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Abstract

(From the main paper) We develop a robust queueing network analyzer algorithm

to approximate the steady-state performance of a single-class open queueing network

of single-server queues with Markovian routing. The algorithm allows non-renewal

external arrival processes, general service-time distributions and customer feedback.

We focus on the customer flows, defined as the continuous-time processes counting

customers flowing into or out of the network, or flowing from one queue to another.

Each flow is partially characterized by its rate and a continuous function that measures

the stochastic variability over time. This function is a scaled version of the variance-

time curve, called the index of dispersion for counts (IDC). The required IDC functions

for the flows can be calculated from the model primitives, estimated from data or

approximated by solving a set of linear equations. A robust queueing technique is

used to generate approximations of the mean steady-state performance at each queue

from the IDC of the total arrival flow and the service specification at that queue. The

algorithm effectiveness is supported by extensive simulation studies and heavy-traffic

limits.
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1 Overview

This appendix provides additional supporting material for the main paper. The main paper

itself is a culmination of our research reported in [38, 39, 40, 41]. We presented our new

approach to queueing approximations using robust queueing based on indices of dispersion

in [39]. Readers should consult that source, including the e-companion, for discussion of

the basic ideas. In §6 of [39] we presented a framework for a new RQNA. The present

paper elaborates and refines that framework, and demonstrates that it can be remarkably

effective. To develop an effective RQNA for an open queueing network (OQN), we relied on

new heavy-traffic limits established in [38, 41]. We present a few more in this appendix.

We start in §2 by providing some additional literature review. In particular, we provide

additonal motivation and discuss how approximations for non-Markov OQNs build on and

extend the classic theory for Markov OQNs. In §3 we discuss ways to calculate the IDC

from model specifications and estimate it from data, either from a real system or from a

simulation model. In §4 we provide more details on the feedback elimination procedure,

elaborating on §4 of the main paper. In §5 we provide additional heavy-traffic support for

our IDC equations in §3.4 of the main paper. In §6 we discuss a tuning function for more

flexible model tuning. Finally, in §7 we discuss additional numerical experiments.

2 Literature Review

We now supplement the main paper by providing some additional literature review.

2.1 From Markov OQNs to non-Markov OQNs

One of the most important developments in queueing theory has been the theory of Jackson

networks initiated by Jackson [22]. A Jackson network is a queueing network with Poisson

external arrival processes, exponential service-time distributions, FCFS service discipline and

Markovian routing policy. This model is especially tractable because the queue length vector

completely characterizes the system state and forms a Markov process, hence it is also called

a Markov OQN. Jackson [22] showed that the steady-state vector for the number of customers

at each queue in a Jackson network has a product-form distribution with geometric marginal

distributions. Hence in steady-state the network can be viewed as if it is decomposed into

mutually independent M/M/1 stations (in Kendall’s notation), even though the queueing

processes are not in fact independent.
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This initial breakthrough was followed by vigorous research leading to an elaborate and

useful theory, as can be seen from [10, 24, 33]. Due to its closed-form and product-form

solution, Jackson networks have been widely studied, e.g. in [5, 27, 30]. Jackson networks

have also been applied to many service systems. For ride-sharing economy, [7] studied

the optimal platform pricing, while [32] looked at the inventory rebalancing and vehicle

routing problems. [8, 26, 35, 42] analyzed resource allocation and quality-of-service in cloud

computing system. For healthcare related problems, [6] studies hospital stuffing strategy to

achieve optimal workflow efficiency under information security requirements; see also [20] for

an overview.

However, applications in communication, manufacturing and service systems are often

complicated by significant deviations from the tractable structure of a Markov OQN. For call

centers and hospitals, the external arrival processes is often well approximated by Poisson

processes. However, dependence in arrival processes may still be induced by over-dispersion,

e.g., see [25] and references there. In most manufacturing systems, an external arrival process

is often far less variable than a Poisson process by design. Even if external arrival processes

can be regarded as Poisson processes, service-time distributions are often non-exponential,

see [9, 18]. This is often resulted from complicated processing operations, such as those

involving batching.

Non-exponential interarrival-time or service-time distributions produce complicated de-

pendence structure in the departure processes, which will be inherited by the arrival processes

at the subsequent stations. Then these processes cannot be renewal processes because (i)

a departure process from any GI/GI/1 queue is necessarily non-renewal if the interarrival-

time or service-time distribution is non-exponential and (ii) the superposition of independent

renewal processes cannot be renewal unless all components are Poisson processes (in which

case the superposition process is also Poisson); e.g., see [14, 15, 17].

Indeed, such dependence in departure processes is consistent with the heavy-traffic limit

theorem for the stationary customer flows developed in [38, 41]. The results show that the

dependence structure in stationary customer flows depends on the traffic intensity and the

interarrival-time and service-time distributions in a nontrivial manner.

Furthermore, dependence among different arrival and service processes are often observed

in manufacturing/communication systems. Upon service completion, jobs are directed to

subsequent stations. This corresponds to splitting the departure process, which introduces

dependence among the sub-flows after splitting. In hospital settings, patients may revisit

a doctor after completing several tests. In manufacturing lines, products may need rework
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after quality-control testings. This is referred to as customer feedback, which necessarily

introduce dependence between the service and arrival processes.

2.2 Motivation and Main Contribution

Despite many attempts to develop more effective analyzers, early approximations such as

QNA [36] or Monte Carlo simulation remain to be the most popular choices, mainly due to

the ease of implementation. For example, [3] identified the major bottleneck in a health cen-

ter appointment clinic, where they applied the QNA algorithm to approximate the system

performance; [12] studied the effect of service interrupts and hospital resources pooling on

patient flow times; [23] also applied decomposition method and two-moment approximations

to analyze the impact of parallelization of care on customer sojourn time; [2] integrated

simulation and optimization to find the optimal staffing allocation in an emergency depart-

ment unit, where they considered a network of Mt/G/1 queues and the stochastic objective

function is estimated by simulation; and [16] also studied the resource allocation problem in

general stochastic networks by simulation optimization.

Given recent applications in modern service systems, there remains a need for fast and

accurate performance analyzers for non-Markov OQNs. The main contribution of this pa-

per is to develop a new performance analyzer that is as easy to implement as the original

QNA algorithm [36], but at the same time produces much more accurate performance ap-

proximations. We develop the first approximation algorithm for non-Markov OQNs based

on non-parametric traffic descriptions. Our approach specifically addresses the challenges

posed by the complicated dependence in queues.

