3.1.2. 按照定义 3.1.1, 我们可以定义几乎处处有限和几乎处处有界的概

念, 注意它们之间的区别.

定义 3.1.3 (Lebesgue 可测函数). 设 E ⊂ Rn 为 Lebesgue 可测集,

f : E → R1 ∪ {±∞}

称为 Lebesgue 可测函数, 如果对 ∀ c ∈ R1 ∪ {±∞}, 有

E(x| f(x) > c) = {x ∈ E| f(x) > c}

为 Lebesgue 可测集1.

注 1. 有时我们不要求 E 可测, 但此时要求 f 为非广义实值函数2, 且 E =
∞∪

n=1
E(x| f(x) > −n) 可测. (为什么?)

2. f 为广义实值函数时, 要求对 ∀ c ∈ R1 ∪ {±∞}, 有 E(x| f(x) > c) 可测. 特

别地, 取 c = −∞, 我们有 E 可测.

3. (Borel可测函数)设 E ∈ Bn, f : E → R1 ∪{±∞},如果对 ∀ c ∈ R1 ∪{±∞},

有

E(x| f(x) > c) ∈ Bn,

则称 f 为 Borel 可测函数. 显然, Borel 可测函数也是 Lebesgue 可测函数.

1除非特别说明, 今后我们均将 {x ∈ E| f(x) > c} 简记为 E(x| f(x) > c).
2非广义实值函数指函数 f 的值域不包含 ±∞.

67
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定义 3.1.4. 设 (X,R, µ) 为测度空间, E ∈ R, f : E → R1 ∪ {±∞}, 如果对

∀ c ∈ R1 ∪ {±∞}, 有

E(x| f(x) > c) ∈ R,

则称 f 为 µ 可测函数.

定理 3.1.5. 设 E ∈ Ln, f : E → R1 ∪ {±∞}, D ⊂ R 为 R 的稠密子集. 如果

对 ∀ r ∈ D, 有

E(x| f(x) > r) ∈ Ln,

则 f 为 E 上的 Lebesgue 可测函数.

证明 证明留做习题. �

定理 3.1.6. 设 E ∈ Ln, f : E → R1 ∪ {±∞}, 则下面几条是等价的:

(1) f 为 E 上的 Lebesgue 可测函数;

(2) 对 ∀ c ∈ R1 ∪ {±∞}, 有 E(x| f(x) 6 c) ∈ Ln;

(3) 对 ∀ c ∈ R1 ∪ {±∞}, 有 E(x| f(x) < c) ∈ Ln;

(4) 对 ∀ c ∈ R1 ∪ {±∞}, 有 E(x| f(x) > c) ∈ Ln;

(5) 对 ∀ c, d ∈ R1 ∪ {±∞}, 有 E(x| c < f(x) 6 d) ∈ Ln.

证明 证明留做习题. �

推论 3.1.7. 设 E ∈ Ln, f : E → R∪{±∞}, 如果 f 是 Lebesgue 可测函数, 则

对 ∀ c ∈ R ∪ {±∞}, 有

E(x| f(x) = c) ∈ Ln.

证明 由定理 3.1.6, 结论显然成立. �

例 3.1.8. 设 E ∈ Ln, χE 为 Lebesgue 可测函数, 特别地, Dirichlet 函数是

Lebesgue 可测的, 也是 Borel 可测函数.

定理 3.1.9. 设 E ∈ Ln, 则 E 上的 Lebesgue 可测函数 f, g 有如下性质:

(1) 对 ∀ α ∈ R, αf 是 Lebesgue 可测函数;

(2) f + g 是 Lebesgue 可测函数;

(3) fg 是 Lebesgue 可测函数;

(4) 若 g(x) ̸= 0, x ∈ E, 则 f/g 是 Lebesgue 可测函数;

(5) max{f, g},min{f, g} 是 Lebesgue 可测函数;

(6) sup{fk}, inf{fk}, lim
k→∞

fk, lim
k→∞

fk 均为 Lebesgue 可测函数.



§3.2 Lebesgue 可测函数的结构 69

证明 (4) 证明 1/g 可测即可;

(5) E
(
x
∣∣ max{f(x), g(x)} > c

)
= E

(
x
∣∣ f(x) > c

)
∪ E

(
x
∣∣ g(x) > c

)
;

(6) lim
k→∞

fk(x) = inf
m

{
sup
k>m
{fk(x)}

}
. �

例 3.1.10. 设 Ei ∈ Ln, i = 1, 2, · · · , k. 则特征函数

χ(x) =
k∑

i=1

αiχEi (3◃1.1)

为 Lebesgue 可测函数.

注 我们称形如 (3◃1.1) 式的函数为简单函数或阶梯函数.

例 3.1.11. f 为 E 上的 Lebesgue 可测函数, A ⊂ E 且 A ∈ Ln, 则 f |A 是一

个 Lebesgue 可测函数3.

例 3.1.12. 设 E ∈ Ln, f 为 E 上的连续函数, 则 f 是 Lebesgue 可测的.

习题 3.1

1. P127 1,2,3,4,5,6,7

2. P129 8,9

§3.2 Lebesgue 可测函数的结构

定理 3.2.1. 设 E ∈ Rn 是 Lebesgue 可测集, 则

(1) 如果 f 为 E 上几乎处处有限的非负 Lebesgue 可测函数, 则存在一列单调

递增的4简单函数 {φk}∞k=1, 使得

φk → f a.e. x ∈ E.

进一步, 如果 f 是有界的 Lebesgue 可测函数, 则

φk ⇒ f.

3即 f 在 A 上的限制.
4即 φk 6 φk+1
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(2) 如果 f 为 E 上几乎处处有限的 Lebesgue 可测函数, 则存在一列简单函数

{φk}∞k=1, 使得

|φk| 6 |f |, a.e. x ∈ E,

且

φk → f, a.e. x ∈ E.

进一步, 如果 f 是有界的 Lebesgue 可测函数, 则

φk ⇒ f.

证明 Step 1. 对任意自然数 k, 让

Ek,i = E
(
x
∣∣∣ i− 1

2k
6 f(x) 6 i

2k

)
, i = 1, 2, · · · , k2k.

让

φk(x) =


i−1
2k
, x ∈ Ek,i;

k, x ∈ E\
k2k∪
i=1

Ek,i.

则 φk 6 φk+1, k = 1, 2, · · · , 并且当 x ∈ Ek,i 时, 有

0 6 f(x)− φk(x) 6
1

2k
, i = 1, 2, · · · , k2k.

由于 f 在 E 上几乎处处有限, 因此 m(E∞) = 0, 其中 E∞ = {x ∈ E| f(x) = +∞},

则对任意 x ∈ E\E∞, 有 f(x) ∈ R. 故对任意 ε > 0, x ∈ E\E∞, 存在 k0 使得

f(x) < k0, 不妨取 k0 足够大, 使得 1
2k0

< ε. 进而存在 i0 使得 x ∈ Ek0,i0 , 且

1 6 i0 6 k02
k0 , 故

0 6 f(x)− φk0(x) 6
1

2k0
< ε.

进一步, 如果 f(x) < M , 则取 k > M 时, 上式对一切 x 成立, 这说明 φk 一致收敛

到 f.

Step 2. 让 f+ = max{f, 0}, f− = max{−f, 0}, 则 f = f+ − f−. 由于 f+, f−

非负可测, 由 Step 2., 几乎处处成立有 φk ↗ f+, ψk ↗ f−, 且 φk 6 f+, ψk 6 f−.

因此我们有

φk − ψk → f+ − f−,

并且

|φk − ψk| 6 φk + ψk 6 f+ + f− = |f |.

证毕. �
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依照本定理的思想, 在证明有关可测函数的命题时, 我们一般有典型方法, 步

骤如下:

1. 证明对特征函数成立;

2. 证明对简单函数成立;

3. 证明对非负可测函数成立;

4. 拆分正部, 负部, 证明对一般可测函数成立.

引理 3.2.2. 设 F1, F2, · · · , Fk ⊂ Rn为互不相交的闭子集,让 φ(x) =
k∑

i=1

αiχFi(x),

则 φ| k∪
i=1

Fi

为连续函数.

证明 对每一个 x0 ∈
k∪

i=1

Fi, 则 ∃ i0 6 k, 使得 x0 ∈ Fi0 . 由于 {Fi} 互不相交, 则

x /∈ Fi, i ̸= i0, 那么

δi = dist(x0, Fi) > 0.

让 δ0 = min{δi}, 则当 x ∈
( k∪

i=1

Fi

)
∩B(x0, δ0) 时, 有 x ∈ Fi0 . 那么

∣∣φ(x)− φ(x0)∣∣ = 0 < ε, ∀ ε > 0,

也即 φ| k∪
i=1

Fi

为连续函数. �

下面的 Lusin 定理 (鲁津定理) 揭示了 Littlewood 的三个原理中的第二个, 即

每个可测函数接近于连续函数.

定理 3.2.3 (Lusin定理). 设 E ⊂ Rn 为 Lebesgue 可测集, f 为 E 上几乎处处

有限的 Lebesgue 可测函数, 则对 ∀ δ > 0, 存在闭集 F ⊂ E, 使得 f |F 连续, 且

m(E\F ) < δ.

证明 第一步, 设 m(E) <∞, 对每个自然数 k 让

Ek,i = E
(
x| i− 1

k
6 f(x) <

i

k

)
, i = 0,±1,±2, · · ·

那么 Ek,i ∩ Ek,j = ∅, i ̸= j, 并且

E =
( +∞∪

i=−∞
Ek,i

)
∪ E−∞ ∪ E+∞,
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其中 E±∞ = E(x| f(x) = ±∞),5 因此, 我们有

m(E) =
+∞∑

i=−∞
m(Ek,i) +m(E±∞)

收敛, 故对给定的 δ > 0, ∃ ik 使得

( i=−ik−1∑
−∞

+
+∞∑

i=ik+1

)
m(Ek,i) <

δ

2k+1
,

让

φk(x) =

i=ik∑
i=−ik

i− 1

k
χEk,i(x).

对每个 i, 由 Lebesgue 测度的性质, 有闭子集 Fk,i ⊂ Ek,i, 使得

m(Ek,i\Fk,i) <
δ

2k+2ik
.

让 Fk =
ik∑

i=−ik

Fk,i, i = −ik, · · · , ik, 进一步, 让 ψk = φk|Fk
, 由引理 3.2.2, ψk 在闭

集 Fk 上连续, 并且当 x ∈ Fk 时, 有

∣∣f(x)− ψk(x)
∣∣ = ∣∣f(x)− φk(x)

∣∣ 6 1

k
.

m(E\Fk) 6
( i=−ik−1∑

−∞
+

+∞∑
i=ik+1

)
m(Ek,i) +

i=ik∑
i=−ik

m(Ek,i\Fk,i) 6
δ

2k
.

那么, 对每一个自然数 k, 存在闭集 Fk, 使得当 x ∈ Fk, 有

|ψk(x)− f(x)| <
1

k
,

且 ψk|Fk
, m(E\Fk) <

δ
2k
. 让 F =

∞∩
k=1

Fk, 则 F 是闭集, 且

m(E\F ) = m
( ∞∪

k=1

(E\Fk)
)
6

∞∑
k=1

m(E\Fk) 6 δ.

则 ψk 在 F 上连续, 并且

|ψk(x)− f(x)| 6
1

k
, ∀ x ∈ F.

这说明 ψk ⇒ f , 则 f 在 F 上连续.

5由题设, 有 m(E±∞) = 0.
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第二步, 当 m(E) =∞ 时, 让 Ek = E(x| k − 1 6 ∥x∥ 6 k), 则 m(Ek) <∞, 由

第一步, 对每一个 k, 存在闭子集 F k, 使得

f |Fk连续, m(Ek\F k) <
δ

2k+1
, k = 1, 2, · · · ,

则 f 在
∞∪
k=1

Fk 上连续. 让 F =
∞∪
k=1

Fk, 则

m(E\F ) 6
∞∑
k=1

m(Ek\F k) < δ.

�

推论 3.2.4. 设 E ⊂ Rn 是一个 Lebesgue 可测集, f 为 E 上几乎处处有限的

Lebesgue 可测函数, 则对 ∀ δ > 0, ∃ Rn 上的连续函数 φ, 使得

m
(
E
(
x| f(x) ̸= φ(x)

))
< δ.

证明 由定理 3.2.3 以及定理 1.3.29 立得. �

推论 3.2.5. 设 E ⊂ Rn 为 Lebesgue 可测集, f 为 E 上几乎处处有限的

Lebesgue 可测函数, 则存在一列连续函数 {φk}, 使得

φk → f, a.e.于E.

证明 由定理 3.2.3 , 存在闭子集 F ⊂ E, 以及 Rn 上的连续函数 φ(x), 使得

m(E\F ) < δ,

E
(
x| φ(x) ̸= f(x)

)
⊂ E\F.

取 δ > 1, 存在 φ1, F1 满足上述性质. 在 E\F1 上应用定理 3.2.3, 存在 F2 ⊂ E\F1,

使得

m
(
E\

2∪
i=1

Fi

)
<

1

2
,

且 f 在 F1 ∪ F2 上连续. 令 φ2 为 f |F1∪F2 在 Rn 上的连续延拓, 则

E(x| φ2(x) ̸= f(x)) ⊂ E\(F1 ∪ F2),

φ|F1∪F2
= f |F1∪F2

, φ2|F1
= φ1|F1 ,

如此继续, 在 E\
k−1∪
i=1

F1 上应用定理 3.2.3, 存在 Fk ⊂ E\
k−1∪
i=1

Fi, 使得

m
(
E\

k∪
i=1

Fi

)
<

1

k
,
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且 f 在
k∪

i=1

Fi 上连续. 令 φk(x) 为 f | k∪
i=1

Fi

在 Rn 上的连续延拓, 且

φk| k∪
i=1

Fi

= f | k∪
i=1

Fi

, φk|k−1∪
i=1

Fi

= φk−1|k−1∪
i=1

Fi

, · · · , φk|F1 = φ1|F1 .

故 {φk} 在
∞∪
k=1

Fk 上收敛于 f , 并且

m
(
E\

∞∪
k=1

Fk

)
6 m(E\Fk) 6

1

k
→ 0.

故 {φk} 在 E 上几乎处处收敛于 f . �

定理 3.2.6. 设 f : [0, 1] → [0, 1] 是严格单调递增的连续函数, 且 f([0, 1]) =

[0, 1], 则

B = f−1(B).

证明 让 A = {f−1(B)| B ∈ B, B ⊂ [0, 1]}, 我们分两步证明.

Step 1. 证明 B ⊂ A.

(1) 如果 A1, A2 ∈ A, 则存在 B1, B2 ∈ B 使得

A1 = f−1(B1), A2 = f−1(B2).

由于 f 为 [0, 1] 上的双射, 我们有

A1\B2 = f−1(B1\B2) ∈ A.

(2) 如果 Ai ∈ A 则存在 Bi ∈ B, 使得 Ai = f−1(Bi), 且由命题 1.2.3, 我们有

∞∪
i=1

Ai =
∞∪
i=1

f−1(Bi) = f−1
( ∞∪

i=1

Bi

)
∈ A.

以上说明 A 为 σ- 环.

(3) 对 ∀ F ⊂ [0, 1] 闭, ∀ G ⊂ [0, 1] 开, 有

F ⊂ A, G ⊂ A.

因此 A 包含 [0, 1] 中所有开集和闭集.

这说明 B ⊂ A.

Step 2. 让 g = f−1, 故 g 严格单增且连续. 由 Step 1. B ⊂ g−1(B) = f(B). 这

说明 f−1(B) ⊂ f−1 ◦ f(B) = B. �
注 这个定理的证明方法很典型, 被称为好集原理, 也即先将满足一定条件的

“好集” 的全体取出, 再证明这些集合构成某种集类.
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§3.3 几乎处处收敛与依测度收敛

在本节中我们将介绍两种重要的收敛以及它们之间的关系,相信学过概率论的

同学已经接触过它们了.

§3.3.1 几乎处处收敛

定义 3.3.1 (几乎处处收敛). 设 E ⊂ Rn 为 Lebesgue 可测集,

f, fk : E → R ∪ {±∞}, k = 1, 2, · · · ,

是 Lebesgue 可测函数. 若对 x ∈ E 几乎处处成立有

fk(x)→ f(x),

则称 {fk} 几乎处处收敛于 f , 记为

fk → f, a.e. x ∈ E,

或

fk
a.e.→ f, x ∈ E.

在定理 3.4.1 中我们将会看到可测函数是连续函数的推广. 在数学分析中, 即

使在处处收敛的情况下, 连续函数列的极限函数也未必连续. 然而下面我们将会看

到, 在实变函数中几乎处处极限保持函数的 Lebesgue 可测性.

定理 3.3.2. 设 E ⊂ Rn 为 Lebesgue可测集, fk : E → R∪{±∞}, k = 1, 2, · · · ,

是 Lebesgue 可测函数. 若

fk
a.e.→ f, x ∈ E,

则 f 是 E 上的可测函数.

证明 留做习题. �
接下来我们要给出著名的 Egorov 定理 (叶果洛夫定理), 为此我们需要一个引

理.

引理 3.3.3. 设 E ⊂ Rn 为 Lebesgue 可测集, 并且

m(E) <∞.

f, fk 是 E 上几乎处处有限的广义可测函数, 若

fk
a.e.→ f, x ∈ E,
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则对 ∀ ε > 0, 记

Ek(ε) = E
(
x
∣∣ |fk(x)− f(x)| > ε

)
,

则有

lim
j→∞

m
( ∞∪

k=j

Ek(ε)
)
= 0.

证明 记

E(ε) = lim
k→∞

Ek(ε) =
∞∩
j=1

∞∪
k=j

Ek(ε) = lim
j→∞

∞∪
k=j

Ek(ε).

容易证明 {fk} 的收敛点都不在 E(ε) 中, 再利用定理 2.3.6 即可6. �
下面给出的 Egorov 定理揭示了 Littlewood 三原理中的第三条, 即每个收敛的

函数接近于一致收敛的函数序列.

定理 3.3.4 (Egorov). 设 E ⊂ Rn 为 Lebesgue 可测集, 并且

m(E) <∞.

f, fk 是 E 上几乎处处有限的可测函数, 并且

fk
a.e.→ f, x ∈ E,

则对 ∀ δ > 0, 存在 E 的可测子集 Eδ, 使得 m(Eδ) < δ, 并且

fk ⇒ f, x ∈ E\Eδ.

证明 首先, 让

E0 = E
(
x
∣∣ ∃ k, s.t. |fk(x)| =∞或|f(x)| =∞)

,

则 m(E0) = 0.

其次, 在引理 3.3.3 中, 取 ε = 1/m, m = 1, 2, · · · , 则存在相应的 jm, 使得

m
( ∞∪

k=jm

Ek(
1

m
)
)
<

δ

2m
.

现在, 让

Eδ = E0 ∪
( ∞∪

m=1

∞∪
k=jm

Ek(
1

m
)
)
,

6其中要求 m(E) < ∞.



§3.3 几乎处处收敛与依测度收敛 77

则 m(Eδ < δ.