3 The Calculation and Estimation of IDC

3.1 The IDC’s for Renewal Processes

For renewal processes, the variance Var(A(t)) and thus the IDC Ia(t) can either be calcu-

lated directly or can be characterized via their Laplace transforms and thus calculated by

inverting those transforms and approximated by performing asymptotic analysis. Because

we are interested in the steady-state behavior of the OQN, we are primarily interested in

the equilibrium renewal process, as in §3.5 of [31]; see Remark 3 of the main paper.

In turns out that the variance of the equilibrium arrival renewal process V (t) ≡ Var(A(t))

can be expressed in terms of the renewal function m(t) ≡ E[A0(t)], where A0 is the corre-
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sponding ordinary renewal process. For a function f , let f̂ denote the Laplace transform of

f , defined by

f̂(s) ≡ L(f)(s) ≡
∫ ∞
0

e−stf(t)dt.

The following formula is taken from §2 of [38]

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
=

λ

s2
+

2λ

s

ĝ(s)

s (1− ĝ(s))
− 2λ2

s3
, (1)

where g is the density function of the interarrival-time dsitribution. The variance function

can then be obtained numerically, which is discussed in §13 of [1]. The hyperexponential

(H2) and Erlang (E2) special cases are described in §III.G of [19].

It is also possible to carry out similar analyses for much more complicated arrival pro-

cesses. [29] applies matrix-analytic methods to give explicit representations of the variance

mathrmV ar(A(t)) for the versatile Markovian point process or Neuts process; see §5.4, espe-

cially Theorem 5.4.1. Explicit formulas for the Markov modulated Poisson process (MMPP)

are given on pp. 287-289.

3.2 Numerical Estimation of the IDC from Data.

Now we present an algorithm to numerically estimate the variance V (t) = Var(A(t)) from a

given realized sample path of the stationary point process A(t). The main idea is based on

Section 5.4 (iii) of [11].

Our goal is to estimate V (t) for 0 < t < t0 using a realization of A(t) for 0 < t < T . The

simplest way is to apply crude Monte Carlo method to estimate V (t) for a fixed t and repeat

over a finite grid of t’s. This method divide the sample path of A(t) into non-overlapping

intervals of length t and count the number of arrivals in each interval. The variance is then

estimated by the sample variance of the counts. This method is simple to implement but

can be slow to converge.

To accelerate the crude Monte Carlo method, we apply three techniques: (i) we use

overlapping intervals instead of non-overlapping ones, which introduces bias but reduces

sample variance; (ii) we calculate V (t) only over a finite grid equally spaced in the logarithm

scale instead of the linear scale; ; and (iii) we re-use the tallied number of events for shorter

intervals to calculate the total number of events for longer interval, which avoids repetitive

counting. We discuss the three techniques in turn:

Remark 1 (justifying the logarithmic scale) To justify the logarithm scale in (ii), we remark

that the IDC of most stationary processes converges exponentially fast to a constant, as
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the time t increases. In particular, this holds for Markov arrival processes, which includes

hyperexponential renewal process, Erlang renewal process, and Markov modulated Poission

Process as special cases; e.g.. see Ch. XI of [4], [28] ot [29].

To use overlapping intervals, consider first k = T/t number of non-overlapping intervals,

each with length t. Now, we further divide each intervals of length t in to r intervals of the

same length τ = t/r. Hence we have rk number of non-overlapping intervals of length τ .

Let ni be the number of events fall in the i-th interval, consider

Ui ≡ A(Ii) ≡ A[iτ, (i+ r)τ) = ni + ni+1 + · · ·+ ni+r−1, i = 0, 1, . . . , rk − r + 1.

We estimate V (t) with the sample variance V̄l of {Ui}li=1, where l = rk−r+1. This estimator

is in general biased but can achieve lower variance compared with the one obtained with

crude Monte Carlo method. In §3.3 we show that this estimator of V (t) is asymptotically

consistent under mild conditions that V (t) is differentiable with derivative V̇ (t) having finite

positive limits as t→∞.

For the third technique, we now present a algorithm to simultaneously estimate V (2iτ)

for some τ > 0 and i = 0, 1, . . . , l. Let {Ii} be the collection of non-overlapping intervals of

length τ that covers [0, T ]. Let ni = A(Ii) be the number of events on interval Ii. Then we

have the following table from [11].

time horizon t

sample τ 2τ 22τ · · ·
1 n1 n1 + n2 n1 + n2 + n3 + n4 · · ·
2 n2 n2 + n3 n3 + n4 + n5 + n6 · · ·
3 n3 n3 + n4 n5 + n6 + n7 + n8 · · ·
...

...
...

...
...

We find the estimation of V (2iτ) by calculating the sample variance of the corresponding

column.

Now that we have a efficient algorithm to estimate V (2iτ) for fixed τ , we have obtained

the estimations of a grid equally spaced in logarithm scale. To obtain estimations for finer

grids we shift the crude grid by picking several τ ≤ τj ≤ 2τ equally spaced in log scale and,

for each j, simultaneously estimate V (2iτj) for all i.

3.3 Consistency of the estimator

In this section we provide theoretical support for our algorithm to estimate the IDC from

data in §3.2.
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We show that the estimator of the variance function V (t) is asymptotically consistent

under mild regularity conditions that V (t) is differentiable with derivative V̇ (t) having finite

positive limits as t→∞, i.e.,

V̇ (t)→ σ2 as t→∞,

for an appropriate constant σ2. This condition is also used in §3.3 of [39].

Theorem 1 (Consistency of the estimator) Let A be a time-stationary and ergodic point

process with variance function V (t) that is differentiable with derivative V̇ (t) having finite

positive limit as t→∞, i.e.,

V̇ (t)→ σ2 as t→∞.

Then we have

lim
l→∞

bias(V̄l) = 0

for l = rk − r + 1, r = t/τ, k = T/t and V̄k is the sample variance of {Ui}ki=1. Furthermore,

lim
l→∞

V̄l = V (t), w.p.1.