最后, 我们来证明 fk 在 E\Eδ 上一致收敛于 f . 事实上, 对 ∀ ε > 0, 取 m0 使

得 1/m0 < ε, 则当 x ∈ E\Eδ 时, 有

x ∈ E\Eδ = (E\E0) ∩
( ∞∩

m=1

∞∩
k=jm

(
E\Ek(

1

m
)
))

⊂ (E\E0) ∩
( ∞∩

k=jm

(
E\Ek(

1

m
)
))
.

由上式易知, 当 k > jm0 时, |fk(x)− f(x)| < 1/m0 < ε. �
注 Egorov 定理中的条件不能去掉, 否则有反例如下.

例 3.3.5. 令 fk(x) = χ(0,k)(x), 则

fk
a.e.→ χ(0,∞), x ∈ R.

但是对任意 Eδ, 只要 m(Eδ) <∞, 就有

fk ⇒ f, x ∈ R\Eδ

不成立.

§3.3.2 依测度收敛

定义 3.3.6 (依测度收敛). 设 E ⊂ Rn 为 Lebesgue 可测集, 并且

m(E) <∞.

f, fk 是 E 上几乎处处有限的可测函数. 若对 ∀ ε > 0, 都有

lim
k→∞

m
(
E(x| |fk(x)− f(x)| > ε)

)
= 0,

则称 {fk} 在 E 上依测度收敛于 f , 记为

fk
m→ f, x ∈ E,

或

fk ⇒ f, x ∈ E.

依测度收敛的概念在概率论里十分重要, 通常 f(x) 为 E 上的分布函数, 当我

们要估计某种逼近算法的准确度时, 最好是得到 fk ⇒ f 或者 fk
a.e.→ , x ∈ E, 这对

应于强大数定理, 当这两点都很难做到时, 可取更弱的 fk
m→ f , 它对应于弱大数定

理. 类似于几乎处处成立, 我们也可以定义依测度成立.



78 第三章 Lebesgue 可测函数

定义 3.3.7 (依测度成立). 设 Pn(x) 是关于 x ∈ E 的命题序列, 如果

lim
n→∞

m
(
E(x| Pn(x)不真)

)
= 0,

则称该命题序列是依测度成立的.

下面的定理揭示了两种收敛之间的关系.

定理 3.3.8. 设 E ⊂ Rn 为 Lebesgue 可测集, 并且

m(E) <∞.

f, fk 是 E 上几乎处处有限的可测函数, 并且

fk
a.e.→ f, x ∈ E,

则

fk
m→ f, x ∈ E.

证明 对 ∀ ε > 0, 要证

lim
k→∞

m
(
E(x| |fk(x)− f(x)| > ε)

)
= 0.

即对任意 δ > 0, 存在 kδ 使得当 k > kδ 时, 有

m
(
E(x| |fk(x)− f(x)| > ε)

)
< δ.

对上述 δ > 0, 由定理 3.3.4, 存在闭集 Eδ ⊂ E, 使得 m(E\Eδ) < δ, 且在 Eδ 上,

fk ⇒ f.

对上述 ε > 0, 存在 k0 > 0, 使得当 k > k0 时, 有∣∣fk(x)− f(x)∣∣ > ε, ∀ x ∈ Eδ.

则

E
(
x
∣∣ |fk(x)− f(x)| > ε

)
⊂ E\Eδ,

这说明 m
(
E(x| |fk(x)− f(x)| > ε)

)
< δ. �

注 在上述定理中, 条件 m(E) <∞ 不可去. 例如

fk(x) =

 1, |x| > k

0, |x| < k
,
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则有 fk
a.e.→ 0, x ∈ R, 但 fk ; f, x ∈ R.

定理 3.3.8 告诉我们在测度有限集上几乎处处收敛可以导致依测度收敛, 下面

我们举例说明依测度收敛不能推出几乎处处收敛.

例 3.3.9. 在 [0, 1] 上构造一个函数列 {fk,i}, 满足

f1,1(x) = 1, x ∈ [0, 1];

f2,1(x) =

 1, x ∈ [0, 12 )

0, x ∈ [ 12 , 1]
, f2,2(x) =

 0, x ∈ [0, 12 )

1, x ∈ [ 12 , 1]
;

· · ·

fk,i(x) =

 1, x ∈ [ i
2k−1 ,

i+1
2k−1 )

0, 其他
, k = 1, 2, · · · , i = 1, 2, · · · , 2k−1.

则 {fk,i} 依测度收敛到零函数但不是几乎处处收敛的.

这说明依测度收敛是一种比几乎处处收敛要弱的收敛.

定理 3.3.10 (Riesz). 设 E ⊂ Rn 为 Lebesgue 可测集. f, fk 是 E 上几乎处处

有限的可测函数, 并且

fk
m→ f, x ∈ E,

则存在子列 {fkj} 使得

fkj

a.e.→ f, x ∈ E.

再证 Riesz 定理之前, 我们先来看看它的一个推论.

推论 3.3.11. 设 E ⊂ Rn 为 Lebesgue 可测集, 并且

m(E) <∞.

f, fk 是 E 上几乎处处有限的可测函数, 则 fk
m→ f, x ∈ E, 当且仅当对每个子列

{fki} 存在它的子子列 {fkij
} 使得

fkij

a.e.→ f, x ∈ E.

证明 由定理 3.3.10, 必要性是显然的.

我们用反证法证明充分性. 反设 fk ; f, 则存在 ε0 > 0, 使得

lim
k→∞

m
(
E(x| |fk(x)− f(x)| > ε0)

)
̸= 0.
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即存在 δ0, 以及子列 {fki} 使得

m
(
E(x| |fk(x)− f(x)| > ε0)

)
> δ0. (3◃3.2)

对于子列 {fki}, 存在子子列 {fkij
}, 使得

fkij

a.e.→ f, x ∈ E,

则有

fkij

m→ f, x ∈ E,

这与 (3◃3.2) 式相矛盾!

下面我们证明定理 3.3.10.

证明 (定理 3.3.10) 由 fk
m→ f , 对 ∀ ε > 0, 有

lim
k→∞

m
(
E(x| |fk(x)− f(x)| > ε)

)
= 0.

取 ε1 = 1/21, 存在 k1, 使得

m
(
E
(
x
∣∣ |fk(x)− f(x)| > 1

21
))

<
1

21
.

取 ε2 = 1/22, 存在 k2, 使得

m
(
E
(
x
∣∣ |fk(x)− f(x)| > 1

22
))

<
1

22
.

如此继续, 取 ε1 = 1/2j , 存在 kj , 使得

m
(
E
(
x
∣∣ |fk(x)− f(x)| > 1

2j
))

<
1

2j
.

令

Ej = E
(
x
∣∣∣ |fk(x)− f(x)| > 1

2j

)
<

1

2j
,

则

m
( ∞∪

j=m

Ej

)
6

∞∑
i=1

m(Ej) <
1

2j−1
→ 0.

再令

E0 =
∞∩

m=1

∞∪
j=m

Ej ,

则 m(E0) = 0, 且 F = E\E0. 接下来只要证明在 E 上, fkj → f 即可. 考虑到不收

敛的结构, 这是容易的. �
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面对一种新定义的收敛, 我们自然要问, 一列可测函数在这种收敛下如果有极

限, 这个极限是不是唯一的? 接下来我们引入依测度基本列的概念并证明: 在函数

对等7的意义下, 依测度收敛的极限唯一.

定义 3.3.12 (依测度基本列). 设 E ⊂ Rn 为 Lebesgue 可测集. fk 是 E 上几

乎处处有限的可测函数, 称 {fk} 为依测度基本列, 如果对 ε > 0, δ > 0, 存在 K, 使

得当 i, j > K 时, 有

m
(
E(x| |fi(x)− fj(x)| > ε)

)
> δ.

注 依测度基本列有时也被称为依测度 Cauchy 列.

下面的定理类似于数学分析中的 Cauchy 准则.

定理 3.3.13. 设 E ⊂ Rn 为 Lebesgue 可测集. 则 {fk} 为依测度基本列当且

仅当存在 E 上的一个 Lebesgue 可测函数 f , 使得

fk
m→ f, x ∈ E.

证明 由依测度收敛的定义, 充分性是显然的.

我们分两步证明必要性.

Step 1. 找出极限函数 f . 取 ε1 = 1/2, δ1 = 1/2, 则存在 k1 使得当 k, j > k1

时, 有

m
(
E
(
x
∣∣ |fk(x)− fj(x)| > 1

21
))

<
1

21
,

取 ε2 = 1/22, δ2 = 1/22, 则存在 k2(> k1) 使得当 k, j > k2 时, 有

m
(
E
(
x
∣∣ |fk(x)− fj(x)| > 1

22
))

<
1

22
,

如此继续, 取 εj = 1/2n, δj = 1/2n, 则存在 kn(> kn−1) 使得当 k, j > kn 时, 有

m
(
E
(
x
∣∣ |fk(x)− fj(x)| > 1

2n
))

<
1

2n
,

同样作 Ek 与 E0 = lim
k→∞

Ek, 则 m(E0) = 0. 现在, 让

F = E\E0 =

∞∪
i=1

∞∩
j=i

E
(
x
∣∣∣ |fkj (x)− fkj−1(x)| <

1

2j−1

)
那么对每一个 x ∈ F , {fkj (x)}为 R1 上的 Cauchy列. 让 f(x) = lim

j→∞
fkj (x), x ∈ F,

并补充定义使之可测, 且

fkj

a.e.→ f, x ∈ E.
7我们称两个函数对等如果它们几乎处处相等.
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Step 2. 证明 {fkj}依测度收敛到 f . 首先证明对任意给定的 m,在
∞∩

j=m

(E\Ej)

上, 有

fkj ⇒ f.

事实上, j 充分大时, 对任意给定的 p 有∣∣fkj+p(x)− fkj (x)
∣∣ 6 1

2j−1

∞∑
i=1

1

2i
6 1

2j−1
,

让 p→∞, 则对任意 x ∈
∞∩

j=m

(E\Ej) 我们有

|f(x)−−fkj (x)| 6
1

2j−1
.

其次, 证明对 ∀ ε > 0, δ > 0, 存在 J , 使得当 j > J 时, 有

m
(
E(x| |f(x)− fj(x)| > ε)

)
< δ.

事实上, 由于

m
( ∞∪

i=m

Ei

)
6 1

2m−1

故可取 m0 使得
1

2m0−1 < ε. 由于 {fkj} 在
∞∩

j=m

(E\Ej) 上一致收敛到 f , 故对上述

ε, 存在 j0 使得当 j > j0 时, 对任意 x ∈
∞∩

j=m

(E\Ej) 有

|fkj (x)− f(x)| < ε.

则

E
(
x
∣∣ |fkj (x)− f(x)| > ε

)
⊂ E\

( ∞∩
j=m

(E\Ej)
)
=

∞∪
j=m0

Ej .

这说明

m
(
E(x| |fkj (x)− f(x)| > ε)

)
< δ,

也即 fkj (x)
m→ f .

最后再证明 fk(x)
m→ f 即可, 我们留做习题. �

习题 3.3

1. P140 1,3,4,5,6

2. P144 1,2

3. P149 10,11,13,15
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§3.4 函数可测的充要条件及复合函数的可测性

下面我们给出函数可测的充分必要条件.

定理 3.4.1 (函数可测的充要条件). 设 E ⊂ Rn 为 Lebesgue 可测集, 则 f :

E → R 为 Lebesgue 可测集当且仅当对每一个 Borel 集 B ⊂ R1, 有

E
(
x| f(x) ∈ B

)
为 Lebesgue 可测集.

证明 充分性是显然的. 事实上,对 ∀ t ∈ R,由 (t,∞) ∈ B 以及可测函数之定义

可知 f 可测.

必要性. 我们再一次用到所谓的好集原理, 让

S =
{
B ⊂ R

∣∣ f−1(B)为 E 上的 Lebesgue 可测子集
}
.

(1) 设 Bk ∈ S, k = 1, 2, · · · . 则 Ak = f−1(Bk) 是 Lebesgue 可测的. 故

f−1
( ∞∪

k=1

Bk

)
=

∞∪
k=1

f−1(bk)

是 Lebesgue 可测的. 这说明 S 关于可数并封闭.

(2) 任取 B1, B2 ∈ S, 则

f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2)

是 Lebesgue 可测的. 这说明 S 关于有限交闭.

(3) 任取 B ∈ S, 则

E = f−1(R) = f−1(B ∪Bc) = f−1(B) ∪ f−1(Bc).

故 f−1(Bc) 是 Lebesgue 可测的. 这说明 S 关于差运算闭.

以上三条说明 S 是一个 σ- 环, 故对 ∀ (c, d) ⊂ R1, 有

f−1
(
(c, d)

)
= E

{
x| f(x) > c

}
∩ E

{
x| f(x) < d

}
是 Lebesgue 可测的, 进一步有

f−1
( ∞∪

k=1

(
(ck, dk)

))
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是 Lebesgue 可测的. 也即 B ⊂ S, 故必要性成立. �
注 回忆连续函数的性质: 实值函数 f 为 R 上的连续函数当且仅当 R 中任意

开集的原像仍为开集. 故我们可以吧 Lebesgue可测集看作是连续函数的一种推广.

现在, 我们考虑如下映射

E
f→ R

g→ R,

其中 f, g 均为 Lebesgue可测函数. 问: g ◦ f : E → R 是不是 Lebesgue可测的? 我

们可以看到

E
(
x
∣∣ g ◦ f(x) > t

)
= E

(
x| g ◦ f(x) ∈ (t,+∞)

)
= E

(
x| f(x) ∈ g−1(t,+∞)

)
.

上式最后一项中 g−1(t,+∞)是 Lebesgue可测的而不一定是 Borel集,故定理 3.4.1

不能导出 g ◦ f 是可测的, 事实上 g ◦ f 不一定可测.

习题 3.4

1. 直接说明两个 Lebesgue 可测函数的复合函数未必可测.



第四章 Lebesgue 积分

在本章中, 我们逐步建立 Lebesgue 积分. 首先, 我们来研究测度有限集上

非负可测函数的积分, 对这一类相对简单的情况的讨论有助于我们建立更一般的

Lebesgue 积分.

§4.1 测度有限集上非负可测函数的积分

有了前几章的基础, 我们来推广概论中关于 Lebesgue 积分的简单定义.

定义 4.1.1 (Lebesgue积分). 设 E ⊂ Rn 是 Lebesgue可测集,并且 m(E) <∞.

f : E → R 是定义在 E 上的非负有界可测函数, 即存在 m,M > 0, 使得当 x ∈ E

时, 有

m 6 f(x) < M

对 [m,M) 做分划 D :

m = y0 < y1 < y2 < · · · < yk =M

记

δ(D) = max
06i6k−1

(yi+1 − yi).

任取 ξi ∈ [yi, yi+1], 作和式

S(f,D) =

k∑
i=0

ξim(Ei),

其中,

Ei = {x ∈ E| yi 6 f(x) < yi+1}.

如果存在常数 S, 使得对 ∀ ε > 0 存在 δ > 0, 使得对 [m,M) 的任意分划, 只要

δ(D) < δ, 就有

|S(f,D)− S| < ε,

则称 f 在 E 上是 Lebesgue 可积的, 并称 S 为 f 在 E 上的 Lebesgue 积分, 记为

(L)

∫
E

f(x)dx.

在不致混淆的前提下, 上式左端 (L) 可以略去.

85
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例 4.1.2. 设 E ⊂ Rn 是 Lebesgue 可测集, 并且 m(E) = 0. 则 E 上的任何有

界可测函数 f 都是 Lebesgue 可积的, 并且∫
E

f(x)dx = 0.

下面一例说明 Lebesgue 可积函数类比 Riemann 可积函数类广.

例 4.1.3 (Dirichlet 函数). Dirichlet 函数 (0◃4.5) 是 Lebesgue 可积的, 且∫
[0,1]

D(x)dx = 0.

事实上, Lebesgue 可积函数的范围很广.

定理 4.1.4. 设 E ⊂ Rn 为 Lebesgue 可测集, 并且 m(E) < +∞. 如果 f 为 E

上有界的 Lebesgue 可测函数, 则 f 是 Lebesgue 可积的.

证明 一切记号如之前所设, 再记

S(f,D) =
k∑

i=0

yim(Ei), S(f,D) =
k∑

i=0

yi+1m(Ei).

证明流程如下.

1. S(f,D) 6 S(f,D);

2. S(f,D) 6 S(f,D) + δ(D)m(E);

3. 对任意 D1, D2, 则

S(f,D1) 6 S(f,D2);

4. 取一列 {Dk}, 使得 D1 ⊂ D2 ⊂ · · · ⊂ Dk ⊂ · · · , 且 lim
k→

δ(Dk) = 0, 则

S(f,Dk) 6 S(f,Dk+1) 6 S(f,Dk+1) 6 S(f,Dk);

5. 设 supS(f,Dk) = S, inf S(f,Dk) = S, 由 Step 2. 有 S = S, 记为 S. 对任意分
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割 D, 让 D′
k = D ∪Dk, 则

S(f,D) 6 S(f,D) =
k−1∑
i=0

yi+1m(Ei)

6
k−1∑
i=0

yim(Ei) + δ(D)m(E)

= S(f,D) + δ(D)m(E)

6 S(f,D′
k) + δ(D)m(E)

6 S(f,D′
k) + δ(D)m(E)

6 S(f,Dk) + δ(D)m(E).

这说明对任意 ε > 0,当分割 D 足够细时,我们有 S(f,D)−S 6 S(f,Dk)−S+

δ(D)m(E) < ε. 另一方面,

S(f,D) > S(f,D) > S(f,D)− δ(D)m(E)

> S(f,D′
k)− δ(D)m(E)

> S(f,D′
k)− δ(D)m(E)

> S(f,Dk)− δ(D)m(E).

这说明对任意 ε > 0,当分割 D 足够细时,我们有 S−S(f,D) 6 S−S(f,Dk)−

S + δ(D)m(E) < ε.

由定义, f 是 Lebesgue 可积的. �

定理 4.1.5. 设 {Ei}mi=1 ⊂ P(Rn) 是一列 Lebesgue 可测集, 并且 Ei ∩ Ej =

∅, i ̸= j. 令 E =
m∪
i=1

Ei, 则 E 是 Lebesgue 可测的. 若 m(E) < +∞, 则

∫
E

f(x)dx =
m∑
i=1

∫
Ei

f(x)dx.

证明 ∫
E

f(x)dx←
k−1∑
j=0

ξjm(Ej) = SE(f,D) =
k−1∑
j=0

ξj

m∑
i=1

m(Ej
i )

=

m∑
i=1

k−1∑
j=0

ξjm(Ej
i )

=
m∑
i=1

SEi(f,D)→
m∑
i=1

∫
Ei

f(x)dx.
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故结论成立. �

以上定理仅为积分关于区间的可加性的最简单结论, 在后文中, 我们将逐步推

广这一结果, 最一般的结果见定理 4.2.14.

定理 4.1.6 (线性性质). 设 E ⊂ Rn 为 Lebesgue可测集, 并且 m(E) < +∞.如

果 f, g 为 E 上非负有界的 Lebesgue 可测函数, α, β ∈ R+, 则 αf + βg 是 Lebesgue

可积的, 且 ∫
E

(αf(x) + βg(x))dx = α

∫
E

f(x)dx+ β

∫
E

g(x)dx.

证明 Step 1. 由于 f, g 是非负有界的, 由定理 4.1.4, f, g 是 Lebesgue 可积的.

由 Lebesgue 积分的定义, 容易证明∫
E

αf(x)dx = α

∫
E

f(x)dx.

Step 2. 证明
∫
E
(f(x) + g(x))dx =

∫
E
f(x)dx+

∫
E
g(x)dx. 事实上, 由于 f, g 是

非负有界的, 可设 m 6 f 6M, m′ 6 g 6M ′. 分别作分划

D : m = y0 6 y2 6 · · · 6 yk =M,

D′ : m′ = y′0 6 y′2 6 · · · 6 y′k′ =M ′.

让

Eij = E(x| yi 6 f(x) < yi+1, y
′
j 6 g(x) < y′j+1)

= E(x| yi 6 f(x) < yi+1) ∩ E(x| y′j 6 g(x) < y′j+1).

则有

E =
k−1∪
i=0

k′−1∪
j=0

Eij =
k−1∪
i=0

Ei =
k′−1∪
j=0

E′
j ,

并且, 我们有

Eij ∩ Ei′j′ = ∅, (i, j) ̸= (i′, j′),

以及 ∫
Eij

(f(x) + g(x))dx 6 (yi+1 + y′i+1)m(Eij)

= yi+1m(Eij) + y′i+1m(Eij).



§4.1 测度有限集上非负可测函数的积分 89

因此, 我们有

∫
E

(f(x) + g(x))dx =

k−1∑
i=1

k′−1∑
j=1

∫
Eij

(f(x) + g(x))dx

6
k−1∑
i=1

k′−1∑
j=1

(yi+1m(Eij) + y′i+1m(Eij))

=

k−1∑
i=1

yi+1m(Eij) +

k′−1∑
j=1

y′i+1m(Eij))

= S(f,D) + S(g,D′).

由 D,D′ 的任意性及 f, g 的可积性, 有∫
E

(f(x) + g(x))dx 6
∫
E

f(x)dx+

∫
E

g(x)dx.

同理有另一方向的不等式, 故结论成立. �

同样, 我们也将在后文中推广这一结论, 最一般的结果见定理 4.2.8.

定理 4.1.7 (保序性). 设 E ⊂ Rn 是 Lebesgue 可测集, 且 m(E) < +∞, f, g 是

E 上的 Lebesgue 可积函数, 若 f
a.e.
6 g, 则∫

E

f(x)dx 6
∫
E

g(x)dx.

证明 让 h = g − f , 则 h
a.e.
> 0. 如果令 E0 = E(x| h(x) < 0), 则 m(E0) = 0. 那

么由例 4.1.2 及 Lebesgue 积分的定义, 我们有∫
E

g(x)dx−
∫
E

f(x)dx =

∫
E

h(x)dx

=

∫
E\E0

h(x)dx+

∫
E0

h(x)dx > 0.

移项即可. �

定理 4.1.8. 设 E ⊂ Rn, 且

m(E) < +∞,

f 为 E 上的非负有界可测函数. 若
∫
E
f(x)dx = 0, 则在 E 上有

f(x)
a.e.
= 0.
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证明 我们留做习题. �
下面的定理揭示了非负可测函数的 Riemann 积分与 Lebesgue 积分之间的关

系.

定理 4.1.9. 设 f(x) 是 [a, b] 上的非负 Riemann 可积函数, 则 f(x) 在 [a, b]

上是 Lebesgue 可积的, 并且

(L)

∫
[a,b]

f(x)dx = (R)

∫ b

a

f(x)dx.

证明 Step 1. f 在 [a, b] 上有界. 事实上, 由于 f(x) 是 [a, b] 上的非负 Riemann

可积函数, 对任意 ε > 0, 存在 [a, b] 的分划

D : a = x0 6 x2 6 · · · 6 xk = b,

使得 ∣∣∣ k∑
i=1

f(ξi)∆xi −
∫ b

a

f(x)dx
∣∣∣ 6 1, ξi ∈ (xi−1, xi).

固定 ξ1, · · · , ξk−1, 让 ξk 在 [xk−1, xk] 上变化, 故有 f 在 [xk−1, xk] 上有界, 同理可

得 f 在 [xi−1, xi], i = 1, 2, · · · , k 上有界.

Step 2. 让 {Dk} 为 [a, b] 上的一列分划,

Dk : a = xk0 6 xk1 6 · · · 6 xkik = b,

并且

Dk ⊂ Dk+1, δ(Dk)→ 0.

记

S(f,Dk) =

ik−1∑
i=0

Mk
i (x

k
i+1 − xki ), S(f,Dk) =

ik−1∑
i=0

m
(
ix

k
i+1 − xki ),

其中

Mk
i = sup

x∈[xk
i ,x

k
i+1)

f(x), mk
i = inf

x∈[xk
i ,x

k
i+1)

f(x).

则 S(f,Dk)→
∫ b

a
f(x)dx, S(f,Dk)→

∫ b

a
f(x)dx. 现在, 让

φk(x) =

 mk
i , x ∈ [xki , x

k
i+1)

f(b), x = b
, ψk(x) =

 Mk
i , x ∈ [xki , x

k
i+1)

f(b), x = b
.

则 φk(x) 6 f(x) 6 ψk(x), 并且

S(f,Dk) =

∫ b

a

φk(x)dx, S(f,Dk) =

∫ b

a

ψk(x)dx.
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由于 φk(x) 6 φk+1(x) 6 ψk+1(x) 6 ψk(x), 由单调有界原理, {φk}, {ψk} 均有极限

函数,分别记为 f, f.那么,由于可测函数关于极限运算封闭,我们有 f, f 均在 [a, b]

上可测, 并且

f 6 f 6 f.

Step 3. 证明
∫
[a,b]

(f(x)− f(x))dx = 0. 事实上, 我们有∫
[a,b]

φk(x)dx =
k−1∑
i=0

mk
i (x

k
i+1 − xki )→

∫ b

a

f(x)dx

6
∫
[a,b]

f(x)dx 6
∫
[a,b]

f(x)dx

6
∫
[a,b]

ψk(x)dx

6
k−1∑
i=0

Mk
i (x

k
i+1 − xki )→

∫ b

a

f(x)dx

这说明
∫
[a,b]

(f(x)− f(x))dx = 0.由定理 4.1.8, 我们有 f(x)
a.e.
= f(x).而 f(x) 6 f 6

f(x), 故 f(x)
a.e.
= f(x), 那么 f 也是可测的, 并且

(L)

∫
[a,b]

f(x)dx = (R)

∫ b

a

f(x)dx.

证毕. �

习题 4.1

1. 设 f(x) 为 Rn 上的有界可测函数. 证明: I(x) =
∫
B(0,∥x∥) f(y)dy 为连续函数.

2. 证明 f 在 [a, b] 上 Riemann 可积的充要条件是 f 在 [a, b] 上几乎处处连续.

[Hint: 考虑 f 的振幅函数

ωf (x) = f(x)− f(x),

则 f 在 x 处连续当且仅当 ωf (x) = 0.]

3. P220 1,2,3,4,5,6

§4.2 一般可测集上一般可测函数的积分

下面我们来定义一般 Lebesgue可测集上非负函数的 Lebesgue积分. 在这个定

义中, 我们取消了对 f 的有界及对 E 测度有限的限制, 但仍要求 f 为非负可测函

数.
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定义 4.2.1. 设 E ⊂ Rn 是 Lebesgue 可测集, f 是 E 上的非负可测函数. 设

{Ek} 是 E 的可测子集列, 满足 Ek ⊂ Ek+1, m(Ek) <∞, E =
∪∞

k=1Ek.
1 记

[f ]m(x) = min
{
f(x),m

}
,

如果

lim
k→∞

∫
Ek

[f ]k(x)dx <∞,

则称 f 在 E 上 Lebesgue 可积, 并记∫
E

f(x)dx = lim
k→∞

∫
Ek

[f ]k(x)dx <∞.

下面我们将要说明上面的定义是合理的, 也即所定义的 Lebesgue 积分不应依

赖于 {Ek} 的选取. 同时, 如果我们以 [f ]mk
去代替 [f ]k, 不会改变敛散性以及极限

值.

首先, 我们注意到
∫
Ek

[f ]k(x)dx 关于 k 是单增的.

引理 4.2.2. 设 E ⊂ Rn 是 Lebesgue 可测集, f 是 E 上的非负可测函数. 设

{E(j)
k }, j = 1, 2 是 E 的两个单增覆盖列, {m(i)

k }, i = 1, 2 是两个趋于正无穷的单

增数列, 如果

lim
k→∞

∫
E1

k

[f ]m1
k
(x)dx <∞,

则

lim
k→∞

∫
E2

k

[f ]m2
k
(x)dx = lim

k→∞

∫
E1

k

[f ]m1
k
(x)dx.

证明 记

S1 = lim
k→∞

∫
E1

k

[f ]m1
k
(x)dx,

首先, 我们要证, 对 ∀ k, 有 ∫
E2

k

[f ]m2
k
(x)dx 6 S1.

为此, 任取 E 中测度有限的 Lebesgue 可测集 A 以及 M ∈ R+, 只要证明∫
A

[f ]M (x)dx 6 S1. (4◃2.1)

1满足以上条件的 {Ek} 称为 E 的一个单增覆盖列.
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事实上, 取充分大的 k, 使得 M 6 m1
k, 则有∫

A

[f ]M (x)dx =

∫
A∩E1

k

[f ]M (x)dx+

∫
A\E1

k

[f ]M (x)dx

6
∫
A∩E1

k

[f ]m1
k
(x)dx+

∫
A\E1

k

[f ]M (x)dx

6
∫
E1

k

[f ]m1
k
(x)dx+M ·m(A\E1

k)

6 S1 +M ·m(A\E1
k).

由于 E1
k ⊂ E1

k+1, E =
∪
E1

k. 因此 A\E1
k 单调递减, 极限集为空集. 故

lim
k→∞

m(A\E1
k) = 0.

这样就证明了 (4◃2.1) 式. 特别地, 取 A = E2
k, M = m2

k, 我们有
∫
E2

k
[f ]m2

k
(x)dx 关

于 k 单调递增且恒小于 S, 因此

lim
k→∞

∫
E2

k

[f ]m2
k
(x)dx 6 S1.

反过来, 令

S2 = lim
k→∞

∫
E2

k

[f ]m2
k
(x)dx,

重复上面的步骤, 我们有

lim
k→∞

∫
E1

k

[f ]m1
k
(x)dx 6 S2.

综上所述, 我们有 S1 = S2. �
为了将积分的定义扩展到一般的函数, 我们需要将一般函数分解成正部和负

部.

定义 4.2.3. 设 E ⊂ Rn 是 Lebesgue 可测集, f : E → R ∪ {±∞}, 记

f+ = max{f, 0}, f− = max{−f, 0},

分别称为函数 f 的正部和负部.

由定义, 我们有 |f | = f+ + f−.

定义 4.2.4. 设 E ⊂ Rn 是 Lebesgue 可测集, f : E → R ∪ {±∞} 为 Lebesgue

可测函数. 如果 f+, f− 均为 Lebesgue 可积函数, 则称 f 为 Lebesgue 可测函数, 并

称 ∫
E

f(x)dx =

∫
E

f+(x)dx−
∫
E

f−(x)dx

为 f 在 E 上 Lebesgue 积分.
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定理 4.2.5. 设 E ⊂ Rn 是 Lebesgue 可测集, f 是 E 上的 Lebesgue 可测函数,

记 E∞ = E(x| f(x) = ±∞). 若 f 是 Lebesgue 可积的, 则

m(E∞) = 0.

证明 由于 |f | 也是 Lebesgue 可积的, 我们有∫
E

|f |(x)dx←
∫
Ek

[|f |]k(x)dx >
∫
Ek∩E∞

[|f |]k(x)dx

> km(Ek ∩ E∞).

那么,

m(Ek ∩ E∞) 6 1

k

∫
E

|f |(x)dx.

令 k →∞, 有 m(E∞) = 0. �
下面的定理说明 Lebesgue 积分关于区域有有限可加性.

定理 4.2.6 (关于区域的有限可加性). 设 E = E1∪E2, E1∩E2,并且 E1, E2 ⊂

Rn 是 Lebesgue 可测集, f 为 E 上的 Lebesgue 可积函数, 则 f 在 E1, E2 上均为

Lebesgue 可积的, 并且∫
E

f(x)dx =

∫
E1

f(x)dx−
∫
E2

f(x)dx.

证明 对于 f+ 以及 E 的测度有限的单增覆盖列 {Ek}, 有 {E1 ∩Ek} 和 {E2 ∩

Ek} 分别是 E1, E2 的测度有限的单增覆盖列. 那么我们有∫
Ek

[f+]k(x)dx =

∫
E1∩Ek

[f+]k(x)dx+

∫
E2∩Ek

[f+]k(x)dx,

这说明 ∫
E

[f+](x)dx =

∫
E1

[f+](x)dx+

∫
E2

[f+](x)dx,

同理有关于 f− 的结论. 再由积分定义知结论成立. �

定理 4.2.7. 设 E ⊂ Rn 是 Lebesgue 可测集, F, f 是 E 上的 Lebesgue 可测函

数, 并且

|f(x)|
a.e.
6 F (x).

如果 F 在 E 上是 Lebesgue 可积的, 则 f 在 E 上也是 Lebesgue 可积的.

证明 由于

0 6 f+
a.e.
6 F,



§4.2 一般可测集上一般可测函数的积分 95

故在 E 上, 我们有

0 6 [f+]k
a.e.
6 [F ]k,

由积分保序性, 有 ∫
Ek

[f+]k(x)dx 6
∫
Ek

[F ]k(x)dx→ +∞.

余下的部分是容易的. �

定理 4.2.8 (线性性质). 设 E ⊂ Rn 是 Lebesgue 可测集, f, g 是 E 上的

Lebesgue 可积函数, α, β ∈ R. 则 αf + βg 在 E 上 Lebesgue 可积并且∫
E

(αf(x) + βg(x))dx = α

∫
E

f(x)dx+ β

∫
E

g(x)dx.

证明 Step 1. 当 α > 0 时, 证明
∫
E
αf(x)dx = α

∫
E
f(x)dx. 事实上,

[(αf)+]k =

 k, (αf)+(x) > k

(αf)+(x), (αf)+(x) < k
,

因此, 我们有

α[f+] k
α
=

 k, f+(x) > k
α

αf+(x), f+(x) < k
α

= [(αf)+]k.

故 ∫
Ek

[(αf)+]k(x)dx =

∫
Ek

α[f+] k
α
(x)dx

= α

∫
Ek

[f+] k
α
(x)dx.

这说明 ∫
E

αf+(x)dx = α

∫
E

f+(x)dx.

类似的可证 ∫
E

αf−(x)dx = α

∫
E

f−(x)dx.

因此我们有 ∫
E

αf(x)dx = α

∫
E

f(x)dx.
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当 α < 0 时, 有∫
E

αf(x)dx =

∫
E

(αf)+(x)dx−
∫
E

(αf)−(x)dx

=

∫
E

(−αf)−(x)dx−
∫
E

(−αf)+(x)dx

= −((−α)
∫
E

f+(x)dx− (−α)
∫
E

f−(x)dx)

= α

∫
E

f(x)dx.

Step 2. 对非负可积的 f, g, 我们有∫
E

(f(x) + g(x))dx =

∫
E

f(x)dx+

∫
E

g(x)dx.

为此, 只要证明对 ∀ M > 0, 有

[f + g]M 6 [f ]M + [g]M 6 [f + g]2M .

事实上

1. 若 0 6 f 6M , 0 6 f 6M , 则

[f + g]M (x) = min{f(x) + g(x),M}

6 f(x) + g(x).

2. 若 f(x), g(x) 中至少有一个大于等于 M , 则

[f + g]M (x) = max{[f ]M (x), [g]M (x)}

6 [f ]M (x) + [g]M (x) 6 2M.

3. 其他情况下, 有

[f ]M (x) + [g]M (x) 6 min{f(x) + g(x), 2M}

= [f + g]2M (x).

Step 3. 一般情形下, 我们有

(f + g)+ − (f + g)− = f + g = f+ + g+ − f− − g−,

也即

(f + g)+ + f− + g− = f+ + g+ + (f + g)−,
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因此∫
E

((f + g)+(x) + f−(x) + g−(x))dx =

∫
E

(f+(x) + g+(x) + (f + g)−(x))dx.

由 Step 2. 我们有 ∫
E

(f + g)+(x)dx+

∫
E

f−(x)dx+

∫
E

g−(x)dx

=

∫
E

f+(x)dx+

∫
E

g+(x)dx+

∫
E

(f + g)−(x)dx.

移项后我们有 ∫
E

(f(x) + g(x))dx =

∫
E

f(x)dx+

∫
E

g(x)dx.

综上所述, 结论成立. �

定理 4.2.9 (保序性). 设 E ⊂ Rn 是 Lebesgue 可测集, f, g 是 E 上的 Lebesgue

可积函数, 并且在 E 上有 f
a.e.
6 g. 则∫

E

f(x)dx 6
∫
E

g(x)dx.

证明 取 h = g − f
a.e.
> 0, 则 ∫

E

f(x)dx > 0.

再利用定理 4.2.8 即可. �

注意到 ±f < |f |, 由定理 4.2.9 立即有:

推论 4.2.10. 设 f 为 Lebesgue 可积函数, 则∣∣∣ ∫
E

f(x)dx
∣∣∣ 6 ∫

E

|f(x)|dx.

对应于定理 4.1.8, 我们有

定理 4.2.11. 设 E ⊂ Rn 是 Lebesgue 可测集, f 是 E 上的 Lebesgue 可积函

数, 并且

f(x)
a.e.
> 0.

若
∫
E
f(x)dx = 0, 则在 E 上有

f(x)
a.e.
= 0.
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证明 只需证: 对任意 α > 0, 有

m(E(x| f(x) > α)) = 0.

我们留做习题. �
定理 4.1.9 阐述了非负函数的 Riemann 积分和 Lebesgue 积分之间的关系. 从

定义 4.2.4中看出,这一结论不能直接推广,我们需要要求 f 是绝对可积的,否则容

易给出反例.

例 4.2.12. 取

f(x) =
1

x
sin(x),

则 f 在 [0, 1] 上是 Riemann 可积的, 然而
∫
[0,1]

f+(x)dx 和
∫
[0,1]

f−(x)dx 均不存

在, 故 f 不是 Lebesgue 可积的.

定理 4.2.13 (积分的绝对连续性). 设 E ⊂ Rn 是 Lebesgue 可测集, f 是 E 上

的 Lebesgue 可积函数, 则对 ∀ ε > 0, 存在 δ > 0 使得对 e ⊂ E, 只要 m(e) < δ, 就

有

|
∫
e

f(x)dx| < ε.

证明 对 ∀ ε > 0, 存在 k 使得∫
E

|f(x)|dx−
∫
Ek0

[|f |]k0(x)dx <
ε

2
.

由于 ∫
E

[|f |]k0
(x)dx >

∫
Ek0

[|f |]k0
(x)dx,

故 ∫
E

|f(x)|dx−
∫
E

[|f |]k0(x)dx <
ε

2
.