Proof. Let K = rk − r + 1 be the sample size, and assume that V (t) = I(t)t < Ct for

some constant C. Then

E
[
V̄
]

=
1

K − 1

K∑
i=1

E
[
U2
i

]
− 1

K(K − 1)
E

( K∑
i=1

Ui

)2


=
1

K − 1

(
K∑
i=1

E
[
U2
i

]
− 1

K
E

[
K∑
i=1

U2
i + 2

∑
i>j

UiUj

])

= E
[
U2
1

]
− E [U1]

2 − 2

K(K − 1)

∑
i<j

cov(Ui, Uj)

= V (t)− 2

K(K − 1)

( ∑
j<i<j+r

cov(Ui, Uj) +
∑

i>j+r+1

cov(Ui, Uj)

)

= V (t)− 2

K(K − 1)

(
r−1∑
i=1

(K − i)cov(U1, Ui+1) +
K−1∑
i=r

(K − i)cov(U1, Ui+1)

)
≡ V (t)− (A+B)

The covariance terms can be expressed as

cov(U1, U1+i) =

{
V (t− iτ) + V (t+ iτ)− V (t)− V (iτ), i = 1, 2, . . . , r − 1

V (t+ iτ)− 2V (iτ) + V (iτ − t), i = r, r + 1, . . . , K − 1
(2)

7



Using the bound on I(t), we have

A =
2

K(K − 1)

r−1∑
i=1

(K − i)cov(U1, Ui+1)

≤ 2

K

r−1∑
i=1

(V (t− iτ) + V (t+ iτ))

≤ 4Ct(r − 1)

K
≤ 4Ct

k − 1
,

and

B =
2

K(K − 1)

K−1∑
i=r

(K − i)cov(U1, Ui+1)

≤ 2

K

K−1∑
i=r

((V (t+ iτ)− V (iτ))− (V (iτ)− V (iτ − t)))

≤ 2t

K

K−1∑
i=r

(
V (t+ iτ)− V (iτ)

t
− V (iτ)− V (iτ − t)

t

)
→ 0, as k →∞,

where we used the regularity condition that V̇ (t) → σ2 as t → ∞, and the fact that the

average converges to 0 if the summands converge to 0.

Note that

V̄k ≡
1

k − 1

k∑
i=1

U2
i −

1

k(k − 1)

(
k∑
i=1

Ui

)2

By Continuous Mapping Theorem, we need only prove that both {Ui} and {U2
i } follows

Strong Law of Large Number (SLLN). This in turns is implied by the Strong Ergodic The-

orem for stationary and ergodic sequence. The stationarity of both sequences are implied

by the time-stationarity of the point process N(t). The ergodicity of both sequence follows

from the ergodicity of the underlying process N(t). �

4 More on Feedback Elimination

The modified system is a single-server queue with a new service-time distribution and without

feedback. Let Np denote a geometric random variable with success probability 1 − p and

support N+, the positive natural numbers, then the new service time can be expressed as

Sp =

Np∑
i=1

Si, (3)
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where Si’s are i.i.d. copies of the original service times. This modification in service times

results in a change in the service scv. By the conditional variance formula, the scv of the

total service time is c̃2s = p + (1− p)c2s. The new service IDC in the modified system is the

IDC of the stationary renewal process associated with the new service times. To obtain the

new service IDC, we need only find the Laplace Transform of the new service distribution,

then apply the algorithm in §3.1.

Let gp denote the density function of the new service time, we have

ĝp(s) ≡ E

[
exp

(
−s

Np∑
i=1

Si

)]
= E

[
E

[
exp

(
−s

Np∑
i=1

Si

)∣∣∣∣∣Np

]]

= E

[
Np∏
i=1

E [exp (−sSi)]

]
= E

[
ĝNp(s)

]
= Mp(ĝ(s)),

where ĝ(s) is the Laplace transform of the original service distribution and Mp is the prob-

ability generating function of the geometric random variable described above.

An alternative algorithm eliminates only all near-immediate feedback from the bottleneck

queues, where a bottleneck queue is a station with a traffic intensity that equals the highest

traffic intensity in the network. For each bottleneck queue in the network, by the definition

of near-immediate feedback, we eliminate all feedback at this queue when we analyze the

mean workload at that queue, even if the feedback flow passes through other bottleneck

queues.

To help understand near-immediate feedback, consider a modified OQN with one bottle-

neck queue, denoted by h, while all non-bottleneck queues have service times set to 0 so that

they serve as instantaneous switches. In the reduced network, we define an external arrival

Â0 to the bottleneck queue to be any external arrival that arrive at the bottleneck queue for

the first time. Hence, an external arrival may have visited one or multiple non-bottleneck

queues before its first visit to the bottleneck queue. In particular, the external arrival pro-

cess can be expressed as the superposition of (i) the original external arrival process A0,h

at station h; and (ii) the Markov splitting of the external arrival process A0,i at station i

with probability p̂i,h, for i 6= h, where p̂i,h denote the probability of a customer that enters

the original system at station i ends up visiting the bottleneck station h. For the explicit

formula of p̂i,h, see Remark 3.2 of [41].

In §4.2 of [41], we showed that this reduced network is asymptotically equivalent in the HT

limit to the single-server queue with i.i.d. feedback that we considered in §4.1. In particular,

the arrival process of the equivalent single-station system is Â0 as described above, the service

times remain unchanged and the feedback probability is p̂, which is exactly the probability
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of a near-immediate feedback in the original system; see (3.9) of [41] for the expression of p̂.

Hence we showed that eliminating all feedback at the bottleneck queue as described above

prior to analysis is asymptotically correct in HT for OQNs with a single bottleneck queue in

terms of the queue length process, the external departure process, the workload process and

the waiting time process. Moreover, the different variants of the algorithm - eliminating all

near immediate feedback or only the near-immediate feedback at the bottleneck queues - are

asymptotically exact in the HT limit for an OQN with a single-bottleneck queue, because

only the bottleneck queues have nondegenerate HT limit. In contrast, if there are multiple

bottleneck queues, the HT limit requires multidimensional RBM, which is not used in our

RQNA.

5 Supporting Heavy Traffic Limits

In this section, we provide detailed HT limit support for the IDC equations discussed in §3.4.

5.1 Heavy-Traffic Limits for Departure Processes

We first provide theoretical support for the approximation of the departure IDC in (17) of

§3.3.1 of the main paper. That approximation is ultimately supported by the heavy-traffic

limit theorem obtained in Theorem 4.1 of [41]. To use that result, we start by presenting a

slight variant of it. We refer to §3.2 of [41] for the notation used here.

Lemma 1 Under the assumption of Theorem 4.1 of [41], the HT limit of the departure

process of the bottleneck station h can be written as

D∗h = Q̃∗h(0) + Ã∗h − Q̃∗h, (4)

where

Ã∗h = e′h(I − P ′)−1 (A∗0 + (Θ∗)′1) (5)

and

Q̃∗h =
1

1− P̂h
Q∗h = ψ

(
Q̃∗h(0) + Ã∗h − S∗h − λhe

)
. (6)

As a result, the limiting variance function of the departure process is where

V ∗d,h(t) = w∗(λht/c
2
x,h)c

2
a,hλht+ (1− w∗(λht/c2x,h))c2s,hλht, (7)

where w∗(t) is the weight function in (19) of §3.3.1 of the main paper. The variability

parameter is c2x,h = c2a,h + c2s,h with c2s,h being the service scv and c2a,h being the limiting

variability of the total arrival at station h, given by c2a,h ≡ Var(Ã∗h)/λht.
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Proof. Start by claiming that

e′hP̂
′
Hc,Heh =

1

1− P̂h
, λh =

λ̂0,h

1− P̂h
and that

1

1− P̂h

(
e′h + P̂ ′Hc,He

′
Hc

)
= e′h(I − P ′)−1.