让 δ = ε
2k0

, 当 e ⊂ E, 且 m(e) < δ 时∫
e

|f |(x)dx =

∫
e

|f |(x)dx−
∫
e

[|f |]k0(x)dx+

∫
e

[|f |]k0(x)dx

6
∫
E

|f |(x)dx−
∫
E

[|f |]k0(x)dx+

∫
e

[|f |]k0(x)dx

<
ε

2
+ k0 ·m(e) < ε

其中我们用到了 |f | − [|f |]k0 恒大于 0 这一事实. �
作为定理 4.2.6 的推广, 我们有如下定理.
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定理 4.2.14 (关于区域的可列可加性). 设 E ⊂ Rn 是 Lebesgue 可测集, f 为

E 上的 Lebesgue 可测函数. 再设 Ek ⊂ E, k = 1, 2, · · · , 是 E 的 Lebesgue 可测子

集, 满足

E =
∞∪
k=1

Ek, Ei ∩ Ej = ∅.

则 f 在 E 为 Lebesgue 可积的当且仅当

(1) f 在 Ek 上是 Lebesgue 可积的, k = 1, 2, · · · ;

(2)
∑∞

k=1

∫
Ek
|f(x)|dx < +∞.

进一步, 当 f 在 E 上 Lebesgue 可积时, 有∫
E

f(x)dx =
∞∑
k=1

∫
Ek

f(x)dx.

证明 必要性. 设 f 在 E 上 Lebesgue 可积, 则 |f | 在 E 上 Lebesgue 可积, 特

别的 |f | 在 Ek 上 Lebesgue 可积. 由定理 4.2.6, 有∫
E

|f(x)|dx =

∫
(E\

m∪
k=1

Ek)∪
m∪

k=1

Ek

|f(x)|dx

=
m∑

k=1

∫
Ek

|f(x)|dx+

∫
E\

m∪
k=1

Ek

|f(x)|dx

>
m∑

k=1

∫
Ek

|f(x)|dx.

令 k → +∞, 我们有 (2) 成立.

充分性. 如果 (1) , (2) 成立. 让 {Fm} 为 E 的测度有限的单增覆盖列, 令

Fm = Fm ∩
( m∪

k=1

Ek

)
,

则 {Fm} 也为 E 的测度有限的单增覆盖列. 那么∫
Fm

|f(x)|dx =

∫
Fm∩

(
m∪

k=1

Ek

) |f(x)|dx
=

m∑
k=1

∫
Fm∩Ek

|f(x)|dx

6
m∑

k=1

∫
Ek

|f(x)|dx < +∞.

因此

lim
m→∞

∫
Fm

[|f |]m(x)dx 6 lim
m→∞

∫
Fm

|f |(x)dx < +∞,



100 第四章 Lebesgue 积分

这说明 f 在 E 上是 Lebesgue可积的. 进一步,如果 f 在 E 上是 Lebesgue可积的,

则对任意 ε > 0, 存在 m0 > 0 使得

∞∑
k=m0+1

∫
Ek

|f(x)|dx.

那么, 我们有∣∣∣ ∫
E

f(x)dx−
∞∑
k=1

∫
Ek

|f(x)|dx
∣∣∣ = ∣∣∣ ∫

E\(
m0∪
k=1

Ek)

f(x)dx−
∞∑

k=m0+1

∫
Ek

|f(x)|dx
∣∣∣

6
∫
E\(

m0∪
k=1

Ek)

|f(x)|dx+
∞∑

k=m0+1

∫
Ek

|f(x)|dx

6 ε

2
+

∞∑
k=m0+1

∫
Ek

|f(x)|dx < ε.

证毕. �

推论 4.2.15. 设 f 在 Rn 上是 Lebesgue 可积的, 且 f > 0. 对任意的 Lebesgue

可测集 E, 定义集函数 φ 为

φ(E) =

∫
E

f(x)dx,

则 φ 为 (Rn,Ln) 上的测度.

证明 由以上讨论, φ 满足 φ(∅) = 0, 单调性以及关于区域的可列可加性. �

定理 4.2.16. 设 E ⊂ Rn 是 Lebesgue 可测集, f 是 E 上的 Lebesgue 可积函

数, 则

lim
k→∞

km(E(x| |f(x)| > k)) = 0.

证明 事实上, 我们有

km(E(x| |f(x)| > k)) 6
∫
E(x| |f(x)|>k)

|f(x)|dx

6
∫
E

f(x)dx.

容易看出, limk→∞m(E(x| |f(x)| > k)) = 0. 由定理 4.2.13, 对 ∀ ε > 0, 存在 δ > 0,

使得对 e ⊂ E, 只要 m(e) < δ, 就有

|
∫
e

f(x)dx| < ε.
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于是当 k 充分大时, 我们有 km(E(x| |f(x)| > k)) 6
∫
E(x| |f(x)|>k)

|f(x)|dx < ε. �

设 E ⊂ Rn 是 Lebesgue 可测集, f 是 E 上的 Lebesgue 可积函数, 则

∞∑
k=1

km(Ek) < +∞,

其中 Ek = E(x| k 6 f(x) < k + 1). 反过来, 如果 m(E) <∞, 并且

∞∑
k=1

km(Ek) =
∞∑
k=1

(k + 1)m(Ek)−m(E) < +∞,

则 f(x) 在 E 上是 Lebesgue 可积的.

本节的最后,我们指出:部分教材上使用了用简单函数逼近非负 Lebesgue可测

函数的方法来定义非负函数的 Lebesgue 积分, 这与我们的定义方式并无矛盾.

定理 4.2.17. 设 E ⊂ Rn 是 Lebesgue 可测集, f 为 E 上的非负 Lebesgue 可测

函数, 则 f 在 E 上 Lebesgue 可测的充要条件是

S(f)
def
= sup

{∫
E

h(x)dx
∣∣∣ h(x) a.e.

6 f(x),且 h(x) 为简单函数
}
< +∞.

进一步, 如果 f 是 Lebesgue 可积的, 我们有∫
E

f(x)dx = S(f).

证明 设 f 在 E 上是 Lebesgue 可积的, 有积分的单调性, 我们有∫
E

h(x)dx 6
∫
E

f(x)dx,

这说明

S(f) 6
∫
E

f(x)dx.

反过来, 设 S(f) < +∞, 让 {Ek} 为 E 的测度有限的单增覆盖列, 则对任意

ε > 0, 取充分大的 m 使得

1

2m
m(Ek) < ε.

现在, 让

Ei
k = Ek

(
x| i− 1

2m
6 f(x) <

i

2m

)
,
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令 Ek2m+1
k = Ek(x| [f ]k(x) = k), 则∫

Ek

[f ]k(x)dx =
k2m∑
i=1

∫
Ek∩Ei

k

[f ]k(x)dx+ k

∫
Ek2m+1

k

dx

6
k2m∑
i=1

i

2m
m(Ei

k) + k ·m(Ek2m+1
k )

=

k2m∑
i=1

i− 1

2m
m(Ei

k) + k ·m(Ek2m+1
k )

+
1

2m

k2m∑
i=1

m(Ei
k)

6 S(f) + ε.

让 k →∞, 我们有 ∫
E

f(x)dx = lim
k→∞

∫
Ek

[f ]k(x)dx 6 S(f) + ε.

由 ε 的任意性, 结论成立. �

习题 4.2

1. P221 7,8,9

§4.3 Lebesgue 积分的极限定理

本节中我们将看到 Lebesgue 积分的极限定理, 这是实变函数论中颇具魅力的

一部分, 它使得我们在 Lebesgue 意义下极大的简化了极限换序的条件.

定理 4.3.1 (Lebesgue控制收敛定理). 设 E ⊂ Rn是 Lebesgue可测集, f, fk, k =

1, 2, · · · 为 E 上的 Lebesgue 可积函数, 使得在 E 上有

fn
a.e.→ f, 或 fn

m→ f.

如果存在 E 上的 Lebesgue 可积函数 F , 使得

|fn|
a.e.
6 F,

则我们有

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx.
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证明 首先, 有

|f |
a.e.
6 F,

故 f 是可积的.

下面我们将问题转化到测度有限集合上来. 对任意 ε > 0, 由于 F 在 E 上可

积, 存在 Em ⊂ E, 使得 m(Em) < +∞, 并且∫
E\Em

F (x)dx 6
∫
E

F (x)dx−
∫
Em

[F ]m(x)dx <
ε

6
,

由于 fn
a.e.→ f , 根据定理 3.3.10, 在 Em 上, 我们有

fn
m→ f,

让 ε1 = ε
3(m(Em)+1) , 则对任意的 δ > 0, 存在 n0, 使得当 n > n0 时, 我们有

m
(
Em(x| |fn(x)− f(x)| > ε1)

)
< δ,

再由积分的绝对连续性, 当 e ⊂ E, m(e) < δ 时, 我们有∫
e

F (x)dx <
ε

3
.

下面, 我们来估计 |
∫
E
(fn(x)− f(x))dx|.∣∣∣ ∫

E

(fn(x)− f(x))dx
∣∣∣ 6 ∫

E

|fn(x)− f(x)|dx

6
∫
E\Em

|fn(x)− f(x)|dx+

∫
Em

|fn(x)− f(x)|dx

6
∫
E\Em

2F (x)dx+

∫
Em(x| |fn(x)−f(x)|>ε1

|fn(x)− f(x)|dx

+

∫
Em(x| |fn(x)−f(x)|<ε1

|fn(x)− f(x)|dx

6 ε

3
+
ε

3
+ ε1 ·m(Em)

6 ε

3
+
ε

3
+
ε

3
= ε.

由 ε 的任意性, 结论成立. �
控制函数可积这一条件不能去掉, 否则有反例如下.

例 4.3.2. 让

fk(x) =

 1
k , x ∈ [0, k);

0, x ∈ (k,+∞).
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则 fk ⇒ f ≡ 0, 然而∫
[0,+∞)

fk(x)dx ≡ 1 ̸= 0 =

∫
[0,+∞)

f(x)dx.

有控制函数这一条件不能去掉, 否则有反例如下.

例 4.3.3. 让

fk(x) =

 k, x ∈ [0, 1k );

0, x ∈ [ 1k , 1].

则 fk
a.e.→ f ≡ 0, 然而∫

[0,+∞)

fk(x)dx ≡ 1 ̸= 0 =

∫
[0,+∞)

f(x)dx.

对于单调函数列, 我们有 Levi 引理.

定理 4.3.4 (Levi 引理). 设 E ⊂ Rn 是 Lebesgue 可测集, {fn} 为 E 上一列单

调递增2(递减) 的 Lebesgue 可积函数, 并且

lim
n→∞

∫
E

fn(x)dx < +∞(> −∞),

则存在 E 上的 Lebesgue 可积函数 f , 使得

fn
a.e.→ f,

并且

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx.

证明 我们只证 fn 单调递增的情况, 不妨设 fn > 0.3 对每一个 x ∈ E, 让

f(x) = lim
n→∞

fn(x),

则 f 在 E 上是 Lebesgue 可测的. 由于

[fn]k(x)→ [f ]k(x), [fn]k(x) 6 [f ]k(x),

应用定理 4.3.1, 我们有 ∫
Ek

[f ]k(x)dx = lim
n→∞

∫
Ek

[fn]k(x)dx

6 lim
n→∞

∫
E

fn(x)dx

2即 fn 6 fn+1.
3否则可以先对 f 的正部和负部证明.
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这说明

lim
n→∞

∫
E

fn(x)dx >
∫
E

f(x)dx.

另一方面, 由于 f > fn, 显然有

lim
n→∞

∫
E

fn(x)dx 6
∫
E

f(x)dx.

综上所述, 结论成立. �
若只能找到上方 (或者下方) 的控制函数, 则我们可以得到弱一点的结果.

定理 4.3.5 (Fatou 引理). 设 E ⊂ Rn 是 Lebesgue 可测集, {fn} 为 E 上一列

Lebesgue 可积函数. 若存在 E 上的 Lebesgue 可积函数 h, 使得在 E 上有

h
a.e.
6 fn, n = 1, 2, · · · ,

则 lim
n→∞

fn(x) 在 E 上可积, 并且我们有

∫
E

lim
n→∞

fn(x)dx 6 lim
n→∞

∫
E

fn(x)dx.

若存在 E 上的 Lebesgue 可积函数 H, 使得在 E 上有

fn
a.e.
6 H, n = 1, 2, · · · ,

则 lim
n→∞

fn(x) 在 E 上可积, 并且我们有

lim
n→∞

∫
E

fn(x)dx 6
∫
E

lim
n→∞

fn(x)dx.

证明 我们只需证明有关 lim
k→∞

fk(x) 的结论. 事实上, 如果令 fk = −gk, 则

− lim
k→∞

gk(x) = lim
k→∞

fk(x).

现在, 让

φk(x) = inf{fk(x), fk+1(x), · · · , fk+p(x), · · · },

则 {φk} 在 E 上可测, 并且

h
a.e.
6 φk

a.e.
6 fm.

这说明 φ+
k

a.e.
6 f+m, φ

−
k

a.e.
6 h−, 那么 φ 在 E 上是 Lebesgue 可积的. 由于 {φk} 是单

增的, 并且当 m > k 时 ∫
E

φk(x)dx 6
∫
E

fm(x)dx,
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那么对任意 k, 我们有 ∫
E

φk(x)dx 6 lim
m→∞

∫
E

fm(x)dx.

由定理 4.3.4, 我们有 ∫
E

lim
k→∞

fk(x)dx =

∫
E

lim
k→∞

φk(x)dx

= lim
k→∞

∫
E

φk(x)dx

6 lim
m→∞

∫
E

fm(x)dx.

故结论成立. �
注 Lebesgue 控制收敛定理, Levi 引理和 Fatou 引理三者等价. (为什么?)

有下方 (或上方) 控制函数这一条件不能去掉, 否则有反例如下.

例 4.3.6. 考虑 [0, 1] 上的函数列 {φj
k}, i, j = 1, 2, · · · , 对每一个固定的 k, 将

[0, 1] 作 k 等分, 让

φi
k(x) =

 −k, x ∈ [ i−1
k , i

k );

0, x ∈ [0, 1]\[ i−1
k , i

k ).

显然, φi
k 在 [0, 1] 上可积, 并且 ∫

[0,1]

φi
k(x)dx = −1,

然而 lim
k→∞

φi
k(x) ≡ −∞, 因而不可积.

当 Lebesgue 控制收敛定理, Levi 引理和 Fatou 引理三者都不可行时, 我们还

有更一般的极限定理, 被称为 Vitali 型极限定理, 我们叙述及证明如下.

定理 4.3.7 (Vitali 型极限定理). 设 E ⊂ Rn 是 Lebesgue 可测集, {fn} 为 E

上一列 Lebesgue 可积函数, 满足

(1) {fk} 在 E 上具有等度的绝对连续性, i.e., 对 ∀ ε > 0, 存在与 k 无关的

δ > 0, 使得对 ∀ e ⊂ E, 只要 m(e) < δ, 就有∫
e

|fk(x)|dx < ε;

(2) {fk} 在 E 的无界部分具有一致的衰退性, i.e., 对 ∀ ε > 0, 存在与 k 无关

的 E 的可测子集 F , 使得对 ∀ k, 有∫
E\F
|fk(x)|dx < ε;
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(3) fk 在 E 上几乎处处或依测度收敛于 f .

则我们有

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx.

证明 首先, 对 ∀ ε > 0, 存在 E 的有界可测子集 F , 使得∫
E\F
|fk(x)|dx <

ε

8
.

根据定理 4.3.5, 有∫
E\F

lim
k→∞

|fk(x)|dx 6 lim
k→∞

∫
E\F
|fk(x)|dx 6 ε

8
.

根据 Cantor 对角线法, 我们可以从 {fk} 中选出一列 {fkj} 使得

fkj

a.e.→ f,

由此可知 ∫
E\F
|f(x)|dx < ε

8
.

由于 m(F ) < +∞, 应用定理 3.3.10, 我们有在 F 上 fk
m→ f. 现在, 取 ε1, 使得

0 < ε1 <
ε

4m(F ) , 那么

lim
k→∞

m
(
F (x| |fk(x)− f(x)| > ε1)

)
= 0,

故存在 k0, 使得当 k > k0 时, 有

lim
k→∞

m
(
F (x| |fk(x)− f(x)| > ε1)

)
< δ,

其中 δ 满足当 e ⊂ E, 且 m(e) < δ 时, 有∫
e

|fk(x)|dx <
ε

4
,

∫
e

|f(x)|dx < ε

4
.

现在, 我们来估计
∫
F
|fk(x)− f(x)|dx.∫

F

|fk(x)− f(x)|dx =

∫
F (x| |fk(x)−f(x)|>ε1)

|fk(x)− f(x)|dx

+

∫
F (x| |fk(x)−f(x)|<ε1)

|fk(x)− f(x)|dx

6
∫
F (x| |fk(x)−f(x)|>ε1)

(|fk(x)|+ |f(x)|)dx+ ε1m(F )

6 2ε

4
+
ε

4
< ε.
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由于 ∫
E\F
|fk(x)− f(x)|dx <

ε

4
,

我们有
∫
E
|fk(x)− f(x)|dx < ε. �

相较于数学分析的结果, 逐项积分定理的条件在 Lebesgue 意义下也被极大简

化了.

定理 4.3.8 (逐项积分定理). 设 E ⊂ Rn 是 Lebesgue 可测集, {fn} 为 E 上一

列 Lebesgue 可积函数, 并且满足

∞∑
n=1

∫
E

|fn(x)|dx < +∞,

则
∑∞

n=1 fn(x) 在 E 上几乎处处收敛. 记 f(x) =
∑∞

n=1 fn(x), 则 f 在 E 上可积,

并且 ∫
E

f(x)dx =
∞∑

n=1

∫
E

fn(x)dx.

证明 让 Fm(x) =
∑m

n=1 |fn(x)|, 则 Fm 在 E 上是 Lebesgue 可积的, 且 Fm 6
Fm+1, m = 1, 2, · · · , 由定理 4.3.4, 有我们有∫

E

lim
m→∞

Fm(x)dx = lim
m→∞

∫
E

Fm(x)dx

= lim
m→∞

m∑
n=1

∫
E

|fn(x)|dx

=
∞∑

n=1

∫
E

|fn(x)|dx < +∞.

令 F = lim
k→∞

Fm, 由于 Fm ↗ F , 则 F 在 E 上是 Lebesgue 可积的. 让

E∞ = E(x|F (x) = +∞),

则 m(E∞) = 0. 对任意 x ∈ E\E∞,
∑∞

n=1 fn(x) 收敛. 这说明
∑∞

n=1 fn(x) 在 E 上

几乎处处收敛. 让 Sm(x) =
∑m

n=1 fn(x), 则

Sm(x)
a.e.→ f(x) =

∞∑
n=1

fn(x),

且

Sm 6
m∑

n=1

|fn(x)| 6 F (x),
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由定理 4.3.1, 我们有 ∫
E

∞∑
n=1

fn(x)dx =

∫
E

lim
m→∞

Sm(x)dx

= lim
m→∞

∫
E

Sm(x)dx

=

∞∑
n=1

∫
E

fn(x)dx.

故逐项微分定理成立. �
在本节的最后, 我们应用 Lebesgue 控制收敛定理来讨论含参变量积分关于参

数的连续性和可微性条件.

定理 4.3.9 (含参变量积分的连续性). 设 E ⊂ Rn是 Lebesgue可测集, B(y0, δ) ⊂

Rn, f : E ×B(y0, δ)→ R, 满足

(1) 对每一个 y ∈ B(y0, δ), f(·, y) 在 E 上 Lebesgue 可测;

(2) 对几乎所有 x ∈ E, f(x, ·) 关于 y 在 B(y0, δ) 上连续;

(3) 存在 E 上的 Lebesgue 可积函数 F (x) 使得对 ∀ y ∈ B(y0, δ), 有

|f |
a.e.
6 F.

则 I(y) =
∫
E
f(x, y)dx 在 B(y0, δ) 上连续.

证明 对每一个 y ∈ B(y0, δ), 任取 {yk} ⊂ B(y0, δ), 使得 yk → y. 我们要证∫
E

f(x, yk)dx→
∫
E

f(x, y)dx.

令 gk(x) = f(x, yk), g(x) = f(x, y). 由 (2) , 有 gk
a.e.→ g, 并且

|gk(x)|
a.e.
6 F (x).

由 Lebesgue 控制收敛定理, 有

I(y) =

∫
E

f(x, y)dx =

∫
E

lim
k→∞

gk(x, y)dx

= lim
k→∞

∫
E

gk(x, y)dx

= lim
k→∞

∫
E

f(x, yk)dx

= I ′(yk).

由函数连续之定义, 结论成立. �
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定理 4.3.10 (含参变量积分的可微性). 设 E ⊂ Rn是 Lebesgue可测集, B(y0, δ) ⊂

Rn, f : E × (a, b)→ R, 满足

(1) 对每一个 y ∈ (a, b), f(·, y) 在 E 上 Lebesgue 可测;

(2) 对几乎所有 x ∈ E, f(x, ·) 关于 y 在 (a, b) 上可微;

(3) 存在 E 上的 Lebesgue 可积函数 F (x) 使得对 ∀ y ∈ B(y0, δ), 有∣∣∣ ∂
∂y
f
∣∣∣ a.e.
6 F.

则 I(y) =
∫
E
f(x, y)dx 在 (a, b) 上可微, 并且

I ′(y) =

∫
E

∂

∂y
f(x, y)dx.

证明 对 y + 1
k , y ∈ (a, b), 让

gk(x) =
f(x, y + 1

k )− f(x, y)
1
k

, g(x) =
∂

∂y
f(x, y).

则在 E 上, 有

gk
a.e.→ g, |gk|

a.e.
6 F (x).

由 Lebesgue 控制收敛定理, 有∫
E

∂

∂y
f(x, y)dx =

∫
E

lim
k→∞

gk(x, y)dx

= lim
k→∞

∫
E

gk(x, y)dx

= lim
k→∞

f(x, y + 1
k )− f(x, y)
1
k

= I ′(y).

证毕. �

习题 4.3

1. P185 1,5,6,7

2. P191 11

3. P222 12,18,19,20,21,23
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§4.4 Lebesgue 积分与连续函数之间的关系

Lebesgue 可积函数与连续函数有密切的关系, 我们有如下定理.

定理 4.4.1. 设 f(x) 是 Rn 上的 Lebesgue 可积函数, 则对 ∀ ε > 0, 存在 Rn

上具有紧支集的连续函数 g, 使得∫
Rn

|f(x)− g(x)|dx < ε.

证明 对 ∀ ε > 0,由于 f 在 Rn 上是 Lebesgue 可积的, 故存在充分大的 k 以及

M , 使得 ∫
Rn\B(0,k)

|f(x)|dx < ε

3
,∫

B(0,k)

(|f(x)| − |f |M (x))dx <
ε

3
.

由于 [f ]M 在 B(0, k) 上是 Lebesgue 可测的, 根据定理 3.2.3, 存在闭集 F ⊂ B(0, k)

使得 m(B(0, k)\F ) < δ, 并且 [f ]M 在 F 上连续, 其中 δ 满足 δ < ε
M+1 . 由于 [f ]M

在有界闭集 F 上连续,且 |f(x)| < M, x ∈ F.现在,让 g 为 [f ]M |F 在 Rn 上的连续

延拓, 使得

|g| < M, g(x) = 0, x /∈ B(0, k).

由积分的绝对连续性, 当 e ⊂ Rn, 且 m(e) < δ 时, 有∫
e

|f(x)− g(x)|dx < ε

3
,

那么我们有,∫
Rn

|f(x)− g(x)|dx =

∫
Rn\B(0,k)

|f(x)|dx+

∫
B(0,k)

|f(x)− g(x)|dx

6 ε

3
+

∫
B(0,k)

|f(x)− [f ]M (x)|dx

+

∫
B(0,k)

|[f ]M (x)− g(x)|dx

6 ε

3
+
ε

3
+

∫
F

|[f ]M (x)− g(x)|dx

+

∫
B(0,k)\F

|[f ]M (x)− g(x)|dx

6 ε

3
+
ε

3
+ 0 +

ε

3
= ε.

由 ε 的任意性即可. �
注 定理说明, 任意 Lebesgue 可积函数可以被分解成两部分, 第一个部分在一

个紧支集上连续, 第二个部分的积分值可以任意小.
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推论 4.4.2. 设 f 在 Rn 上是 Lebesgue 可积的, 则

lim
h→0

∫
Rn

∣∣f(x+ h)− f(x)
∣∣dx = 0.

证明 证明留做习题. �

§4.5 Fubini 定理

在本节中, 我们着重讨论重积分与累次积分的关系以及累次积分的换序问题.

我们从非负 Lebesgue 可积函数入手.

定理 4.5.1 (Tonelli 定理). 设 f(x, y) 为 Rn 上的非负 Lebesgue 可积函数, 则

下面的结论成立

(A) 对几乎所有的 x ∈ Rp, f(x, ·) 为 Rq 上的 Lebesgue 可测函数;

(B) F (x) =
∫
Rq f(x, y)dy 为 Rp 上的 Lebesgue 可测函数;

(C)
∫
Rn f(x, y)dxdy =

∫
Rp F (x)dx.

证明中我们再次用到好集原理, 记

F =
{
f
∣∣ f(x, y)在 Rn 上非负可测, 且满足 (A), (B), (C)

}
.

我们先来看 F 的一些性质.

引理 4.5.2. 设 F 如上所述, 则有

(1) 若 f ∈ F , α ∈ R+, 则 αf ∈ F ;

(2) 若 f, g ∈ F , 则 f + g ∈ F ;

(3) 若 f, g ∈ F , g 是 Lebesgue 可积的, 且 f − g
a.e.
> 0, 则 f − g ∈ F ;

(4) 设 fk ∈ F , k = 1, 2, · · · , 且 fk
a.e.
6 fk+1, 则

f = lim
k→∞

fk ∈ F .

证明 (1), (2) 显然成立.

(3). 由于
∫
Rn g(x, y)dxdy < +∞, 故∫

Rp

Fg(x, y)dx
def
=

∫
Rp

(∫
Rq

g(x, y)dy
)
dx < +∞.

这说明 Fg(x) 几乎处处有限. 也即对几乎所有 x ∈ Rp, 有

Fg(x, y) =

∫
Rq

g(x, y)dy < +∞,
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这说明 g(x, y) 几乎处处有限. 故 f(x, ·)− g(x, ·) 几乎处处有意义且 Lebesgue 可测,

(A) 成立. 又有

Ff−g(x) =

∫
Rq

(
f(x, y)− g(x, y)

)
dy

=

∫
Rq

f(x, y)dy −
∫
Rq

g(x, y)dy.

故 (B), (C) 成立.

(4). (A), (B) 显然成立. 两次应用定理 4.3.4, 我们有∫
Rn

f(x, y)dxdy = lim
k→∞

∫
Rn

fk(x, y)dxdy

= lim
k→∞

∫
Rp

Ffk(x)dx

=

∫
Rp

Ff (x)dx.

故结论成立. �
下面我们证明定理 4.5.1.

证明 Step 1. 设 I1, I2 分别为 Rp,Rq 中的方体,则 I = I1× I2 为 Rn 中的方体.

让

f(x, y) = χI(x, y),

容易验证 f ∈ F .

事实上, 对每一个 x ∈ I1, 有

f(x, y) =

 1, y ∈ I2;

0, y /∈ I2.
= χI2(y).

当 x /∈ I1 时, f(x, y) ≡ 0. 这说明 f(x, ·) 在 Rq 上可测, 故 (A) 成立.

F (x) =

∫
Rq

f(x, y)dxdy =

 m(I2), x ∈ I1;

0, x /∈ I1.
= m(I2)χI1(x).

这说明 F (x) 在 Rp 上可测, 故 (B) 成立.∫
Rn

f(x, y)dxdy = m(I) = m(I1)m(I2)

=

∫
Rp

F (x)dx.

故 (C) 成立.

Step 2. 对每一个开集 G ⊂ Rn, 由于 G 可被表成至多可列个左开右闭方体之

并, 故 χG ∈ F .
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Step 3. 对每一个闭集 F ⊂ Rn, 由于 F 可被表成两个开集的差集, 故 χF ∈ F .

Step 4. 设 {Ek}为递减可测集列,且 m(E1) <∞,令 E =
∩∞

k=1Ek,则 χE ∈ F .

Step 5. 若 E 为零测集, 则 χE ∈ F .

Step 6. 若 E ∈ Ln, 则 E 可以被表成 E = (
∪∞

k=1 Fk) ∪ Z, 其中 m(Z) = 0. 故

χE ∈ F .

Step 7. 由 Step 6. 知, 简单函数是 F 的子集, 再由引理 4.5.2, 任意可测函数 f

都是 F 的元素. �
注 1. 定理中, p, q 的次序可以交换,由此得知在定理条件下累次积分可以换序.

2. 由定理结论可知, 在任意 Lebesgue 可测集 E 上, 结论依然成立4.

对于一般的函数, 我们有类似的结论.

定理 4.5.3 (Fubini). 设 f(x, y) 为 Rn 上的 Lebesgue 可积函数, 则下面的结论

成立

(A) 对几乎所有的 x ∈ Rp, f(x, ·) 为 Rq 上的 Lebesgue 可测函数;

(B) F (x) =
∫
Rq f(x, y)dy 为 Rp 上的 Lebesgue 可测函数;

(C)
∫
Rn f(x, y)dxdy =

∫
Rq

∫
Rp f(x, y)dxdy =

∫
Rp

∫
Rq f(x, y)dydx.

证明 将 f(x, y) 拆分成正部和负部, 分别应用定理 4.5.1 即可. �

定义 4.5.4 (截口). 设 E ⊂ Rn = Rp × Rq, 对任意 x ∈ Rp, 令

E(x) = {y ∈ Rq| (x, y) ∈ E},

称它为点集 E 在 x 处的截口. 若 E 是 Lebesgue 可测集, 则由定理 4.5.1, 对几乎

所有的 x ∈ Rp, 有 E(x) 是 Lebesgue 可测集, m(E(x)) 是 Rp 上的 Lebesgue 可测函

数 (几乎处处有定义), 且有

m(E) =

∫
Rp

m
(
E(x)

)
dx.

注 同样的, 可以定义 E(y), 有时它们也被记为 Ex, E
y.

推论 4.5.5. 设 f(x) 为 E ⊂ Rn 上的 Lebesgue 可测函数, 让

Ey = E
(
x
∣∣ f(x) > y

)
,

则 ∫
E

f(x)dx =

∫ ∞

0

m(Ey)dy.

4将 f(x, y) 换作 f(x, y)χE(x, y) 即可.
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证明 让

D =
{
(x, y)

∣∣ x ∈ E, 0 6 y 6 f(x)
}
.

那么我们有

m(D) =

∫
D

χE(x, y)dy =

∫ ∞

0

dy

∫
E

χE(x, y)dx

=

∫ ∞

0

∫
E

χEy (x)dx

=

∫ ∞

0

m(Ey)dy.

故结论成立. �

推论 4.5.6. 设 A,B 分别为 Rp,Rq 上的 Lebesgue 可测集, 则 A×B 为 Rn 中

的 Lebesgue 可测集, 且

m(A×B) = m(A)m(B).

证明 首先, 若 A×B 可测, 则 χA×B(x, y) 在 Rn 上可测, 因此, 我们有∫
Rn

χA×B(x, y)dxdy =

∫
Rp

dx

∫
Rq

χA×B(x, y)dy

=

∫
Rp

dx

∫
B

χA×B(x, y)dy

=

∫
Rp

m(B)χA(x)dx

= m(A)m(B).

故结论成立. �
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在本章的最初, 我们先定义一种抽象测度.

定义 5.0.7 (Radon测度). 我们称 µ是一个 Radon测度,如果 µ是定义在包含

Borel 集的拓扑空间上的内正则, 局部有限的测度. 其中内正则指, 对任意 Lebesgue

可测集 E, 均有

µ(E) = sup
F⊂E,F闭

µ(F ).

局部有界是指, 对任意 x ∈ X, 存在 x 的一个开邻域 δ 使得 µ(δ) 有界.

本章的讨论将围绕 Radon 测度展开.

§5.1 Vitali 覆盖定理

定义 5.1.1 (Vitali 覆盖). 设 E ∈ Rn, F 为 Rn 中闭球构成的集族, 称 F 为

E 的 Vitali 覆盖 (或精细覆盖, fine cover), 如果对每一个 x ∈ E 以及 ∀ ε > 0, 存

在 Bε
x ∈ F , 使得 x ∈ Bε

x, 并且

diamBε
x < ε.

设 F 为 E 的精细覆盖, 让

Fδ = {B ∈ F| diamB < δ},

则 Fδ 也是 E 的精细覆盖.

进一步, 如果 µ∗(E) <∞, 且存在开集 G ⊃ E, 使得 µ(G) <∞. 让

FG
δ = {B ∈ F| B ⊂ G,diamB < δ},

则 FG
δ 也是 E 的精细覆盖.

定理 5.1.2 (Vitali). 设 F 为 Rn 中闭球构成的集族 (非退化), 使得

d∗ = sup{diamB| B ∈ F} < +∞,

则存在 F 的至多可列子集 G, 使得 G 中元素互不相交, 且∪
B∈F

B ⊂
∪
B̂∈G

B̂.

其中 B̂ 为 B 的同心球并且半径是其 5 倍.

117
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证明 让

Fk = {B ∈ F| d
∗

2k
6 diamB <

d∗

2k−1
, k = 1, 2, · · · },

则 F =
∪∞

k=1 Fk.让 G1为 F1中互不相交的极大子集,让 G2为 {B ∈ F2| B 与 G1 互不相交}

的极大子集. 如果 G1,G2, · · · ,Gk 已经选出, 让

F∗
k+1 = {B ∈ Fk+1| B ∩B′ = ∅, B′ ∈

k+1∪
i=1

Gi},

再让 Gk+1 为 F∗
k+1 中互不相交的极大子集, k = 1, 2, · · · . 最后让 G =

∞∪
i=1

Gi.

下面证明, 对 ∀ B ∈ Fk+1, 存在 B′ ∈
k+1∪
i=1

Gi, 使得

B′ ∩B ̸= ∅.

事实上,如果存在 B0 ∈ Fk+1使得对 ∀ B′ ∈
k+1∪
i=1

Gi都有 B∩B′ = ∅,则有 B0 ∈ F∗
k+1,

又 B0 ∩B′ = ∅, ∀ B′ ∈ Gk+1, 这说明 B0 ∈ Gk+1. 故取 B′ = B0 即可导出矛盾.

现在, 对 ∀ B ∈ F , 存在 B′ ∈
k+1∪
i=1

Gi, 使得

B ∩B′ ̸= ∅,

让 x ∈ B ∩B′(x0, r
′), 则对任意 y ∈ B, 有

d(y, x0) 6 d(y, x) + d(x, x0)

6 diamB +
1

2
diamB′

6 d∗

2k
+

1

2
diamB′

6 5r′

证毕. �

推论 5.1.3. 设 E ∈ Rn, F 为 Rn 中闭球族形成的 E 的精细覆盖, 且满足

sup{diamB| B ∈ F} < +∞,

则存在 F 的可数子集 G 使得 G 中元素彼此互不相交, 并且对任何有限子集

{B1, B2, · · · , Bk} ⊂ F ,

有

E\
k∪

j=1

Bj ⊂
∪

B∈G\{B1,B2,··· ,Bk}

B̂.
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证明 对每一个 x ∈ E\
k∪

j=1

Bj , 由于 F 为 E 的精细覆盖, 故存在 B ∈ F , 使得

x ∈ B 且

B ∩
(
E\

k∪
j=1

Bj

)
= ∅.

由定理 5.1.2 的证明过程可知, 存在 B′ ∈ G, 使得 B′ ∩B = ∅, 并且 B ⊂ B̂′. 显然

B′ ̸= Bj , j = 1, 2, · · · , k.

因此,

E\
k∪

j=1

Bj ⊂
∪

B∈G\{B1,B2,··· ,Bk}

B̂.

�

推论 5.1.4. 设 µ 为 Rn 中的非负 Radon 测度, E ⊂ Rn, 并且

µ∗(E) < +∞,

F 为 E 的精细覆盖. 则对任意 ε > 0, 在 F 中存在互不相交的元素 B1, B2, · · · , Bk,

使得

µ∗
(
E\

k∪
j=1

Bj

)
< ε.

证明 让 G ⊂ Rn 为开集, 使得 E ⊂ G, 并且 µ(G) < +∞. 让

F∗ = {B ∈ F| B̂ ⊂ G},

则 F 是 E 的精细覆盖, 由推论 5.1.3, 存在 F∗ 中的可数子列 G∗ 使得 G∗ 中元素互

不相交, 并且对 F∗ 中的任意 B1, B2, · · · , Bk, 有

E\
k∪

j=1

Bj ⊂
∪

B∈G∗\{B1,B2,··· ,Bk}

B̂.

由于 µ 是 Rn 中的 Radon 测度,
∪

B∈G
B̂ 为 Borel 集, 因此

∪
B∈G

B̂ 为 µ 可测集, 并且

µ
( ∪

B∈G

B̂
)
6 µ(G) < +∞.

由于 G 是可数的, 不妨记

G = {B1, B2, · · · },
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根据测度的性质, 由

lim
k→∞

µ
(( ∞∪

i=1

B̂i

)
\
( k∪
i=1

B̂i

))
= 0.

因此, 对任意 ε > 0, 存在 k > 0 使得

µ∗
(
E\

( k∪
i=1

Bi

))
6 µ

( ∞∪
i=k+1

B̂i

)
< ε.

实际上, 若假设 µ∗(E) < +∞, 我们有 µ∗
(
E\

( ∞∪
i=1

Bi

))
= 0. �

推论 5.1.5. 设 µ 为 Rn 中的非负 Radon 测度, E ⊂ Rn, F 为 E 的精细覆盖.

则在 F 中存在可数个互不相交的元素 B1, B2, · · · , 使得

µ∗
(
E\

k∪
j=1

Bj

)
= 0.

证明 让 Em = E ∩ {x ∈ Rn| 0 6 ∥x∥ < m+ 1}, m = 1, 2, · · · , 再让

Gm = {x ∈ Rn| 0 6 ∥x∥ < m+ 1 +
1

m
},

则 Gm 是开集, 并且 Em ⊂ Gm, m = 1, 2, · · · . 对于 E1, 让

F1 = {B ∈ F| B ⊂ G1},

则 F1是 E1的精细覆盖,由推论 5.1.4,存在 F1中m1个互不相交的元素B1
1 , B

1
2 , · · · , B1

m1
,

使得

µ∗
(
E1\

( m1∪
i=1

B1
i

))
<

1

2
.