In fact, all three assertions can be check by writing the transition matrix in blocks according

to two sets of indices {H,Hc}.
Now, (6) follows from dividing both sides of the limiting queue length process in Theorem

4.1 of [41] by (1− P̂ ′h) and the fact that ψ(f/c) = ψ(f)/c for any function f and constant c.

The limiting variance function is derived in the exact same way as in Theorem 5.3 of

[38] by noting that Ã∗h and S∗h are two independent Brownian motions. The only change

here is that we have an additional tuning function h(ρ). This, however, does not change the

argument, since we require that limρ↑1 h(ρ) = 1. �

The approximation in (17) of §3.3.1 of the main paper is then justified by the exact same

procedure as described in §6.2 of [38].

Remark 2 (The choice of the approximation in (17) of §3.3.1 of the main paper) As in any

approximation based on heavy-traffic limits, it is possible to have different approximations

that converge to the same limit. We propose to add a correction term to achieve exact light

traffic limit while keeping the HT limit unchanged. In particular, in our approximation (18)

of §3.3.1 of the main paper we have an extra ρi in the denominator of the term inside w∗(·).
As ρi ↓ 0, or equivalently, as the service time at station i become negligible in compare with

the interarrival times, the departure IDC will converge to the arrival IDC. This is preserved

in our approximation in our approximation (18) of §3.3.1 of the main paper by virtue of the

additional correction term. �

5.2 Heavy-Traffic Limits for Splitting

We now provide additional theoretical support for the splitting approximation in §3.3.2. For

that purpose, let

Θi(n) ≡ (Θi,1(n), . . . ,Θi,K(n)) =
n∑
l=1

θli

denote the splitting decisions up to the n-th decision at station i. Consider the diffusion-

scaled processes indexed by ρ

D∗i,ρ(t) = (1− ρ)
[
Di((1− ρ)−2t)− λi(1− ρ)−2t

]
,
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Θ∗i,ρ(t) = (1− ρ)

b(1−ρ)−2tc∑
l=1

θl − pi(1− ρ)−2t

 ∈ DK , (8)

A∗i,ρ(t) = (1− ρ)
[
Ai((1− ρ)−2t)− λipi(1− ρ)−2t

]
∈ DK ,

for t ≥ 0, where pi ≡ E[θli] is the i-th row of the routing matrix and Ai,ρ = (Ai,j,ρ : j =

1, 2, . . . , K) is the vector consists of all the streams after splitting. The following result

rephrases Theorem 9.5.1 in [37].

Theorem 2 Suppose that

(D∗i,ρ,Θ
∗
i,ρ)⇒ (D∗i ,Θ

∗
i ) as ρ ↑ 1 in DK+1 (9)

and that almost surely D∗ and Θ∗ ◦ λe have no common discontinuities of opposite sign.

Then

A∗i,ρ ⇒ A∗i in DK ,

with

A∗i,j ≡ pi,jD
∗ + Θ∗i,j ◦ λie, for 1 ≤ j ≤ K, (10)

where e(t) = t is the identity mapping.

Remark 3 (splitting the departures from a G/GI/1 queue) If we split the departure process

from the GI/GI/1 model with Markovian routing, then D∗ is independent of Θ∗ and Θ∗

is a zero-drift K-dimensional Brownian motion with covariance matrix Σ = (σi,j) ∈ RK×K ,

where σ2
i,i = pi(1− pi) and σ2

i,j = −pipj for i 6= j. Hence, from (10) we obtain

A∗ = pD∗ + Θ∗ ◦ λe, (11)

which is consistent with our approximation (22) of §3.3.2 of the main paper and thus also

for approximation (23) there.

Theorem 2 assumes only a joint FCLT for the flow to split and the splitting decision

process, so dependence is allowed. Thus it provides support for the general splitting equation

in approximation (24) of §3.3.2 of the main paper for the case where Di,j and Θi,j are

correlated. Furthermore, define the HT-scaled correction term as

α∗i,j,ρ(t) ≡ αi,j((1− ρ)−2t). (12)

Finally, define the limiting correction term as

α∗i,j(t) ≡ 2cov(pi,jD
∗
i (t),Θ

∗
i,j(λit))/pi,jλit. (13)

The following corollary follows from Theorem 2.
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Corollary 1 Under the assumptions in Theorem 2 plus the uniform integrability conditions,

we have α∗i,j,ρ(t)⇒ α∗i,j(t) as ρ ↑ 1.

Proof. By the definitions of the correction term in (15) and HT-scaled processes, we write

α∗i,j,ρ(t) = αi,j((1− ρ)−2t)

= Ia,i,j((1− ρ)−2t)− pi,jId,i((1− ρ)−2t)− (1− pi,j)

=
Var((1− ρ)Ai,j((1− ρ)−2t))

pi,jλit
− pi,j

Var((1− ρ)Di((1− ρ)−2t))

λit
− (1− pi,j)

=
Var(A∗i,j,ρ(t))

pi,jλit
− pi,j

Var(D∗i,ρ(t))

λit
− (1− pi,j)

⇒
Var(A∗i,j(t))

pi,jλit
− pi,j

Var(D∗i (t))

λit
− (1− pi,j) = α∗i,j(t).

�

This corollary supports the following approximation for the correction term αi,j in

αi,j(t) ≈ α∗i,j((1− ρ)2t) (14)

with α∗i,j defined in (13).

5.3 An Approximation Scheme for General Correction Terms

In a general open queueing network with feedback and superposition of dependent flows, the

correction terms αi,j and βi can be non-trivial. The key idea is that, for each correction

term, we select a suitable queue and assume it to be the bottleneck queue. Then we apply

Theorem 4.1 of [41] to obtain HT approximation of the correction terms and utilize Corollary

5.1 of [38] to obtain explicit form of the correction term. We now discuss the two types of

correction terms in turn.

5.3.1 Dependent Splitting: the Correction Term αi,j.

So that the additional correction term αi,j is defined as

αi,j(t) ≡ Ia,i,j(t)− pi,jId,i(t)− (1− pi,j). (15)

Unfortunately, the covariance in (13) is complicated. We do obtain a useful approximation

under the extra condition that only queue i enters heavy traffic.