类似的, 对于 Ek, 让

Fk = {B ∈ F| B ⊂ Gk, B ⊂ Rn\
( k−1∪
j=1

mj∪
i=1

Bj
i

)
},

则 Fk 是 Ek\
( k−1∪
j=1

mj∪
i=1

Bj
i

)
的精细覆盖, 由推论 5.1.4, 存在 Fk 中 mk 个互不相交的

元素 Bk
1 , B

k
2 , · · · , Bk

mk
, 使得

µ∗
(
Ek\

( k−1∪
j=1

mj∪
i=1

Bj
i

))
<

1

2k
.

如此选出的 {Bj
i } 具有如下性质:

(1) Bj
i 互不相交;
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(2)
∞∪
j=1

mj∪
i=1

Bj
i 是 Rn 中闭集;

(3) µ∗
(
Ek\

( ∞∪
j=1

mj∪
i=1

Bj
i

))
< 1

2k
6

∞∑
m=1

1
2m < +∞.

最后, 让

E∞ = E\
( ∞∪
j=1

mj∪
i=1

Bj
i

)
,

F∞ = {B ∈ F| B ⊂ Rn\
( ∞∪
j=1

mj∪
i=1

Bj
i

)
},

则 F∞ 是 E∞ 的精细覆盖, 由推论 5.1.4 的证明过程可知, 存在 F∞ 中至多可数个

互不相交的元素 B∞
1 , B

∞
2 , · · · , 使得

µ∗
(
E∞\

( ∞∪
i=1

B∞
i

))
= 0.

因此

µ∗
(
E\

(
(
∞∪
j=1

mj∪
i=1

Bj
i

)
∪
( ∞∪
i=1

B∞
i )

))
= 0.

证毕. �
注 1. 本节中的定理都展现了类似于数学分析中有限覆盖定理的结论, 这些定

理以及推论在实际应用中的作用也是类似于有限覆盖定理的, 即: 用可列子集的并

(如不交闭球的并) 逼近全集, 从而将局部 (如闭球内) 的性质转化为整体性质. 这

种想法的效果将在本章后续内容中逐步体现.

2. 本节中罗列了四个结论, 注意比较它们在适用范围及结论强弱上的区别. 例

如定理 5.1.2 中, 并未涉及 Vitali 覆盖, 而是对任意闭球族成立, 然而其结论却比较

弱, 即只能保证用可列子集族在 “扩张” 后覆盖全集. 而推论 5.1.5 中, 则能对精细

覆盖保证有可列不交子列之并在非负 Radon 测度的意义下逼近全集.

习题 5.1

1. P248 1,2

§5.2 Hahn 分解定理

定义 5.2.1 (正集, 负集). 设 µ 为 Rn 上的 Radon 测度, A ⊂ Rn 称为 µ 的正

集, 如果对任何 µ 可测集 E, 有

µ(A ∩ E) > 0.
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B ⊂ Rn 称为 µ 的负集, 如果对任何 µ 可测集 E, 有

µ(B ∩ E) 6 0.

注 显然, 如果 A 为 µ 的正集, 则 A 本身是 µ 可测的, 并且 µ(A) > 0. 然而一

般情况下, 仅由 µ(A) > 0 不能保证 A 是 µ 的正集.

本节的主要结果是, 对 Rn 上的 Radon 测度 µ, 我们总能将 Rn 分解成 µ 的正

集与负集的不交并. 据此又可将 µ 分解成两个非负 Radon 测度之差. 为了建立这

些结果, 我们先给说明 µ 的正集 (负集) 的全体构成一个环.

引理 5.2.2. 设 µ 为 Rn 上的 Radon 测度, 则下面的结论成立:

(1) 若 A1, A2 是 µ 的正集, 则 A1 ∪A2, A1 ∩A2, A1\A2 也是 µ 的正集;

(2) 若 B1, B2 是 µ 的负集, 则 B1 ∪B2, B1 ∩B2, B1\B2 也是 µ 的负集;

(3) 若 A 是 µ 的正集, B 是 µ 的负集, 则对任何 µ 可测集 E ⊂ Rn, 有

µ(E ∩A ∩B) = 0.

证明 (1) 对任意的 µ 可测子集 E ⊂ Rn, 有

µ(E ∩ (A1 ∪A2)) = µ(E ∩A1 ∩A2) + µ((E ∩A1)\A2) + µ((E ∩A2)\A1)

= µ(E ∩A1 ∩A2) + µ(E ∩A1 ∩Ac
2) + µ(E ∩A2 ∩Ac

1)

= µ((E ∩A1) ∩A2) + µ((E ∩Ac
2) ∩A1) + µ((E ∩Ac

1) ∩A2).

由于 A1, A2 都是 µ 的正集, 因此上式中的每一项都是非负的, 故

µ(E ∩ (A1 ∪A2)) > 0.

而

µ(E ∩ (A1 ∩A2)) = µ((E ∩A1) ∩A2) > 0.

µ(E ∩ (A1\A2)) = µ((E ∩Ac
2) ∩A1) > 0.

故 A1 ∪A2, A1 ∩A2, A1\A2 都是 µ 的正集

(2) 以 −µ 代替 µ 则 B 为 µ 的负集当且仅当 B 为 −µ 的正集, 再利用 (1) 即

可.

(3) 显然. �

定理 5.2.3 (Hahn分解定理). 设 µ 为 Rn 上的 Radon 测度, 则必有 µ 的正集

A 和负集 B, 使得 A ∩B = ∅, 并且

Rn = A ∪B.
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证明 让

Mk = {x ∈ Rn| k 6 ∥x∥ < k + 1}, k = 1, 2, · · · ,

我们只需要证明对每个 Mk, 都存在 µ 的正集 Ak 和负集 Bk 使得 Ak ∩Bk = ∅, 且

Ak ∪Bk =Mk 即可.

对于每一个 Mk, Mk 是紧集, 由 Radon 测度的定义, 对任意 E ⊂Mk, 有

|µ(E)| <∞.

现在, 让

α = inf{µ(B)| B为 µ 的负集, B ⊂Mk},

根据下确界的定义, 存在一列负集 Bm, 使得

µ(Bm)→ α.

令

B′
m =

m∪
l=1

Bl, m = 1, 2, · · · ,

则 B′
m ⊂ B′

m+1, 且由引理 5.2.2 知 B′
m 仍是 µ 的负集. 结合 µ 的可列可加性可知

α 6 µ(B′
m+1) = µ(B′

m\Bm) + µ(Bm) 6 µ(Bm)→ α.

因此,

lim
m→∞

µ(B′
m) = α.

现在令

B =
∞∪

m=1

B′
m =

∞∪
m=1

(B′
m\B′

m−1) =
∞∪

m=1

Bm.

则

−∞ < µ(B) =
∞∑

m=1

µ(B′
m\B′

m−1) = lim
m→∞

µ(B′
m) = α 6 0,

这说明 α 是有限数.

下面证明 B 是 µ 的负集. 事实上, 对任意的 µ 可测集 E ⊂ RN ∩Mk, 有

−∞ < µ(E ∩B) =

∞∑
m=1

µ(E ∩ (B′
m\B′

m−1)),

根据引理 5.2.2,上式右边的每一项都是非正的,因此 µ(E ∩B) 6 0.故 B 是 µ的负

集.



124 第五章 测度导数与 Newton-Lebniz 公式

令 A = Rn\B, 我们希望有 A 是 µ 的正集. 对任意的 µ 可测集 E ⊂ RN ∩Mk,

只需证明

µ(E ∩A) > 0.

事实上, 如果存在某个 µ 可测集 E ⊂Mk, 使得

µ(E ∩A) < 0. (5◃2.1)

则可取 E0 = E ∩A, 可以证明 E0 不是 µ 的负集. 否则 E0 ∪B 也是 µ 的负集, 而

µ(E0 ∪B) = µ(E0) + µ(B) < α,

矛盾! 因此存在 E0 的某个 µ 可测子集 E∗
0 , 使得 µ(E∗

0 ) > 0. 让

β1 = sup
{
µ(E)

∣∣ E ⊂ E0, E是 µ 可测的
}
.

由于 µ 是 Radon 测度, 故 β1 < +∞. 让 E1 ⊂ E0 使得

µ(E1) >
β1
2
.

因此

µ(E0\E1) = µ(E0)− µ(E1) 6 µ(E0)
β1
2
.

以 E0\E1 代替 E0, 并重复上面的步骤, 让

β2 = sup
{
µ(E)

∣∣ E ⊂ E0\E1, E是 µ 可测的
}
.

则 0 < β2 < +∞. 让 E2 ⊂ E0\E1, 使得

µ(E2) >
(
1− 1

22

)
β2.

如此继续, 我们得到一列 µ 可测集 {En}, 满足

(1) Ek+1 ⊂ E0\
( ∞∪

i=1

Ei

)
;

(2) βk+1 = sup
{
µ(E)

∣∣∣ E ⊂ E0\
( k∪

i=1

Ei

)
, E是 µ 可测的

}
;

(3) 0 < βk+1 6 βk < +∞;

(4) µ(Ek+1) >
(
1− 1

2k+1

)
βk+1.

让 β = limk→∞ βk. 下面分两种情况讨论.
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情形 1. 当 β ̸= 0 时, 我们有

−∞ < µ
(
E0\

( ∞∪
i=1

Ei

))
= µ(E0)− µ

( ∞∪
i=1

Ei

)
= µ(E0)−

∞∑
i=1

µ(Ei)

6 µ(E0)−
∞∑
i=1

(
1− 1

2k

)
βk

6 µ(E0)−
∞∑
i=1

(
1− 1

2k

)
β = −∞.

矛盾!

情形 2. 当 β = 0 时, 因为

sup{µ(E)| E ⊂ E0\
( ∞∪

i=1

Ei

)
, E是 µ 可测的} 6 βk → 0.

故 E0\
( ∞∪

i=1

Ei

)
为 µ的负集,根据引理 5.2.2, B∪

(
E0\

( ∞∪
i=1

Ei

))
也是 µ的负集. 根

据定义, 必有

µ
(
E0\

( ∞∪
i=1

Ei

))
= 0.

而

µ
(
E0\

( ∞∪
i=1

Ei

))
= µ(E0)−

∞∑
i=1

µ(Ei),

因此 µ(E0) =
∞∑
i=1

µ(Ei) > 0, 这与 (5◃2.1) 式相矛盾.

综上所述, A 为 µ 的正集. �

注 如果令

µ+(E) = µ(E ∩A),

µ−(E) = µ(E ∩B),

则

µ(E) = µ+(E)− µ−(E).

我们分别称 µ+, µ− 为 µ 的正部和负部, 则 µ+, µ− 都是 Rn 上的非负 Radon 测度.

这样, Rn 上任意一个 Radon 测度均能被表成两个非负 Radon 测度之差, 这种分解

被称为 Jordan 分解. 一般情况下, 以后我们只需要研究非负 Radon 测度.
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§5.3 Radon 测度的导数

在本节里,我们将数学分析中的导数概念推广到 Radon测度上来,并研究这种

导数所具有的性质.

定义 5.3.1 (导数). 设 ν, µ 为 Rn 上的非负 Radon 测度1, 对每一个 x ∈ Rn,

分别称

Dµν(x) =

 lim
r→0+

ν(B(x,r))
µ(B(x,r)) , ∀ r > 0, µ(B(x, r)) > 0;

∞, ∃ r > 0, µ(B(x, r)) = 0,

Dµν(x) =


lim

r→0+

ν(B(x,r))
µ(B(x,r)) , ∀ r > 0, µ(B(x, r)) > 0;

∞, ∃ r > 0, µ(B(x, r)) = 0,

为 ν 关于 µ 在 x 处的上导数和下导数. 如果

Dµν(x) = Dµν(x),

则称 ν 关于 µ 在 x 处可导, 并称

Dµν(x) = Dµν(x)

为 ν 关于 µ 在 x 处的导数.

下面我们来看几个例子.

例 5.3.2 (非负连续函数的平均值定理). 设 f(x)为 Rn 上非负的连续函数, 并

且在 Lebesgue 意义下局部可积2. 让 µ 为 Lebesgue 测度, ν 为如下定义的测度

ν(E) =

∫
E

f(x)dx,

则

Dµν(x) = lim
r→0

∫
B(x,r)

f(x)dx

|µ(B(x, r))|
= f(x).

下面我们来看一个初看比较惊人的结果,它是 Vitali定理将局部性质转化为整

理性质的结果. 在后续讨论中, 我们将多次用到这一引理.

引理 5.3.3. 设 ν, µ 为 Rn 上的非负 Radon 测度, 则下面的结论成立:

1否则我们可以对其进行 Hahn 分解.
2也即存在 E ⊂ Rn, 且 E 是紧集, 使得

∫
E f(x)dx < +∞, 记为 f ∈ Lloc(Rn).
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(1) 当 E ⊂ Rn(x| Dµν(x) 6 a) 时, 有

ν∗(E) 6 aµ∗(E).

(2) 当 E ⊂ Rn(x| Dµν(x) > b) 时, 有

ν∗(E) > bµ∗(E).

证明 Step 1. 对每个 x ∈ E ∩B(0, k) ⊂ G, G 为任意满足条件的开集, 由于

lim
r→0

ν(B(x, r))

µ(B(x, r))
6 α.

对 ∀ ε > 0, 存在 rxj → 0, 使得

ν(B(x, rxj )) 6 (α+ ε)µ(B(x, rxj )), j = 1, 2, · · · ,

让

F1 = {B(x, rxj )| x ∈ E ∩B(0, k), j = 1, 2, · · · } ⊂ G,

则 F1 为 E ∩B(0, k)的精细覆盖.由推论 5.1.5,存在一列至多可列的互不相交闭球

使得

ν∗
((
E ∩B(0, k)

)
\

∞∪
i=1

B(xi, ri)
)
= 0.

故

ν∗(E ∩B(0, k)) 6 ν∗(
∞∪
i=1

B(xi, ri)
)
+ ν∗

((
E ∩B(0, k)

)
\

∞∪
i=1

B(xi, ri)
)

=
∞∑
i=1

ν(B(xi, ri))

6 (α+ ε)

∞∑
i=1

µ(B(xi, ri))

6 (α+ ε)µ(G).

由 ε 的任意性, 我们有

ν∗(E ∩B(o, k)) 6 αµ(G),

由 G 的任意性, 我们有

ν∗(E ∩B(o, k)) 6 αµ(E ∩B(o, k)),

由 k 的任意性, 我们有

ν∗(E) 6 αµ(E).



128 第五章 测度导数与 Newton-Lebniz 公式

Step 2. 不妨假定 ν∗(E) < +∞, 则存在开集 G ⊂ Rn 使得 E ⊂ G, 并且

ν∗(E) 6 ν(G).

对每个 x ∈ E ⊂ G, 由

lim
r→0

ν(B(x, r))

µ(B(x, r))
> β

可得, 对 ∀ ε > 0, 存在 rxk → 0, 使得

ν(B(x, rxk)) > (β − ε)µ(B(x, rxk)), k = 1, 2, · · · ,

让

F2 = {B(x, rxk)| x ∈ E,B(x, rxk) ⊂ G, k = 1, 2, · · · } ⊂ G,

则 F2 为 E 的精细覆盖. 由推论 5.1.5, 存在一列至多可列的互不相交闭球使得

µ∗
(
E\

∞∪
i=1

B(xi, ri)
)
= 0.

故

(β − ε)µ∗(E) 6 (β − ε)µ∗
( ∞∪

i=1

B(xi, ri)
)
+ (β − ε)µ∗

(
E\

( ∞∪
i=1

B(xi, ri)
))

=
∞∑
i=1

(β − ε)µ
(
B(xi, ri)

)
6

∞∑
i=1

ν
(
B(xi, ri)

)
6 ν(G).

再由 ε,G 的任意性即可. �
下面给出本节的主要结论.

定理 5.3.4. 设 ν, µ 为 Rn 上的非负 Radon 测度, 则

(1) Dµν 在 Rn 上关于 µ 几乎处处存在有限;

(2) Dµν 关于 µ 为可测函数.

证明 (1) 让

E∞ = {x ∈ Rn| Dµν(x) = +∞},

E = {x ∈ Rn| Dµν(x) < Dµν(x)}.

由于对任意 b, 我们有

E∞ ⊂ {x ∈ Rn| Dµν(x) > b},
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则由引理 5.3.3, 有

bµ∗(E∞ ∩B(0, k)) 6 ν∗(E∞ ∩B(0, k))

6 ν∗(B(0, k)) < +∞.

由 b 的任意性, 我们有 µ∗(E∞ ∩B(0, k)) = 0, 再由 k 的任意性, 得 E∞ = 0.

现在, 让

Eb
a =

{
x ∈ Rn| Dµν(x) 6 a < b 6 Dµν(x)

}
,

同样由引理 5.3.3, 我们有

bµ∗(Eb
a) 6 ν∗(Eb

a) 6 aµ∗(Eb
a).

这说明 µ∗(Eb
a) = 0.

综上, Dµν 在 Rn 上关于 µ 几乎处处存在有限.

(2) 当 Dµν(x) = +∞ 时, µ∗(E∞) = 0 为可测集, 对任意 r > 0, 让

fr(x) = ν(B(x, r)), gr(x) = µ(B(x, r)),

我们只需证明, 对 ∀ c, {x| fr(x) > c} 是闭集即可. 为此, 任取收敛序列 {xk}, 记其

极限为 x0, 则

fr(xk) = ν(B(xk, r)) =

∫
Rn

χB(xk,r)(x)dν, k = 0, 1, · · · ,

那么

lim
k→∞

fr(xk) = lim
k→∞

∫
Rn

χB(xk,r)(x)dν

6
∫
Rn

lim
k→∞

χB(xk,r)(x)dν

6
∫
Rn

χB(x0,r)(x)dν = fr(x0).

上式第二个不等号成立的理由如下: 对任意 y /∈ B(x0, r), 我们有

d(y,B(x0, r)) = α > 0,

由于 xk → x0, 故当 k 充分大时, 有

y /∈ B(xk, r),

因此 lim
k→∞

χB(xk,r)(y) = 0, 故上式不等号成立.
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那么, 我们有

fr(x0) > lim
k→∞

fr(xk) > c,

即 {x| fr(x) > c} 是闭集, 由可测函数之定义, fr(x) 为可测函数. 同理可证 gr(x)

为可测函数.

由测度导数的定义以及可测函数的性质, 我们有 Dµν 关于 µ 为可测函数. �
下面我们来推广例 5.3.2 中的结论. 首先, 我们来定义一个记号. 设 µ 为 Rn 上

的非负 Radon 测度, 设 E 是一个的 µ 可测集, 其测度为正, 定义

−
∫
E

f(x)dµ =
1

µ(E)

∫
E

f(x)dµ.

定理 5.3.5 (平均值定理). 设 f ∈ Lloc(Rn)3, 则几乎处处成立有

lim
r→0
−
∫
B(x,r)

f(y)dy = f(x).

证明 记

L(x) = lim
r→0
−
∫
B(x,r)

|f(y)− f(x)|dy.

我们只要证明, 对 ∀ α > 0, 有

m∗(x ∈ Rn| L(x) > α
)
= 0

即可.

下面我们来估计 −
∫
B(x,r)

|f(y)− f(x)|dy 的大小. 对任意 g ∈ C(Rn), 有

−
∫
B(x,r)

|f(y)− f(x)|dy 6 −
∫
B(x,r)

|f(y)− g(y)|dy

+−
∫
B(x,r)

|g(y)− f(x)|dy,

对两边取极限, 有

L(x) 6 lim
r→0
−
∫
B(x,r)

|f(y)− f(y)|dy + |g(x)− f(x)|.

由此可知,

{x ∈ Rn| L(x) > α} ⊂
{
x ∈ Rn

∣∣∣ −∫
B(x,r)

|f(y)− f(y)|dy > α

2

}
∪
{
x ∈ Rn

∣∣ |g(x)− f(x)| > α

2

}
.

3即局部 Lebesgue 可积.
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令

ν(E) =

∫
E

|f(y)− g(y)|dy,

则

lim
r→0
−
∫
B(x,r)

|f(y)− f(y)|dy = Dmν(x).

由引理 5.3.3, 我们有

m∗(x ∈ Rn| L(x) > α) 6 m∗({x ∈ Rn| Dµν(x) >
α

2
}
)

+m∗({x ∈ Rn| |g(x)− f(x)| > α

2
}
)

6 2

α
ν∗(E) +

2

α

∫
E1

|g(x)− f(x)|dx

6 4

α

∫
Rn

|g(x)− f(x)|dx.

其中 E = {x ∈ Rn| Dµν(x) > α/2}, E1 = {x ∈ Rn| |g(x)− f(x)| > α/2}.

而由定理 3.2.3, 对 ∀ ε > 0, 存在 g ∈ C(Rn) 使得

4

α

∫
Rn

∣∣g(x)− f(x)∣∣dx 6 ε.

由 ε 的任意性, 我们有 m∗({x ∈ Rn| L(x) > α}
)
= 0. �

注 1. 在下一节中, 我们将看到这个定理更一般的形式, 事实上, 它揭露了测度

求导与 “积分” 的某种联系.

2. 再证明过程中我们实际上得到了更强的结论, 也即

lim
r→0
−
∫
B(x,r)

∣∣f(y)− f(x)∣∣dy = 0.

我们称使上式成立的点 x 为可测函数 f 的 Lebesgue 点. 这说明, Rn 中几乎所有

点都是局部可积函数的 Lebesgue 点.

推论 5.3.6. 设 E ⊂ Rn 为 Lebesgue 可测集, 则对几乎所有 x ∈ E 有

lim
r→0

m
(
E ∩B(x, r)

)
m
(
B(x, r)

) = 1.

证明 在定理 5.3.5 中取 f(x) = χE(x) 即可. �

注 若取 E 为正测度的疏朗完全集, 则有

m
(
E ∩B(x, r)

)
m
(
B(x, r)

) < 1,
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但此时仍有极限几乎处处为 1 !

习题 5.3

1. 设 {xk}, {yk} 为 Rn 中的离散点列, 让

µ(E) =
∞∑
k=1

1

2k
δxk

(E) +m(E), ν(E) =
∞∑
k=1

1

2k
δyk

(E).

求 Dµν(x).

§5.4 Radon-Nikodym 定理

对于 Radon测度,我们也有类似于数学分析中 Newton-Lebniz公式的结果,通

常被称为 Radon-Nikodym 定理. 我们先介绍绝对连续的概念.

定义 5.4.1 (绝对连续). 设 ν, µ 为 Rn 上的 Radon 测度, 称 ν 关于 µ 是绝对

连续的 (记为 ν ≪ µ), 如果对 ∀ E ∈ Rn, 只要 |µ|(E) = 0, 就有 |ν(E) = 0|. 其中

|µ| = µ+ + µ−.

注 不妨回忆一下 Lebesgue 积分的绝对连续性.

下面介绍经典测度论的最高成就, Radon-Nikodym 定理.

定理 5.4.2 (Radon-Nikodym). 设 ν, µ 为 Rn 上的 Radon 测度, µ 是非负的,

并且 ν 关于 µ 是绝对连续的, 则存在 Rn 上的局部 µ 可积4函数 f , 使得对任意 µ

可测集 E ⊂ Rn, 有

ν(E) =

∫
E

f(x)dµ =

∫
E

Dµν(x)dµ. (5◃4.2)

证明 我们分三步来证明.

Step 1. 如果 E ⊂ Rn 为 µ 可测集, 则 E 为 ν 可测集. 事实上, 由 µ 的内正则

性, 存在 Borel 集 B 使得 E ⊂ B 并且 µ(B\E) = 0. 结合 ν ≪ µ, 有

|ν|(B\E) = 0.

而 B 是 ν 可测的, 由 E = B\(B\E) 可知, E 是 ν 可测的.

Step 2. 让

E∞ = {x ∈ Rn| Dµν(x) =∞},
4参考局部 Lebesgue 可积的定义.
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E0 = {x ∈ Rn| Dµν(x) = 0},

则 ν(E∞) =
∫
E∞ Dµν(x)dµ, ν(E0) =

∫
E0
Dµν(x)dµ. 事实上, 由于 Dµν(x) 是 µ 可

测函数, 故 E∞, E0 均为 µ 可测集, 由 Step 1 进而为 ν 可测集. 对 ∀ ε > 0, 不妨设

ν 是非负 Radon 测度5, 则

E0 ⊂ {x ∈ Rn| Dµν(x) 6 ε}.

由引理 5.3.3,

ν∗(E0) 6 εµ∗(E0),

由 ε 的任意性我们有 ν∗(E0) = 0, 这说明

ν(E0) = 0 =

∫
E0

Dµν(x)dµ.

再由引理 5.3.3, 对 ∀ M > 0 有

µ∗(E∞) 6 1

M
ν∗(E∞),

令 M 趋于正无穷, 我们有 ν∗(E∞) = 0, 这说明

ν(E∞) = 0 =

∫
E∞

Dµν(x)dµ.

Step 3. 我们证明对 ∀ E ⊂ Rn 为 µ 可测集, (5◃4.2) 式成立. 不妨设 ν 是非负

Radon 测度, 令

E∗ = {x ∈ E| Dµν(x) ̸= Dµν(x)},

Ek = {x ∈ E| Dµν(x) ∈ [tk, tk+1)}, t > 0, k = 0,±1,±2, · · · .

由定理 5.3.4, µ(E∗) = 0, 再结合 Step 2. 有

ν(E) = ν
(
E\(E∗ ∪ E0 ∪ E∞)

)
=

+∞∑
k=−∞

ν(Ek) 6
+∞∑

k=−∞

tk+1µ(Ek)

= t

+∞∑
k=−∞

tkµ(Ek) 6 t

+∞∑
k=−∞

∫
Ek

Dµν(x)dµ

= t

∫
E

Dµν(x)dµ.

5否则可对 ν 做 Jordan 分解, 并注意到

E0 = {x ∈ Rn| Dµν
+(x) = 0} ∩ {x ∈ Rn| Dµν

−(x) = 0},

E∞ ⊂ {x ∈ Rn| Dµν
+(x) = ∞} ∪ {x ∈ Rn| Dµν

−(x) = ∞}

即可.
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另一方面, 我们有

ν(E) =

+∞∑
k=−∞

ν(Ek) >
+∞∑

k=−∞

tkµ(Ek)

=
1

t

+∞∑
k=−∞

tk+1µ(Ek) >
1

t

+∞∑
k=−∞

∫
Ek

Dµν(x)dµ

=
1

t

∫
E

Dµν(x)dµ.

由 t 的任意性, 令 t→ 1, 有

ν(E) =

∫
E

Dµν(x)dµ.

现在, 对非负的 Dµν(x), 我们已经证明了 (5◃4.2) 式. 而对于一般的 Dµν(x),

由 Dµν(x) = Dµν
+(x)−Dµν

−(x), 可知结论自然成立. �

推论 5.4.3. 设 µ 为 Rn 上的非负 Radon 测度, f 为 Rn 上局部 µ 可积函数,

则关于 µ 几乎处处成立有

lim
r→0
−
∫
B(x,r)

f(y)dµ = f(x).

证明 让

ν(E) =

∫
E

f+(x)dµ−
∫
E

f−(x)dµ = ν+(E)− ν−(E).

容易验证 ν ≪ µ, 那么由定理 5.4.2, 我们有

ν+(E) =

∫
E

Dµν
+(x)dµ,

ν−(E) =

∫
E

Dµν
−(x)dµ,

故

f+(x)
µ a.e.
= Dµν

+(x), f−(x)
µ a.e.
= Dµν

−(x).

�
注 形式上, 我们有

Dµ

∫
x

f(x)dµ
µ a.e.
= f(x),

即测度导数为积分的逆过程.

由定理 5.4.2, 若 ν ≪ µ, ν 的结构已经完全清楚了, 它可以被表示成关于 µ 的

导数的 “原函数”. 下面我们要说明,对任意的 Radon测度,我们总可以将其分解为

关于 µ的绝对连续部分和奇异部分,从而完全了解了其结构. 我们首先给出奇异的

定义.
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定义 5.4.4 (奇异). 设 ν, µ 为 Rn 上的非负 Radon 测度, 称 ν, µ 是相互奇异

的, 如果存在 B ∈ Rn 使得

µ(Rn\B) = 0, ν(B) = 0.

记为 ν⊥µ.

注 1. 此时一般没有 ν ≪ µ.

2. 由于 µ 是非负的, 故 Rn\B 的任意子集都是零测的, 因此在 Rn\B 上 ν 不

能用定理 5.4.2 中的积分形式表出.

定理 5.4.5 (Lebesgue 分解定理). 设 µ 为 Rn 上的非负 Radon 测度, ν 为 Rn

上的 Radon 测度, 则

ν = νAC + νs,

其中 νAC 关于测度 µ 绝对连续, 且 νs⊥µ.

证明 证明分为两个部分, 先找出 ν 的奇异部分, 再证明剩下的部分是绝对连

续的. 让

E = {A ⊂ Rn| µ(Rn\A) = 0},

如果 Ak ∈ E , 则
∞∩
k=1

Ak ∈ E . 事实上,

µ
(( ∞∩

k=1

Ak

)c) 6
∞∑
k=1

µ(Rn\Ak) = 0.

令

α = inf
A∈E

ν(A),

则存在 Bk ∈ E , 使得

ν(Bk) 6 α+
1

k
, k = 1, 2, · · · ,

现在, 让

B =
∞∩
k=1

Bk,

则 B ∈ E . 最后令

νAC = ν|B, νs = ν|Rn\B . (5◃4.3)

(1) νAC ≪ µ. 事实上, 如果 µ(A) = 0, A ⊂ B,6 假设 ν(A) ̸= 0, 则

ν(B\A) = ν(B)− ν(A).
6由 (5◃4.3) 式, 我们只需要考虑 A ⊂ B 的情况.
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另外, 我们有

µ(Rn\(B\A)) = µ((Rn\B)\A)

= µ(Rn\B) + µ(A) = 0.

这说明 B\A ∈ E , 那么由 ν(A) ̸= 0 可知 ν(B\A) < ν(B) = α. 这与 α 的定义相矛

盾!

(2) νs⊥µ. 事实上, 已知 µ(Rn\B) = 0, 又有 ν(B) = 0, 故 νs⊥µ.

(3) 由 ν(Rn\B) = 0, Dµν(x)
µ a.e.
= DµνAC(x) 是显然的. �

注 1. 我们只证明了 ν 非负的情况, 容易将至推广到 ν 为一般 Radon 测度的

情况.

2. 在定理的条件下, 我们有

Dµν(x)
µ a.e.
= DµνAC(x), Dµνs(x)

µ a.e.
= 0.

事实上, 让

E = {x ∈ Rn| Dµνs(x) > β} ≡ {x ∈ Rn ∩B| Dµνs(x) > β}.

由引理 5.3.3, 我们有

βµ(E) 6 νs(E).

若 E ∩ B ̸= ∅, 则由 νs(E ∩ B) = 0 可知 µ(E ∩ B) = 0. 又 µ(E ∩ Bc) = 0, 这说明

µ(E) = 0. 由此可知

µ({x ∈ Rn ∩B| Dµνs(x) > 0}) = 0.

例 5.4.6. 让 µ = m,n = 1,

ν(E) =

∫
E

f(x)dµ+

∞∑
i=1

αiδxi(E).

则上式右端两部分分别为绝对连续部分和奇异部分. 其中 δx 为 Dirac 测度7.

习题 5.4

1. 是否存在非 δ 测度, 并且与 m 相互奇异的 Radon 测度?

7即 Dirac 测度, 又称单点测度或原子测度, 当 x ∈ E 时, 有 δx(E) = 1. 当 x /∈ E 时, 有

δx(E) = 0.
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§5.5 单调函数与有界变差函数

§5.5.1 单调函数

本节内容与上节内容类似, 这源于我们可由单调函数定义一个抽象测度. 本节

的主要结果是如下的定理.

定理 5.5.1. 设 f(x) 为 [a, b] 上的单增函数, 则 f(x) 在 [a, b] 上几乎处处可

导8.

我们把定理的证明放到后面, 先来看一个例子.

例 5.5.2 (在稠子集上间断的单调函数). 设
∑

(αn + βn) < +∞, αn, βn > 0.

让 {xn} 表示有理数集 Q, 令

f(x) =
∞∑

n=1

αnH0(x− xn) +
∞∑

n=1

βnH1(x− xn).

其中 H0,H1 为 Heaviside 函数, 即

H0(x) =

 1, x > 0

0, x 6 0
, H1(x) =

 1, x > 0

0, x < 0
.

定理 5.5.1 告诉我们即使在一个稠密子集上间断, f(x) 的导数仍几乎处处存在!

注 关于 Heaviside 函数, 建议参阅 [4] 第二章第 4 节 “函数” 概念够用了吗?

我们先给出一个引理, 它与引理 5.3.3 完全类似, 证明过程也相仿.

引理 5.5.3. 设 f 为 [a, b] 上的单增函数. 若 E ⊂ {x ∈ [a, b]| Df(x) 6 α}, 则

f∗(E) 6 αm∗(E);

若 E ⊂ {x ∈ [a, b]| Df(x) > β}, 则

f∗(E) > βm∗(E).

其中 Df(x), Df(x) 分别表示上导数和下导数, 定义如下

Df(x) = lim
h→0

1

h

(
f(x+ h)− f(x)

)
,

Df(x) = lim
h→0

1

h

(
f(x+ h)− f(x)

)
.

而 f∗(E) = m∗(f(E)).

8在 Lebesgue 意义下.
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证明 让

F+ = {[x, x+ hk]|
1

hk

(
f(x+ hk)− f(x)

)
6 α+ ε},

F− = {[x− hk, x]|
1

hk

(
f(x)− f(x− hk)

)
6 α+ ε},

可以验证 F = F+ ∪ F− 构成 E 的精细覆盖. 由推论 5.1.5, 对任意 G ⊃ E, 存在 F

的至多可列个互不相交的 {Ik}, 使得 Ik ⊂ G, 并且

f∗
(
E\

∞∪
k=1

Ik

)
= 0.

那么

f∗(E) = f∗
( ∞∪

k=1

Ik

)
=

∞∑
k=1

f∗(Ik)

6
∞∑
k=1

(α+ ε)hk = (α+ ε)m
( ∞∪

k=1

Ik

)
< (α+ ε)m(G).

由 G 的任意性可知 f∗(E) 6 αm∗(E).

另一个不等式的证明完全类似, 我们留做习题. �
下面我们来证明定理 5.5.1.

证明 注意到不可导点分为两类, 其一是上导数不存在, 其二是上下导数不相

等, 故我们分两步证明.

Step 1. 让 E∞ = {x ∈ [a, b]| Df(x) = +∞}, 我们证明 m∗(E∞) = 0. 事实上,

对任意 β > 0, 有

E∞ ⊂ {x ∈ [a, b]| Df(x) > β},

由引理 5.5.3, 我们有

βm∗(E∞) 6 f∗(E∞) 6 b− a.

由 β 的任意性, 我们有 m∗(E∞) = 0.

Step 2. 让 Eβ
α = {x ∈ [a, b]| Df(x) 6 α < β 6 Df(x)}, 我们证明 m∗(E∞) = 0.

事实上, 由引理 5.5.3, 我们有

βm∗(Eβ
α) 6 f∗(Eβ

α) 6 αm∗(Eβ
α),

然而 β > α, 因此我们有 m∗(Eβ
α) = 0, 也即对 ∀ α < β, 有

m∗({x ∈ [a, b]| Df(x) 6 α < β 6 Df(x)}) = 0.
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综上所述, f 在 [a, b] 上几乎处处可导. �

下面我们说明, 单调函数有类似于 Newton-Lebniz 公式的不等式.

定理 5.5.4. 设 f 在 [a, b] 上单调递增, 则∫ b

a

f ′(x)dx 6 f(b)− f(a).

证明 让

gk(x) =
f(x+ 1

k )− f(x)
1
k

,

则 0 6 gk(x)→ f ′(x), a.e.于[a, b]. 那么我们有∫ b

a

f(x)dx =

∫ b

a

lim
k→∞

gk(x)dx

6 lim
k→∞

∫ b

a

gk(x)dx

= lim
k→∞

1

k

(∫ b+ 1
k

a+ 1
k

f(x)dx−
∫ b

a

f(x)dx
)

6 f(b)− f(a).

其中我们用到了定理 4.3.4 以及 f 的单调性. �

关于单调函数, 我们有逐项微分定理.

定理 5.5.5 (Fubini逐项微分定理). 设 fk 在 [a, b]上单调递增,并且
∑∞

k=1 fk(x)

在 [a, b] 上几乎处处收敛. 则

d

dx

( ∞∑
k=1

fk(x)
)

a.e.
=

∞∑
k=1

f ′k(x).

证明 让

S(x) =
∞∑
k=1

fk(x),

则 S(x) 是 [a, b] 上的单增函数. 由定理 5.5.1, 我们有 S(x) 在 [a, b] 几乎处处可导,

并且

S′(x)
a.e.
=

n∑
k=1

f ′k(x) + r′(x), (5◃5.4)

其中 r(x) =
∑∞

k=n+1 fk(x). 故

r′n(x) = f ′n+1(x) + r′n+1(x) > r′n+1(x),
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由此可知 r′n(x) 在 [a, b] 上关于 n 单调递减且几乎处处大于 0. 现在让 θ(x) =

lim
n→∞

r′n(x), 由定理 5.5.4, 我们有

0 6
∫ b

a

lim
n→∞

r′n(x)dx = lim
n→∞

∫ b

a

r′n(x)dx

6 lim
n→∞

(rn(b)− rn(a))

= lim
n→∞

∞∑
k=n+1

(fk(b)− fk(a))
a.e.
= 0.

由于
∑∞

k=1 fk(x) 是收敛的, 因此上式中最后一个等式成立. 这说明 θ(x)
a.e.
= 0. 在

(5◃5.4) 式中令 n→∞, 我们有

d

dx

( ∞∑
k=1

fk(x)
)

a.e.
=

∞∑
k=1

f ′k(x).

�

§5.5.2 有界变差函数

下面我们来看一类重要的函数, 它们被称为有界变差函数, 定义如下.

定义 5.5.6 (有界变差函数). 设 f 为 [a, b] 上取值有限的函数, 对 [a, b] 上的

一个分划 ∆:

a = x0 6 x1 6 x2 6 · · · 6 xn = b,

作变差 ∨
f

(∆) =

n∑
i=1

∣∣f(xi)− f(xi−1)
∣∣.