For any αi,j, the relevant routing flow is Ai,j while the relevant departure flow is Di.

Naturally, we choose station i to be the HT station. So we let ρi = ρ ↑ 1 and keep ρj < 1

13



for j 6= i. Define the HT scaled processes as in §3.2 of [41] and apply Lemma 1 with h = i,

we have

D∗i,ρ ⇒ D∗i = Ã∗i + Q̃∗i (0)− Q̃∗i . (16)

For the routing flow Ai,j, we apply Theorem 2 so that

A∗i,j,ρ ⇒ A∗i,j = pi,jD
∗
i + Θi,j ◦ λie as ρ ↑ 1. (17)

Define the correction term α∗i,j as in (14), then Theorem 4.1 of [41] implies the following

corollary, which leads to the correction term in approximation (25) of §3.3.2 of the main

paper.

Theorem 3 Under the assumptions in Theorem 4.1 of [41] and Theorem 2 plus the uniform

integrability conditions, we have

α∗i,j,ρ(t)⇒ 2cov(pi,jD
∗
i (t),Θ

∗
i,j(λit))/(pi,jλit)

= 2ξi,jpi,j(1− pi,j)w∗(λit/c2x,i), as ρ ↑ 1, (18)

where ξi,j is the (i, j)th entry of the matrix (I −P ′)−1, c2x,i = c2a,i + c2s,i and c2a,i is the limiting

variability parameter as solved from the IDC equation system in (31) of §3.4 of the main

paper and c2s,i is the scv of the service distribution at station i.

Proof. Apply Theorem 4.1 of [41] to obtain expression for D∗i (t), then apply Corollary 5.1

of [38] for the explicit covariance in (18). �

As a direct result of Theorem 3, we propose to define the correction term as

αi,j,ρ(t) = 2ξi,jpi,j(1− pi,j)w∗((1− ρ)−2λit/(ρc
2
x,i)), (19)

which is asymptotically exact as ρ ↑ 1.

5.3.2 Dependent Superposition: the Correction Term βi.

Next, we consider the correction term βi associated with dependent superposition. From

(27) of §3.3.3 of the main paper, it suffices to specify βk,i;j,i for any station i and any pair of

sub-flows (Aj,i, Ak,i) at that station. We assume without loss of generality that (i) ρj ≥ ρk,

or (ii) ρj = ρk and λj,i ≥ λk,i. In the case (ii), we break the tie by picking the index that

gives the larger rate λj,i. In both cases, we consider station j to be the HT station while

keep all other stations unsaturated.

14



By Theorem 4.1 of [41], we have

A∗ρ ⇒ A∗ = Ã∗ + γj

(
Q̃∗j(0)− Q̃∗j

)
D∗j,ρ ⇒ D∗j = Ã∗j + Q̃∗j(0)− Q̃∗j ,

D∗l,ρ ⇒ D∗l = A∗l , for l 6= j,

where

Ã∗ = (I − P ′)−1 (A∗0 + (Θ∗)′1) ,

Q̃∗j is defined in Lemma 1 with h = j and γj ∈ RK is defined as

γj = P ′(I − P ′)−1e′j(1− P̂j)

with P̂j defined as in (3.9) of [41] with H = {j}.
Furthermore, Theorem 2 gives

A∗j,i = pj,iD
∗
j + Θ∗j,i ◦ λje

= pj,iÃ
∗
j + Θ∗j,i ◦ λje+ pj,i(Q̃

∗
j(0)− Q̃∗j) (20)

A∗k,i = pk,iD
∗
k + Θ∗k,i ◦ λke

= pk,iÃ
∗
k + Θ∗k,i ◦ λke+ pk,iγj,k(Q̃

∗
j(0)− Q̃∗j). (21)

We utilize the following approximations

A∗k,i ≈ pk,iÃ
∗
k + Θ∗k,i ◦ λke ≡ Ã∗k,i (22)

and

pj,iQ̃
∗
j ≈ ψ

(
pj,iQ̃j(0) + pj,iA

∗
j + Θ∗j,i ◦ λje− pj,iS∗j − pj,iλje

)
≡ Q̃∗j,i. (23)

By Corollary 5.1 of [38]

2cov
(
Ã∗k,i(t), Ã

∗
j,i(t)− Q̃∗j,i(t)

)
/(λit) = 2

ζj,i;k,i
λi

w∗(t/c2x,j), (24)

where Ã∗j,i ≡ pj,iÃ
∗
j + Θ∗j,i ◦ λje and ζj,i;k,i is the constant defined as

ζj,i;k,i =
1

t
cov

(
Ã∗k,i(t), Ã

∗
j,i(t)

)
. (25)

Note that ζj,i;k,i is a constant independent of t since Ã∗k,i(t) and Ã∗j,i(t) are Brownian motions.

Finally, we define

βj,i;k,i(t) = βk,i;j,i(t) = 2
ζj,i;k,i
λi

w∗((1− ρj)2pj,iλjt/(ρc2x,j,i)), (26)

where c2x,j,i = pj,ic
2
a,j +(1−pj,i)+pj,ic

2
s,j and c2a,j is solved from (34) of §3.4 of the main paper.

The following lemma gives explicit formula for ζj,i;k,i. Let νl ≡ pl,ie
′
l(I−P ′)−1 for l = j, k,

where ei is the i-th unit vector.
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Lemma 2

ζj,i;k,i = ν ′j

(
diag(c2a,0,iλi) +

K∑
l=1

Σl

)
νk + ν ′kΣjei + ν ′jΣkei, (27)

where diag(c2a,0,iλi) is the diagonal matrix with c2a0,iλi as the i-th diagonal entry, Σl is the

covaraince matrix of Brownian limit of the splitting decision process (Θ∗l,i)
K
i=1 at station l

defined as Σl ≡ (σli,j) with σli,i = pl,i(1− pl,i)λl and σli,j = −pl,ipl,jλl for i 6= j.

Proof. By the definition of Ã∗ and Ã∗j,i, we have

Ã∗j,i ≡ pj,iÃ
∗
j + Θ∗j,i = pj,ie

′
j(I − P ′)−1(A∗0 + (Θ∗)′1) + Θ∗j,i

= νj

(
A∗0 +

K∑
l=1

Θ∗l

)
+ e′iΘ

∗
j ,

Ã∗k,i ≡ pk,iÃ
∗
k + Θ∗k,i = pk,ie

′
k(I − P ′)−1(A∗0 + (Θ∗)′1) + Θ∗k,i,

= νk

(
A∗0 +

K∑
l=1

Θ∗l

)
+ e′iΘ

∗
k,

where A∗0 is the Brownian limit of the external arrival processes, i.e., A∗0,i
d
= ca0,iBa0,i ◦λie and

Θ∗ ≡ (Θ∗1, . . . ,Θ
∗
K)′ ∈ RK×K with Θ∗i = (Θ∗i,1, . . . ,Θ

∗
i,K). Recall that Θ∗i is the the collection

of the Brownian limits of the decision processes at station i, so that

cov(Θ∗i,j,Θ
∗
i,k) =

{
pi,j(1− pi,j)λit, j = k,

−pi,jpi,kλit, j 6= k.

Define

Σi ≡
(
cov(Θ∗i,j,Θ

∗
i,k)/t

)K
j,k=1

∈ RK×K

so that Σi is a constant matrix independent of t.

Notice that A∗0,i, Θ∗j for 1 ≤ i, j ≤ K are mutually independent, we have

ζj,i;k,i ≡
1

t
cov

(
Ã∗k,i(t), Ã

∗
j,i(t)

)
=

1

t
cov

(
νjA

∗
0 +

K∑
l=1

(νj + δl,je
′
i) Θ∗l , νkA

∗
0 +

K∑
l=1

(νk + δl,ke
′
i) Θ∗l

)

=
1

t
cov (νjA

∗
0, νkA

∗
0) +

1

t

K∑
l=1

cov ((νj + δl,je
′
i) Θ∗l , (νk + δl,ke

′
i) Θ∗l )

= ν ′j

(
diag(c2a0,iλi) +

K∑
l=1

Σl

)
νk + ν ′kΣjei + ν ′jΣkei.
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6 A Tuning Function in the Departure IDC Equation

The IDC equations discussed in §3.4 of the main paper can be generalized so that the wait

functions w∗ include a tuning function h(ρ).

We now discuss this tuning function for departure IDC as an illustration. In particular,

we replace (18) of §3.3.1 of the main paper by the following

wρi(t) ≡ w∗((1− ρi)2λit/h(ρi)c
2
x,i), t ≥ 0.

The tuning function h(ρ) is an increasing continuous tuning function of the traffic intensity

ρ with h(0) ≡ 0 and h(1) ≡ 1.

The approximation in (17) of §3.3.1 of the main paper, for any tuning function h(ρ), is

supported by heavy-traffic limits for the stationary departure processes, where we push the

queue of interest (denoted by h) to the heavy-traffic limit while keeping other stations strictly

under-saturated. Such HT limits are established in Theorems 5.1-5.3 and Corollary 6.1 of

[38] for the GI/GI/1 model and extended to cover the OQN model in Theorem 4.1 of [41].

Under regularity conditions (uniform integrability, for which it suffices to have uniformly

bounded finite fourth moments of the interarrival time and service time), the approximation

in in (17) of §3.3.1 of the main paper is asymptotically correct as ρh → 1.

It remains to specify the tuning function h used in the ρi-dependent weight wρi(t) in in

(18) of §3.3.1 of the main paper. It is chosen to improve the quality of approximations at

queues with light-to-moderate traffic intensities. In specific, we propose

h(ρ) ≡ ρ2, 0 ≤ ρ ≤ 1. (28)

This specific choice of the tuning function is motivated from Remark 5.2 of [38], where we

replace γ by γρ in the pre-limit weight function and recall that the usual case of µρ = λ/ρ

corresponds to γρ = 1/ρ. The tuning function in (28) also corresponds to (33) of in [39]. We

remark that hρ can be used as a tuning parameter to improve the quality of approximations.

We will illustrate in our numerical examples in §7.

7 Additional Numerical Experiments

7.1 Comparison with RQ

This example is taken from §5.2 of [39], where we consider 10 single-server queues in series.

The external arrival process is a rate-1 renewal process with H2 interarrival times, having
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c2a = 5. The first 9 queues all have Erlang service times with c2a = 0.5 denoted by E2, i.e., the

sum of 2 i.i.d. exponential random variables. The first 8 queues have mean service time and

thus traffic intensity 0.6, while the 9th queue has mean service time and thus traffic intensity

0.95. The difference in variability level of the arrival and service process introduces complex

variability structure underneath the first 9 queues in series. The 10th queue serves as a test

queue and has an exponential service-time distribution with mean and traffic intensity ρ,

which is allowed to vary from 0 to 1 in order to expose the complex impact of the variability

on the performance measure of the test queue.

The RQNA algorithm in this case is a simple special case of Algorithm 1 in §3.5 of the

main paper. The IDC’s of the external flows (Ia1 for external arrival at station 1 and Isi

service flows) can be derived by explicitly inverse (1), see §III.G of [19]. For internal flows,

we apply the departure approximation in (17) of §3.3.1 of the main paper recursively, so that

for 2 ≤ i ≤ 9,

Id1(t) = w1Ia1(t) + (1− w1)Is1(t), and

Idi(t) = wiIdi−1
(t) + (1− wi)Isi(t), (29)

where we used (18) of §3.3.1 of the main paper with h(ρ) = ρ2 as in (28) with ρi = 0.6 for

1 ≤ i ≤ 8, ρ9 = 0.95, λi = 1. For the variability parameters, we note that c2xi ≡ c2ai + c2si =

c2ai + 0.5 and that, for 2 ≤ i ≤ 9,

c2ai ≡ Iai(∞) = Idi−1
(∞) = Iai−1

(∞) = · · · = Ia1(∞) = c2a1 = 5.

With Ia10(t) = Id9(t), we can now apply the RQ algorithm in (12) of §2.2 of the main paper.

Figure 1 reports on two aspects the performance of the RQNA algorithm at the (10th) test

queue: (i) the approximation of the IDW, and (ii) the RQNA approximation of the steady-

state mean workload. Figure 1 (left) shows that the IDC approximation in the RQNA

algorithm performs very well, while Figure 1 (right) shows that both RQ (with directly

estimated IDC) and RQNA are accurate.

7.2 A Single-Server Queue with i.i.d. Feedback

We start the minimal example with customer feedback, i.e., single-server queue with i.i.d.

customer feedback.

In specific, we look at two settings: (1) H2 external arrival and service distribution, both

with balanced mean but c2a = 6 and c2s = 2, the external arrival rate is set to 1 and the

feedback probability is p = 0.5; and (2) E2 external arrival distribution so that c2a = 1/2 and
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Figure 1: Contrasting the RQNA approximation of the IDW at the 10-th queue and simu-

lation estimated IDW (left) in the ten queues in series example. Simulation estimation of

the steady-state mean workload, the RQ approximation in (12) of the main paper and the

RQNA approximation from Algorithm 2 in §3.5 of the main paper shown in the right plot.
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H2 service distribution with balanced mean and c2s = 6, the external arrival rate is again 1

but the feedback probability is p = 0.75.