如果
b∨
a

(f) = sup
{∨

f

(∆)| ∆ 为 [a, b] 的分划
}
< +∞,

则称 f 为有界变差函数 (Bounded Variant), [a, b]上有界变差函数的全体记为 BV[a, b].
b∨
a
(f) 被称为 f 在 [a, b] 上的全变差.

我们来看一些有界变差函数的例子.

例 5.5.7. [a, b] 上的有界单调函数一定是有界变差函数, 并且

b∨
a

(f) = |f(b)− f(a)|.



§5.5 单调函数与有界变差函数 141

例 5.5.8. 设 f 为 [a, b] 上的 Lipschitz 函数, i.e., 存在常数 L 使得对任意

x, y ∈ [a, b], 有

|f(x)− f(y)| 6 L|x− y|,

则 f 是有界变差函数, 并且
b∨
a

(f) 6 L|b− a|.

例 5.5.9 (非有界变差的连续函数).

f(x) =

 x sin x
π , x ∈ (0, 1];

0, x = 0.

定理 5.5.10. 有界变差函数具有如下性质:

(1) 若 f ∈ BV[a, b], 则 f 有界;

(2) 若 α, β ∈ R1, f, g ∈ BV[a, b], 则

αf + βg ∈ BV[a, b],

并且
b∨
a

(αf + βg) 6 |α|
b∨
a

(f) + |β|
b∨
a

(g).

(3) 若 f, g ∈ BV[a, b], 则

fg ∈ BV[a, b],

并且
b∨
a

(fg) 6 sup(f)
b∨
a

(g) + sup(g)
b∨
a

(f).

(4) 若 f ∈ BV[a, b], 且
b∨
a
(f) = 0, 则 f ≡ const.

(5) 若 [c, d] ⊂ [a, b], f ∈ BV[a, b], 则 f ∈ BV[c, d], 并且

d∨
c

(f) 6
b∨
a

(f).

(6) 若 f ∈ BV[a, b], c ∈ [a, b], 则

b∨
a

(f) =

c∨
a

(f) +

b∨
c

(f).

(7) 设 {fn} ⊂ BV[a, b], 且

sup
b∨
a

(fn) 6M < +∞.
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如果 fn(x)→ f(x), x ∈ [a, b], 则 f ∈ BV[a, b], 并且

b∨
a

(f) 6M.

证明 我们只证明最后两条.

(6) 对任意给定的 [a, b] 的一个分划 ∆ :

a = x0 6 x1 6 x2 6 · · · 6 xn = b,

不妨设 c ∈ [xi−1, xi], 让 ∆c :

a = x0 6 x1 6 x2 6 · · · 6 xi−1 6 c 6 xi 6 · · · 6 xn = b,

则 ∨
f

(∆) 6
∨
f

(∆c) =
∨
f

(∆c|[a,c]) +
∨
f

(∆c|[c,b])

6
c∨
a

(f) +

b∨
c

(f).

这说明
b∨
a

(f) 6
c∨
a

(f) +

b∨
c

(f)

反过来, 对任意 ε > 0, 存在

∆1 : a = x0 6 x1 6 x2 6 · · · 6 xn = c,

∆2 : c = y0 6 y1 6 y2 6 · · · 6 yn = d,

使得 ∨
f

(∆1) >
c∨
a

(f)− ε,
∨
f

(∆2) >
b∨
c

(f)− ε.

让 ∆ = ∆1 ∪∆2, 则

b∨
a

(f) >
∨
f

(∆) =
∨
f

(∆1) +
∨
f

(∆2)

>
c∨
a

(f) +

b∨
c

(f)− 2ε.

再由 ε 的任意性即可.
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(7) 事实上, 由∨
fn

(∆) =
∞∑
i=1

|fn(xi)− fn(xi−1)| →
∞∑
i=1

|f(xi)− f(xi−1)| =
∨
f

(∆),

可知 ∨
f

(∆) 6 lim
n→∞

∨
fn

(∆) 6M,

故
b∨
a

(f) 6M.

�
注 (6) 说明全变差函数

x∨
a

(f)

是 [a, b] 上的单增函数.

下面我们陈述并证明关于有界变差函数的 Jordan 分解定理, 该定理说明任何

一个有界变差函数都可以被分解成两个单调递增函数之差.

定理 5.5.11 (Jordan 分解定理). 设 f ∈ BV[a, b], 让

g(x) =
1

2

( x∨
a

(f) + f(x)
)
,

h(x) =
1

2

( x∨
a

(f)− f(x)
)
,

则 g, h 在 [a, b] 上单调递增, 并且

f(x) = g(x)− h(x).

证明 对 ∀ x, y ∈ [a, b], x 6 y, 有

|f(x)− f(y)| 6
y∨
x

(f) =

y∨
a

(f)−
x∨
a

(f)

则有 
f(y)− f(x) 6

y∨
a
(f)−

x∨
a
(f)

f(x)− f(y) 6
y∨
a
(f)−

x∨
a
(f)

⇒


x∨
a
(f)− f(x) 6

y∨
a
(f)− f(y)

x∨
a
(f) + f(x) 6

y∨
a
(f) + f(y)

故 g, h 为单调函数. �
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推论 5.5.12. 若 f ∈ BV[a, b], 则 f 的不连续点的全体至多可列, 且 f 几乎处

处可导, 导函数是 Lebesgue 可积的.

定理 5.5.13. 若 f ∈ BV[a, b], 则
b∨
a
(f) 与 f 具有相同的连续点和间断点, 并

且当 x0 为 f 的间断点时, 有

ω+
f (x0) = lim

x→x+
0

|f(x)− f(x0)| = lim
x→x+

0

x∨
x0

(f),

ω−
f (x0) = lim

x→x−
0

|f(x)− f(x0)| = lim
x→x−

0

x∨
x0

(f).

证明 由于当 x > x0 时, 总有

|f(x)− f(x0)| 6
x∨
x0

(f),

因此

lim
x→x+

0

|f(x)− f(x0)| 6 lim
x→x+

0

x∨
x0

(f).

反过来, 记 ω+
f (x0) = α. 对 ∀ ε > 0, 存在 δ > 0, 使得当 y ∈ [x0, x0 + δ] 时, 就有

|f(y)− f(x0)| 6 α+ ε. (5◃5.5)

对上述 ε, 存在 [x0, x0 + δ] 上的分划

∆ : x0 = y0 6 y1 6 y2 6 · · · 6 yn = x0 + δ,

使得 ∨
f

(∆) >
x∨
x0

(f)− ε.

而 ∨
f

(∆) =
n∑

i=2

|f(yi)− f(yi−1)|+ |f(y1)− f(y0)|

=
∨
f

(∆|[y1,x0+δ])

6 |f(y1)− f(x0)|+
x0+δ∨
y1

(f).

故由 (5◃5.5) 式, 对 ∀ y ∈ [x0, x0 + δ] 我们有

α+ ε > |f(y1)− f(x0)| >
y1∨
x0

(f)− ε,
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也即
y1∨
x0

(f) 6 α+ 2ε.

令 y1 → x0, 我们有

lim
x→x+

0

x∨
x0

(f) 6 α+ 2ε→ α = lim
x→x+

0

|f(x)− f(x0)|.

类似的, 可证明关于 ω−
f (x0) 的结论. �

定理 5.5.14. 设 f ∈ BV[a, b], 则

d

dx

( x∨
a

(f)
)

a.e.
= |f ′(x)|.

证明 Step 1. 对 ∀ ε > 0 存在 [a, b] 上的分划 ∆ :

a = x0 6 x1 6 x2 6 · · · 6 xn = b,

使得
n∑

i=1

|f(xi)− f(xi−1)| >
b∨
a

(f)− ε.

当 x ∈ [x0, x1] 时, 让

g(x) =

 f(x)− f(x0), f(x1) > f(x0);

−f(x)− f(x0), f(x1) < f(x0).

则
x∨
a
(f) =

x∨
a
(g), x ∈ [x0, x1]. 当 x ∈ [x1, x2] 时, 让

g(x) =

 f(x)− f(x1) + g(x1), f(x2) > f(x1);

−f(x) + f(x1) + g(x1), f(x2) < f(x1).

则
x∨
x1

(f) =
x∨
x1

(g), x ∈ [x0, x1]. 如此继续, 我们有 g ∈ BV[a, b],
b∨
a
(g) =

b∨
a
(f), 并且

g(xn) =

n∑
i=1

|f(xi)− f(xi−1)|.

由
x∨
a
(g)− g(x) 为单增函数可得,

x∨
a
(f)− g(x) > 0 单调递增, 且

x∨
a

(f)− g(x) 6
b∨
a

(f)− g(b).
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Step 2. 让 εk = 1/k, k = 1, 2, · · · , 则由上述证明, 存在 gk ∈ BV[a, b] 使得

x∨
a

(gk) =
x∨
a

(f), k = 1, 2, · · · ,

hk(x) =
x∨
a

(f)− gk(x) 单调递增,

0 6 hk(x) 6 hk(b) 6
1

2k
, k = 1, 2, · · · .

则
∑∞

k=1 hk(x) 在 [a, b] 上几乎处处收敛, 并且单增. 由定理 5.5.5, 我们有

∞∑
k=1

( d

dx

( x∨
a

(f)
)
− g′k(x)

)
在 [a, b] 上几乎处处收敛, 由于级数每一项都是正的, 这说明级数尾项趋于零, 也即

d

dx

( x∨
a

(f)
)

a.e.
= |f ′|.

�
注 1. 这也证明了

x∨
a
(f) 关于 x 单调递增.

2. 由定理 5.5.4, 进一步可推出:∫ b

a

|f ′(x)|dx =

∫ b

a

d

dx

( x∨
a

(f)
)
dx 6

b∨
a

(f).

下面的定理类似于实数理论中的有界收敛定理. 它是概率论课程中海涅第一

定理的推广形式.

定理 5.5.15 (Hally). 设 F ⊂ BV[a, b], 并且

sup
f∈F

{
|f(a)|+

b∨
a

(f)
}
< M,

则存在 F 的子列 {fn} 逐点收敛到某个有界变差函数.

证明 我们只给出证明流程.

1. 先对单增函数列 {fn} 证明. 用 Cantor 对角线法找子列 {fnk
} 使得其在有

理点集上收敛.

2. 用上确界延拓将极限函数延拓成单增函数.

3. 单增函数几乎处处连续.

3. 用 Cantor 对角线法修改不连续点9上的值. �
9单调函数的不连续点集至多可列.
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这种证明思路比较典型, 建议自行补全.

习题 5.5

1. P255 10,11,12

2. P281 11

3. P283 7,8

§5.6 绝对连续函数

本节中, 我们将看到 Newton-Lebniz 公式成立的充要条件.

在数学分析中, 对导函数为 Riemann 可积的函数成立有 Newton-Lebniz 公式.

事实上, 对于导函数为 Lebesgue 可积的函数也成立.

定理 5.6.1. 设 f ∈ L[a, b], 则

F (x) =

∫ x

a

f(t)dt

几乎处处可导, 且

F ′(x)
a.e.
= f(x).

证明 我们可以将 F 写成

F (x) =

∫ x

a

f+(t)dt−
∫ x

a

f−(t)dt.

Step 1. 证明
∫ b

a
|F ′(x)|dx 6

∫ b

a
f(x)dx. 首先, F (x) 为两个单调函数之差, 故

F ∈ BV [a, b], 因而几乎处处可导. 现在, 让

F1(x) =

∫ x

a

f+(t)dt, F2(x) =

∫ x

a

f−(t)dt.

则有

F ′(x)
a.e.
= F ′

1(x)− F ′
2(x), x ∈ [a, b],

由此可知

|F ′(x)| 6 |F ′
1(x)|+ |F ′

2(x)|, x ∈ [a, b].
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因此由定理 5.5.4, 我们有∫ b

a

|F ′(x)|dx 6
∫ b

a

|F ′
1(x)|dx+

∫ b

a

|F ′
2(x)|dx

6 F1(b)− F1(a) + F2(b)− F1(a)

=

∫ b

a

f+(x)dx+

∫ b

a

f−(x)dx

=

∫ b

a

|f(x)|dx

Step 2. 对 ∀ ε > 0, 存在连续函数 g, 使得∫ b

a

|f(x)− g(x)|dx < ε.

令

G(x) =

∫ x

a

g(t)dt.

由 Step 1. 我们有∫ b

a

|F ′(x)− f(x)|dx =

∫ b

a

|F ′(x)−G′(x) + g(x)− f(x)|dx

6
∫ b

a

|F ′(x)−G′(x)|dx+

∫ b

a

|g(x)− f(x)|dx

6 2

∫ b

a

|g(x)− f(x)|dx

6 2ε→ 0.

这说明 F ′(x)
a.e.
= f(x). �

那么是否还有别的函数满足 Newton-Lebniz 公式?

Newton-Lebniz公式对函数 F 成立的一种等价形式就是存在 Lebesgue可积函

数 f(x), 使得

F (x) =

∫ x

a

f(t)dt+ C.

由于 Lebesgue 积分
∫ x

a
f(t)dt 具有绝对连续性, 我们自然想到满足 Newton-Lebniz

公式的 F 也需要具备某种绝对连续性. 下面我们来严格定义这种绝对连续性.

定义 5.6.2 (绝对连续). 我们称 [a, b] 上的实函数 f 是绝对连续的, 如果对

∀ ε > 0, 存在 δ > 0 使得对 [a, b] 中任意互不相交的区间 [x1, y1], · · · , [xn, yn], 只要∑n
i=1(yi − xi) < δ, 就有

n∑
i=1

∣∣f(yi)− f(xi)∣∣ < ε.

绝对连续函数的全体记为 AC[a, b].
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我们先来看一类不属于绝对连续函数类的函数, 奇异函数. 读者可以将其与

Radon 测度的奇异性相比较.

引理 5.6.3 (奇异函数). 我们称 f(x) 为奇异函数, 如果 f(x) 是 [a, b] 上几乎

处处可导的非常值函数, 且

f ′(x)
a.e.
= 0.

我们有 f /∈ AC[a, b], i.e., 存在 ε0 > 0 使得对任意 δ > 0, 均有 [a, b] 中任意互不相

交的区间 [x1, y1], · · · , [xn, yn], 满足
∑n

i=1(yi − xi) < δ, 且

n∑
i=1

∣∣f(yi)− f(xi)∣∣ > ε0.

证明 由于 f 不是常值函数, 故 ∃ c ∈ [a, b] 使得 f(c) ̸= f(a). 取 ε0 = 1
2 |f(a) −

f(c)|,并取 r0 > 0使得 r0(b−a) < ε0. 对 ∀ δ > 0,设 E = {x ∈ (a, c)| f ′(x) = 0},让

F = {[x, x+ h]| h > 0, [x, x+ h] ⊂ (a, c), x ∈ E, f(x+ h)− f(x) 6 r0h}.

则 F 为 E 的精细覆盖, 对上述 δ > 0, 由引理 5.1.4, 存在 F 中互不相交的有限元

素

[x1, x1 + h1], · · · , [xk, xk + hk] ⊂ (a, c),

使得

m
(
E\

k∪
i=1

[xi, xi + hi]
)
< δ.

而

(a, x1] ∪
( k−1∪

i=1

[xi + hi, xi+1]
)
∪ [xk + hk, c) ⊂ E\

k∪
i=1

[xi, xi + hi],
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且上式左边各区间互不相交, 故其长度总和小于 δ, 且由

2ε0 = |f(a)− f(c)| 6 |f(x1)− f(a)|+
k−1∑
i=1

|f(xi)− f(xi + hi)|

+ |f(c)− f(xk + hk)|+
k∑

i=1

|f(xi + hi)− f(xi)|

6 |f(x1)− f(a)|+
k−1∑
i=1

|f(xi)− f(xi + hi)|

+ |f(c)− f(xk + hk)|+
k∑

i=1

r0hi

6 |f(x1)− f(a)|+
k−1∑
i=1

|f(xi)− f(xi + hi)|

+ |f(c)− f(xk + hk)|+ ε0.

上式说明 |f(x1)− f(a)|+
k−1∑
i=1

|f(xi)− f(xi + hi)|+ |f(c)− f(xk + hk)| > ε0. �

下面我们来看绝对连续函数的一些性质.

定理 5.6.4. (1) 设 f ∈ AC[a, b], 则 f ∈ C[a, b];

(2) 设 f, g ∈ AC[a, b], α, β ∈ R1, 则 αf + βg ∈ AC[a, b];

(3) 设 f ∈ AC[a, b], 则 f ∈ BV[a, b];

(4) 设 f ∈ L[a, b], 让 F (x) =
∫ x

a
f(t)dt, 则 F ∈ AC[a, b].

证明 略. �
现在, 设 f ∈ AC[a, b], 让

g(x) =

∫ x

a

f ′(t)dt.

由定理 5.6.4之 (4),我们有 g ∈ AC[a, b]. 又由定理 5.6.4之 (2) , h = g−f ∈ AC[a, b].

然而由定理 5.6.1,我们有 h′ = g′− f ′ a.e.
= 0.由引理 5.6.3,我们知道 h ≡ const.也即

f(x) =

∫ x

a

f(t)dt+ const.

在上式中代入 x = b, 我们得到了如下定理.

定理 5.6.5 (Newton-Lebniz). 设 f ∈ AC[a, b], 则

f(b)− f(a) =
∫ b

a

f ′(t)dt.
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对于几乎处处可导的函数 f , 如果 f ′ ∈ L[a, b], 让

fs(x) = f(x)−
∫ x

a

f ′(t)dt,

则 f ′s(x)
a.e.
= 0. 这说明 f 可以被分解成绝对连续部分和奇异部分

f(x) =

∫ x

a

f ′(t)dt+ fs(x) = fAC(x) + fs(x).

本节内容基本与 Radon-Nikodym 定理一节平行, 注意比较.
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附录

附录 A Lebesgue 测度的另一构建方式

下面, 我们从抽象测度的角度重新构造 Lebesgue 测度.

可测集与测度

定义 5.6.6 (可测空间). 设 X 为非空集合,M 为 X 上的一个 σ− 代数, 则二

元组 (X,M) 称为是一个可测空间.

定义 5.6.7 (测度). 设 (X,M) 为可测空间, 定义于 M 上的函数 µ : M →

[0,+∞] 称为该可测空间上的一个测度, 如果它满足可列可加性.

注 自然的, 我们约定 µ 不恒取 +∞.

命题 5.6.8. 设 (X,M) 为可测空间, µ 为其上一个测度, 则 µ 具有以下性质:

(1) µ(∅) = 0;

(2) 有限可加性;

(3) 单调性;

(4) 渐张性质: 若 A1 ⊂ A2 ⊂ · · · , 则

lim
n→∞

µ(An) = µ
( ∞∪

n=1

An

)
;

(5) 渐缩性质: 若 A1 ⊃ A2 ⊃ · · · , 且 µ(A1) < +∞, 则

lim
n→∞

µ(An) = µ
( ∞∩

n=1

An

)
;

我们来看一些抽象测度的例子.

例 5.6.9 (计数测度). 取可测空间为 (X,P(X)), 测度为 µ : P(X)→ N∪{∞}

将集合 A 映为其元素个数.

注 事实上, 所有关于级数的理论都可以看作是关于计数测度的积分理论.

例 5.6.10 (Dirac测度). 当 x ∈ E 时,有 δx(E) = 1.当 x /∈ E 时,有 δx(E) = 0.

附录 B BBBBBBBBB
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