To exposed the impact of the traffic intensity on the mean steady-state workload, we

allow traffic in tensity to vary in the full range of (0, 1).

Figure 2 reports various robust queueing approximation of the two examples. We observer

that feedback elimination produces exact values in the HT limit, however, it does not capture

the correct LT limit. On the other hand, the RQ-IDW algorithm, as well as the RQNA-IDC

algorithms with suitable tuning function gives exact LT limit, but incorrect HT limit.

7.3 Comparisons with Previous Algorithms for Queues in Series

In this section, we compare the performance of our RQNA algorithm to the performance of

QNA from [36], QNET from [21], SBD from [13] and RQ from [39], for the example with

9 queues in series considered by [34]. This example was introduced by [34] to illustrate the

heavy-traffic bottleneck phenomenon.

In particular, we consider an OQN with 9 stations in tandem, each with i.i.d. exponential

service times. Station 1 has the only external arrival process, which is a rate-1 general renewal

process. The traffic intensities at the first 8 queues are set to ρi = 0.6 for 1 ≤ i ≤ 8, while
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Figure 2: Contrasting the RQ algorithm in §2.2 of the main paper with simulated IDW, the

RQNA algorithm with feedback elimination in §4.1 of the main paper, and the RQNA-IDC

algorithm in §5 of the main paper with the simulation estimation of the mean steady-state

workload, as functions of the traffic intensity ρ. For the RQNA-IDC algorithm, we display

results for two different tuning functions h(ρ) as specified in the legend.
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the last queue has the significantly higher traffic intensity ρ9 = 0.9. As in [34], two specific

external renewal arrival processes are considered: (i) deterministic interarrival times with

c2a0 = 0; and (ii) highly variable H2 interarrival times with c2a0 = 8 (and again balanced

means).

The heavy-traffic bottleneck phenomenon illustrates that the variability of the external

arrival process can have only very limited impact on the performance of the following queues,

especially after passing through several queues, and yet dramatically affect the performance

of a later queue with a much higher traffic intensity. This phenomenon is a result of com-

plicated long-range dependence embedded in the arrival processes, introduced by flowing

through a queue (the departure processes), as revealed by the departure approximation in

(17) of §3.3.1 of the main paper. This example was introduced to show the limitation of tra-

ditional decomposition methods, e.g. the QNA algorithm, and is often used as a benchmark

for different approximation methods, see §3.3 of [13].

Table 1 (for low variability) and Table 2 (for high variability) compare the various ap-

proximations of the mean steady-state waiting time at each station, as well as the total

waiting time in the system, to simulation estimates.

In the parentheses, we include (i) the relative half-width of the 95% confidence interval

20



T
ab

le
1:

A
co

m
p
ar

is
on

of
fo

u
r

ap
p
ro

x
im

at
io

n
m

et
h
o
d
s

to
si

m
u
la

ti
on

fo
r

9
ex

p
on

en
ti

al
(M

)
q
u
eu

es
in

se
ri

es
fe

d
b
y

a
d
et

er
m

in
is

ti
c

ar
ri

va
l

p
ro

ce
ss

w
it

h
c2 a

=
0.

Q
u
eu

e
S
im

Q
N
A

Q
N
E
T

S
B
D

R
Q

R
Q
N
A

R
Q
N
A

R
Q
N
A

h
(ρ
)
=
ρ

h
(ρ
)
=
ρ
2

h
(ρ
)
=
ρ
3

1
0
.2
9
0
(2
.4
1
%
)

0
.4
5
(5
5
%
)

0
.4
5
(5
5
%
)

0
.4
5
(5
5
%
)

0
.3
0
(2
.3
%
)

0
.3
0
(2
.3
%
)

0
.3
0
(2
.3
%
)

0
.3
0
(2
.3
%
)

2
0
.4
9
1
(1
.4
3
%
)

0
.6
1
(2
4
%
)

0
.6
6
(3
5
%
)

0
.6
6
(3
5
%
)

0
.5
5
(1
3
%
)

0
.5
8
(1
9
%
)

0
.5
3
(8
.1
%
)

0
.4
8
(-
2
.8
%
)

3
0
.6
0
7
(1
.3
2
%
)

0
.7
2
(1
9
%
)

0
.7
4
(2
2
%
)

0
.7
4
(2
2
%
)

0
.7
0
(1
5
%
)

0
.7
2
(1
9
%
)

0
.6
6
(9
.4
%
)

0
.6
0
(-
1
.1
%
)

4
0
.6
6
6
(1
.2
0
%
)

0
.7
8
(1
7
%
)

0
.7
9
(1
8
%
)

0
.7
9
(1
9
%
)

0
.7
7
(1
6
%
)

0
.7
9
(1
9
%
)

0
.7
4
(1
1
%
)

0
.6
8
(2
.1
%
)

5
0
.7
0
6
(1
.4
2
%
)

0
.8
3
(1
8
%
)

0
.8
2
(1
6
%
)

0
.8
2
(1
6
%
)

0
.8
0
(1
4
%
)

0
.8
3
(1
8
%
)

0
.7
9
(1
2
%
)

0
.7
3
(3
.9
%
)

6
0
.7
3
1
(1
.7
8
%
)

0
.8
5
(1
6
%
)

0
.8
4
(1
4
%
)

0
.8
4
(1
5
%
)

0
.8
3
(1
3
%
)

0
.8
6
(1
8
%
)

0
.8
2
(1
3
%
)

0
.7
7
(5
.7
%
)

7
0
.7
4
8
(1
.3
4
%
)

0
.8
7
(1
6
%
)

0
.8
5
(1
4
%
)

0
.8
5
(1
4
%
)

0
.8
4
(1
2
%
)

0
.8
8
(1
7
%
)

0
.8
5
(1
3
%
)

0
.8
0
(7
.2
%
)

8
0
.7
7
5
(1
.6
8
%
)

0
.8
8
(1
4
%
)

0
.8
6
(1
1
%
)

0
.8
6
(1
1
%
)

0
.8
5
(9
.2
%
)

0
.8
9
(1
5
%
)

0
.8
6
(1
1
%
)

0
.8
2
(6
.2
%
)

9
5
.0
3
1
(4
.3
1
%
)

7
.9
9
(5
9
%
)

6
.9
7
(3
9
%
)

4
.0
5
(-
2
0
%
)

4
.9
5
(-
2
.0
%
)

4
.9
7
(-
1
.3
%
)

4
.5
0
(-
1
1
%
)

4
.1
1
(-
1
8
%
)

T
o
ta
l

1
0
.0
5

1
4
.0

(3
9
%
)

1
3
.0

(2
9
%
)

1
0
.1

(0
.0
9
%
)

1
0
.6

(5
.3
%
)

1
0
.8

(7
.6
%
)

1
0
.1

(0
.1
3
%
)

9
.0
0
(-
1
0
%
)

T
ab

le
2:

A
co

m
p
ar

is
on

of
fo

u
r

ap
p
ro

x
im

at
io

n
m

et
h
o
d
s

to
si

m
u
la

ti
on

fo
r

9
ex

p
on

en
ti

al
(M

)
q
u
eu

es
in

se
ri

es
fe

d
b
y

a
h
ig

h
ly

-v
ar

ia
b
le
H

2
re

n
ew

al
ar

ri
va

l
p
ro

ce
ss

w
it

h
c2 a

=
8.

Q
u
eu

e
S
im

Q
N
A

Q
N
E
T

S
B
D

R
Q

R
Q
N
A

R
Q
N
A

R
Q
N
A

h
(ρ
)
=
ρ

h
(ρ
)
=
ρ
2

h
(ρ
)
=
ρ
3

1
3
.2
8
4
(3
.5
0
%
)

4
.0
5
(2
3
%
)

4
.0
5
(2
3
%
)

4
.0
5
(2
3
%
)

3
.9
5
(2
0
%
)

3
.9
5
(2
0
%
)

3
.9
5
(2
0
%
)

3
.9
5
(2
0
%
)

2
2
.3
2
1
(4
.1
8
%
)

2
.9
2
(2
6
%
)

1
.8
1
(2
2
%
)

1
.8
2
(-
2
2
%
)

2
.6
1
(1
2
%
)

1
.5
8
(-
3
2
%
)

1
.9
5
(-
1
5
%
)

2
.3
9
(3
.0
%
)

3
1
.9
1
4
(3
.4
0
%
)

2
.1
9
(1
4
%
)

1
.4
7
(-
2
3
%
)

1
.4
9
(-
2
2
%
)

2
.0
4
(6
.7
%
)

0
.9
8
(-
4
9
%
)

1
.0
7
(-
4
4
%
)

1
.3
3
(-
3
1
%
)

4
1
.7
1
9
(4
.0
7
%
)

1
.7
3
(0
.6
4
%
)

1
.1
6
(-
3
3
%
)

1
.1
9
(-
3
1
%
)

1
.7
2
(0
.3
1
%
)

0
.9
2
(-
4
7
%
)

0
.9
4
(-
4
1
%
)

0
.9
8
(-
4
3
%
)

5
1
.5
9
8
(3
.6
9
%
)

1
.4
3
(-
1
1
%
)

1
.0
7
(-
3
3
%
)

1
.1
0
(-
3
1
%
)

1
.5
3
(-
4
.1
%
)

0
.9
0
(-
4
4
%
)

0
.9
1
(-
4
3
%
)

0
.9
3
(-
4
3
%
)

6
1
.4
7
8
(4
.1
3
%
)

1
.2
4
(-
1
6
%
)

1
.0
3
(-
3
1
%
)

1
.0
6
(-
2
8
%
)

1
.4
1
(-
4
.6
%
)

0
.9
0
(-
3
9
%
)

0
.9
0
(-
3
9
%
)

0
.9
1
(-
3
9
%
)

7
1
.4
2
3
(3
.2
3
%
)

1
.1
2
(-
2
1
%
)

1
.0
0
(-
3
0
%
)

1
.0
3
(-
2
8
%
)

1
.3
3
(-
6
.8
%
)

0
.9
0
(-
3
7
%
)

0
.9
0
(-
3
7
%
)

0
.9
0
(-
3
7
%
)

8
1
.4
1
3
(4
.6
7
%
)

1
.0
4
(-
2
6
%
)

0
.9
8
(-
3
0
%
)

1
.0
1
(-
2
9
%
)

1
.2
7
(-
1
0
%
)

0
.9
0
(-
3
6
%
)

0
.9
0
(-
3
6
%
)

0
.9
0
(-
3
6
%
)

9
3
0
.1
2
(1
6
.8
%
)

8
.9
0
(-
7
1
%
)

6
.0
4
(-
8
0
%
)

3
6
.5

(2
1
%
)

3
6
.9

(2
3
%
)

2
9
.1

(-
3
.5
%
)

3
2
.8

(9
.0
%
)

3
5
.3

(1
7
%
)

T
o
ta
l

4
5
.2
7

2
4
.6

(-
4
6
%
)

1
8
.6

(-
5
9
%
)

4
9
.8

(1
0
%
)

5
2
.8

(1
7
%
)

4
0
.1

(-
1
1
%
)

4
4
.4

(-
2
.0
%
)

4
7
.6

(5
.1
%
)

21



for simulation estimates (column Sim); and (ii) the relative error of the approximations

compared to the simulation estimates. The first 5 columns in Table 1 and Table 2 are

taken directly from Tables VIII and IX of [13], but the simulation and QNA approximations

come from [34]. The last three columns are the approximations obtained from the RQNA

algorithm discussed in this paper with various choice of the tuning function h(ρ). The RQNA

approximations of the workload are transformed into the approximations of the waiting time

as in Remark 4 in §2.2 of the main paper.

To put these performance measures in perspective, note that in an M/M/1 queue with

arrival rate 1 we would have E[W ] = ρ2/(1− ρ), which would be 0.90 at the first 8 queues,

but 8.1 at the last queue. For the D arrival process in Table 1, we expect that E[W ] will be

smaller; for the the H2 arrival process in Table 2, we expect E[W ] to be higher, but we see

a big impact at the last queue, more than might be expected.

We make the following observations from this experiment:

1. The new RQNA algorithm does better than the QNA and QNET methods on total

time spent waiting in queue, and is comparable with the SBD method, even though

RQNA does not require solving an RBM.

2. The RQNA algorithm does exceptionally well at the final bottleneck queue and is

competitive with all other methods for approximating the mean waiting time. The new

RQNA method is based on heavy-traffic limits just as the previous methods methods,

but focuses on the flows, and exploits RQ instead of analyzing an RBM.

3. The RQNA algorithm can benefit from further improvement for light-to-medium traffic

intensities. As demonstrated in Table 2, the mean waiting times at queues 3-8 are

pushed too much towards the M/M/1 values in the departure IDC approximation for

light to medium traffic intensity. That remains to be a direction for future research.
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